I would like to overplot a single fieldline at some radius or starting point, onto a contour of a magnetic field model without using the streamline function.
For example, here are the cartesian components of a dipole in the xz-plane:
N=20
z=(findgen(N)/(N-1))*10. - 5.
x=z
; 2D arrays
xx=rebin(reform(x, n, 1), n, n)
zz=rebin(reform(z, 1, n), n, n)
rr=sqrt(zz^2 + xx^2)
mu=1.
M=100.
Bx=mu/(4.*!PI)*(3.*M*zz*xx/rr^5)
Bz=mu/(4.*!PI)*(3.*M*zz^2/rr^5 - M/rr^3)
B=sqrt(Bz^2 + Bx^2)
;s=STREAMLINE(Bx, Bz, x, z, XTITLE='X', YTITLE='Z')
The streamline function does show the dipole field as expected.
I suppose I would have to iterate through the field at some starting point and calculate the tangent, but I'm not sure how to implement and plot the resultant line.
Many thanks for any help.
You can compute streamlines with PARTICLE_TRACE and do your own graphics however you want.
Related
I have been trying to figure out whether the following problem has a solution. Almost having given up, I would like to ask whether someone can confirm that there is no solution, or maybe give me a hint.
We have two vectors v and w in 3D space and know that the ratio of their magnitudes is ||v|| / ||w|| = 0.8019.
in 3D space an observer would see that they form an angle of 27.017 degrees.
on the other side, an observer in 2D (only seeing the x and z axis), observes an angle of 7.125 degrees between the vectors.
From their view, the vector coordinates are v = (x: 2, z: 1) and w = (x: 3, z: 2).
Is there somehow a way that the 2D observer can calculate the actual angle between these vectors in 3D space?
I would be more than happy for any input. All my tries have failed so far and I just want to know whether there could be a possible solution.
I have solved this problem and get that the values of y1 and y2 are given by this function:
eq1: 0.6439*y2^(2)-y1^(2)=9.785.
Therefore real angle can practically any value, the factor that would narrow this problem down to an actual solution would be the information about where the observer is in the 3d space so that he sees the angle of 27.017º, however, if this is the whole problem, then I can share my solution and process.
Some graphs that I created from my calculations:
The side view of the vectors is directly from the point of view of the x and z axis of the graph, therefore the coordinates of the (x1,z1) and (x2,z2) points(terminal points of the vectors), appear authentic, and not augmented, hence you can use them in your calculations to calculate the coordinates of z1 and z2, which you need to calculate the angle.
V = (x1, y1, z1) V = (2, y1, 1)
W = (x2, y2, z2) W = (3, y2, 2)
Since ||v|| / ||w|| = 0.8019
∴Then sqrt((x1^2)+(y1^2)+(z1^2))/sqrt((x2^2)+(y2^2)+(z2^2)) = 0.8019
∴(x1^2)+(y1^2)+(z1^2)/(x2^2)+(y2^2)+(z2^2) = 0.6430
∴4+(y1^2)+1/9+(y2^2)+4 = 0.6430
∴5+(y1^2) = 8.359 + 0.6430(y2^2)
∴13.359 = 0.6430(y2^2)-(y1^2)
This gives you therefore a function that calculates the other value of y given the some input y.
You can then graph this function using Geogebra.
For all the pairs of values on the curve, together with the fixed values of x and z for both of the vectors you can calculate that the ratio between the magnitudes of the two vectors is equal to 0.8019.
This problem has therefore infinitely many solutions for the angle as there are infinitely many values of z1 and z2 that satisfy the ratio; ||v|| / ||w|| = 0.8019.
Therefore the answer to this problem can be expressed as:
∀Θº∈R:Θº≥0
The only equation to calculate this that I can find involves t in the range [0, 1], but I have no idea how long it will take to travel the entire path, so I can't calculate (1 - t).
I know the speed at which I'm traveling, but it seems to be a heavy idea to calculate the total time beforehand (nor do I actually know how to do that calculation). What is an equation to figure out the position without knowing the total time?
Edit To clarify on the cubic bezier curve: I have four control points (P0 to P1), and to get a value on the curve with t, I need to use the four points as such:
B(t) = (1-t)^3P0 + 3t(1-t)^2P1 + 3t^2(1-t)P2 + t^3P3
I am not using a parametric equation to define the curve. The control points are what define the curve. What I need is an equation that does not require the use of knowing the range of t.
I think there is a misunderstanding here. The 't' in the cubic Bezier curve's definition does not refer to 'time'. It is parameter that the x, y or even z functions based on. Unlike the traditional way of representing y as a function of x, such as y=f(x), an alternative way of representing a curve is by the parametric form that represents x, y and z as functions of an additional parameter t, C(t)=(x(t), y(t), z(t)). Typically the t value will range from 0 to 1, but this is not a must. The common representation for a circle as x=cos(t) and y=sin(t) is an example of parametric representation. So, if you have the parametric representation of a curve, you can evaluate the position on the curve for any given t value. It has nothing to do with the time it takes to travel the entire path.
You have the given curve and you have your speed. To calculate what you're asking for you need to divide the total distance by the speed you traveled given that time. That will give you the parametric (t) you need. So if the total curve has a distance of 72.2 units and your speed is 1 unit then your t is 1/72.2.
Your only missing bit is calculating the length of a given curve. This is typically done by subdividing it into line segments small enough that you don't care, and then adding up the total distance of those line segments. You could likely combine those two steps as well if you were so inclined. If you have your given speed, just iteration like 1000th of the curve add the line segment between the start and point 1000th of the way through the curve, and subtract that from how far you need to travel (given that you have speed and time, you have distance you need to travel), and keep that up until you've gone as far as you need to go.
The range for t is between 0 and 1.
x = (1-t)*(1-t)*(1-t)*p0x + 3*(1-t)*(1-t)*t*p1x + 3*(1-t)*t*t*p2x + t*t*t*p3x;
y = (1-t)*(1-t)*(1-t)*p0y + 3*(1-t)*(1-t)*t*p1y + 3*(1-t)*t*t*p2y + t*t*t*p3y;
I would like to draw an animation of a polar curve (a spiral) being graphed. I am using javascript and canvas. Currently, I am using setInterval to call a draw function, which graphs an x and y coordinate found from a parametric representation of the polar curve (x and y in terms of theta). I am incrementing theta by 0.01, from 0 to 2*pi, once for every call to draw(). The problem is that I wish for the animation to draw the same amount of the curve for each call to draw, so that the drawing appears to progress with uniform speed. It doesn't matter if the time between each call to draw is different; I just need the speed (in terms of pixels drawn / # of calls to draw) to be constant for the entire awing. In other words, I need the arc length of the segment of the polar graph drawn for each call to draw to be the same. I have no idea how to go about this. Any help/sugestions would be greatly appreciated. Thanks
Let f(z) be the theta variable you are referring to in your question. Here are two parametric equations that should be very similar to what you have:
x(f(z)) = f(z)cos(f(z))
y(f(z)) = f(z)sin(f(z))
We can define the position p(f(z)) at f(z) as
p(f(z)) = [x(f(z)), y(f(z))]
The speed s(f(z)) at f(z) is the length of the derivative of p at f(z).
x'(f(z)) = f'(z)cos(f(z)) - f(z)f'(z)sin(f(z))
y'(f(z)) = f'(z)sin(f(z)) + f(z)f'(z)cos(f(z))
s(f(z)) = length(p'(f(z))) = length([x'(f(z)), y'(f(z))])
= length([f'(z)cos(f(z)) - f(z)f'(z)sin(f(z)), f'(z)sin(f(z)) + f(z)f'(z)cos(f(z))])
= sqrt([f'(z)cos(f(z))]2 + [f(z)f'(z)sin(f(z))]2 + [f'(z)sin(f(z))]2 + [f(z)f'(z)cos(f(z))]2)
= sqrt(f'(z) + [f(z)f'(z)]2)
If you want the speed s(f(z)) to be constant at C as z increases at a constant rate of 1, you need to solve this first-order nonlinear ordinary differential equation:
s(f(z)) = sqrt(f'(z) + [f(z)f'(z)]2) = C
http://www.wolframalpha.com/input/?i=sqrt%28f%27%28z%29+%2B+%5Bf%28z%29f%27%28z%29%5D%5E2%29+%3D+C
Solving this would give you a function theta = f(z) that you could use to compute theta as you keep increasing z. However, this differential equation has no closed form solution.
In other words, you'll have to make guesses at how much you should increase theta at each step, doing binary search on the delta to add to theta and line integrals over p(t) to evaluate how far each guess moves.
Easier method - change the parameter to setInterval proportional to the step arc length. That way you don't have to try to invert the arc length equation. If the interval starts getting too large, you can adjust the step size, but you can do so approximately.
I'm trying to design a 2D physics engine with continuous collision detection. Objects are stored as a list of non-rotating line-segments. Therefore I can detect collisions by finding the collision time between each pair of line segments between any two objects.
I want to find the exact time for an intersection between two moving line-segments that are moving in a constant direction, and it is proving to be difficult.
I have figured out that I can simplify the problem further by finding the collision time between each point on a line-segment and the other line-segment (and vice versa). It's possible that it is computationally inefficient, so a general solution for two line segments would be the ideal answer. I can also ignore the case in which lines are parallel (I want to treat a line/point sharing the same position and velocity as 'no collision').
If the answer is "not possible" to exactly find this intersection time, I would accept it as a solution. Any help on the subject would be appreciated.
EDIT: According to Wikipedia's article on a Line segment, for a line segment with endpoints A = (a_x, a_y) and C = (c_x, c_y), a general equation for the line segment looks like this:
For a line-segment--point intersection, would substituting
p_x + p_v * t for a_x (left-side only, right-side is just p_x)
p_y + p_v * t for a_y (left-side only, right-side is just p_y)
q_x + q_v * t for c_x (left-side only, right-side is just q_x)
q_y + q_v * t for c_y (left-side only, right-side is just q_y)
r_x + r_v * t for x
r_y + r_v * t for y
for a line segment pq [(p_x, p_y), (q_x, q_y)], point r (r_x, r_y), moving at rates of p_v == q_v != r_v be solvable for t? Here's the full equation:
The equation I have up above is incorrect in that it uses the same velocity for both its x and y components.
Since velocity is constant, I can simplify the equation such that the point is moving in reference to the line segment. The amount of variables used for velocity reduces greatly, by using v = r_v - qp_v for the velocity of the point r, and 0 for the velocity of each line segment. The equation with the variables plugged in then becomes:
Thanks to WolframAlpha, the equation is then solved for t:
What's interesting is that if you analyze this, it's symmetrical for 3D. Cross product for [x1, y1, 0] and [x2, y2, 0] is [0, 0, x1*y2 - y1*x2]. This equation then translates into:
For a line-segment--point intersection, I can find an interval in which there is a collision (although this interval is larger than the actual time for the collision):
Given a line segment [p, q] moving at velocity v, and a point r with velocity w, direction(w) != direction(v), define three lines L1 = [p, p+v], L2 = [q, q+v], L3 = [r, r+w]. Let t1, t_p and t2, t_q be the intersection times between L1 and L3 and between L2 and L3, respectively. If the interval [t1, t2] is not mutually exclusive with [t_p, t_q], then there is an intersection in the intersection of these two intervals (e.g. intersection between [-1, 10] and [2, 20] is [2, 10]). If these intervals are mutually exclusive, then there is no collision.
Additionally, if the direction of v and w ARE the same, but not of equal length, then you can find the exact time of collision. Let s be the point r when projected onto the line [p, q]. If this point is in the line segment [p, q], there is a collision at time t1, which can be calculated by dividing the distance between point r and point s by the relative velocity between the point r and the line-segment [p, q].
Using the interval it's possible to get an estimate for the time by using a binary-search--like method of comparing distances between the segment and point at specific times. This is very inefficient, however.
I am trying to generate a 3d tube along a spline. I have the coördinates of the spline (x1,y1,z1 - x2,y2,z2 - etc) which you can see in the illustration in yellow. At those points I need to generate circles, whose vertices are to be connected at a later stadium. The circles need to be perpendicular to the 'corners' of two line segments of the spline to form a correct tube. Note that the segments are kept low for illustration purpose.
[apparently I'm not allowed to post images so please view the image at this link]
http://img191.imageshack.us/img191/6863/18720019.jpg
I am as far as being able to calculate the vertices of each ring at each point of the spline, but they are all on the same planar ie same angled. I need them to be rotated according to their 'legs' (which A & B are to C for instance).
I've been thinking this over and thought of the following:
two line segments can be seen as 2 vectors (in illustration A & B)
the corner (in illustraton C) is where a ring of vertices need to be calculated
I need to find the planar on which all of the vertices will reside
I then can use this planar (=vector?) to calculate new vectors from the center point, which is C
and find their x,y,z using radius * sin and cos
However, I'm really confused on the math part of this. I read about the dot product but that returns a scalar which I don't know how to apply in this case.
Can someone point me into the right direction?
[edit]
To give a bit more info on the situation:
I need to construct a buffer of floats, which -in groups of 3- describe vertex positions and will be connected by OpenGL ES, given another buffer with indices to form polygons.
To give shape to the tube, I first created an array of floats, which -in groups of 3- describe control points in 3d space.
Then along with a variable for segment density, I pass these control points to a function that uses these control points to create a CatmullRom spline and returns this in the form of another array of floats which -again in groups of 3- describe vertices of the catmull rom spline.
On each of these vertices, I want to create a ring of vertices which also can differ in density (amount of smoothness / vertices per ring).
All former vertices (control points and those that describe the catmull rom spline) are discarded.
Only the vertices that form the tube rings will be passed to OpenGL, which in turn will connect those to form the final tube.
I am as far as being able to create the catmullrom spline, and create rings at the position of its vertices, however, they are all on a planars that are in the same angle, instead of following the splines path.
[/edit]
Thanks!
Suppose you have a parametric curve such as:
xx[t_] := Sin[t];
yy[t_] := Cos[t];
zz[t_] := t;
Which gives:
The tangent vector to our curve is formed by the derivatives in each direction. In our case
Tg[t_]:= {Cos[t], -Sin[t], 1}
The orthogonal plane to that vector comes solving the implicit equation:
Tg[t].{x - xx[t], y - yy[t], z - zz[t]} == 0
In our case this is:
-t + z + Cos[t] (x - Sin[t]) - (y - Cos[t]) Sin[t] == 0
Now we find a circle in that plane, centered at the curve. i.e:
c[{x_, y_, z_, t_}] := (x - xx[t])^2 + (y - yy[t])^2 + (z - zz[t])^2 == r^2
Solving both equations, you get the equation for the circles:
HTH!
Edit
And by drawing a lot of circles, you may get a (not efficient) tube:
Or with a good Graphics 3D library:
Edit
Since you insist :) here is a program to calculate the circle at junctions.
a = {1, 2, 3}; b = {3, 2, 1}; c = {2, 3, 4};
l1 = Line[{a, b}];
l2 = Line[{b, c}];
k = Cross[(b - a), (c - b)] + b; (*Cross Product*)
angle = -ArcCos[(a - b).(c - b)/(Norm[(a - b)] Norm[(c - b)])]/2;
q = RotationMatrix[angle, k - b].(a - b);
circle[t_] := (k - b)/Norm[k - b] Sin#t + (q)/Norm[q] Cos#t + b;
Show[{Graphics3D[{
Red, l1,
Blue, l2,
Black, Line[{b, k}],
Green, Line[{b, q + b}]}, Axes -> True],
ParametricPlot3D[circle[t], {t, 0, 2 Pi}]}]
Edit
Here you have the mesh constructed by this method. It is not pretty, IMHO:
I don't know what your language of choice is, but if you speak MatLab there are already a few implementations available. Even if you are using another language, some of the code might be clear enough to inspire a reimplementation.
The key point is that if you don't want your tube to twist when you connect the vertices, you cannot determine the basis locally, but need to propagate it along the curve. The Frenet frame, as proposed by jalexiou, is one option but simpler stuff works fine as well.
I did a simple MatLab implementation called tubeplot.m in my formative years (based on a simple non-Frenet propagation), and googling it, I can see that Anders Sandberg from kth.se has done a (re?)implementation with the same name, available at http://www.nada.kth.se/~asa/Ray/Tubeplot/tubeplot.html.
Edit:
The following is pseudocode for the simple implementation in tubeplot.m. I have found it to be quite robust.
The plan is to propagate two normals a and b along the curve, so
that at each point on the curve a, b and the tangent to the curve
will form an orthogonal basis which is "as close as possible" to the
basis used in the previous point.
Using this basis we can find points on the circumference of the tube.
// *** Input/output ***
// v[0]..v[N-1]: Points on your curve as vectors
// No neighbours should overlap
// nvert: Number of vertices around tube, integer.
// rtube: Radius of tube, float.
// xyz: (N, nvert)-array with vertices of the tube as vectors
// *** Initialization ***
// 1: Tangent vectors
for i=1 to N-2:
dv[i]=v[i+1]-v[i-1]
dv[0]=v[1]-v[0], dv[N-1]=v[N-1]-v[N-2]
// 2: An initial value for a (must not be pararllel to dv[0]):
idx=<index of smallest component of abs(dv[0])>
a=[0,0,0], a[idx]=1.0
// *** Loop ***
for i = 0 to N-1:
b=normalize(cross(a,dv[i]));
a=normalize(cross(dv[i],b));
for j = 0 to nvert-1:
th=j*2*pi/nvert
xyz[i,j]=v[i] + cos(th)*rtube*a + sin(th)*rtube*b
Implementation details: You can probably speed up things by precalculating the cos and sin. Also, to get a robust performance, you should fuse input points closer than, say, 0.1*rtube, or a least test that all the dv vectors are non-zero.
HTH
You need to look at Fenet formulas in Differential Geometry. See figure 2.1 for an example with a helix.
Surfaces & Curves
Taking the cross product of the line segment and the up vector will give you a vector at right-angles to them both (unless the line segment points exactly up or down) which I'll call horizontal. Taking the cross product of horizontal and the line segment with give you another vector that's at right angles to the line segment and the other one (let's call it vertical). You can then get the circle coords by lineStart + cos theta * horizontal + sin theta * vertical for theta in 0 - 2Pi.
Edit: To get the points for the mid-point between two segments, use the sum of the two line segment vectors to find the average.