interpret estimated marginal means (emmans aka lsmeans): negative response values - r

I am working on a a model with lmer where I would like to get estimated marginal means with the emmeanslibrary. This is my dataframe:
df <- structure(list(treatment = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L), .Label = c("CCF", "UN"), class = "factor"), level = structure(c(2L,
3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L,
4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L,
2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L,
3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L,
4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L,
2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L, 2L,
3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L), .Label = c("A", "F", "H", "L"
), class = "factor"), random = structure(c(3L, 3L, 3L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 4L,
4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L), .Label = c("1.6", "2", "3.2", "5", NA), class = "factor"),
continuous = c(72.7951770264767, 149.373765810534, 1.64153094886205,
54.6697408615215, 25.5801835808851, 1.45794117443253, 25.3660934894788,
91.2321704897132, 2.75353217433675, 44.1995276851725, 33.1854545470435,
5.36536076058866, 29.6807620242672, 80.6077496067764, 0.833434180091457,
13.6789475327185, 77.4930412025109, 3.65998714174906, 25.2848344605563,
136.632099849828, 2.56715261161435, 28.6733878840584, 66.800616194317,
1.37475468782539, 23.007491380183, 84.980285774607, 1.13569710795522,
33.8610875632139, 56.1234827517798, 1.32327007970416, 60.0843812879313,
43.4487832450889, 1.14942423621912, 53.6673704529947, 146.746167255051,
3.91593723271292, 27.0321687961004, 89.5925729244878, 1.47707078226047,
44.0523211310831, 115.087908243373, 1.94039630728038, 86.4074806697431,
43.3266206881612, 2.81456503996437, 66.868588961071, 229.797526052566,
1.07971524769264, 30.3390107111747, 116.680801084036, 1.67711446647817,
69.0961010697534, 78.5454363192614, 1.92137892126384, 53.5708546850303,
37.7175476710608, 1.96087397451467, 25.5166981770257, 37.3755071788757,
2.21602000526086, 10.3266195584378, 38.1458490762217, 2.7508022340832,
44.5864920143771, 8.45382647692274, 2.63204944520792, 87.5376946978593,
27.2354119098268, 3.38134648323956, 26.8815471706502, 14.5539972194568,
2.0556994322415, 27.4619977737491, 32.8546665896602, 2.66809379088059,
42.3815445857533, 21.3359802201685, 2.19167325121191, 53.3189825439001,
13.5708790223439, 2.22274607227071, 88.297423835906, 8.50554349658773,
3.5764241495006, 29.284865737912, 21.1213079519954, 2.3070166819956,
10.7659615128225, 33.4813413290485, 2.49896565066211, 59.0935696616465,
13.2863515051715, 4.36424795471221, 72.1627847396763, 9.09326343200557,
2.13701784901259, 27.5824079679471, 8.84486812842272, 1.98293342019671,
17.5321126287485, 19.1806349705231, 5.03952187899644, 58.3473975730234,
9.17287686145614, 2.99575072457674)), class = "data.frame", row.names = c(NA,
105L))
This is my model:
library(lme4)
model <- lmer((continuous) ~ treatment + level + (1|random), data= df, REML = TRUE)
The data as it is does not meet the model assumptions, but still I am wondering why I get a negative estimated marginal mean (response) on treatment "UN" level "L" (see lettering table) when I don't have any negative numbers in df$continuous?
library(multcompView)
library(emmeans)
lsm.mixed_C <- emmeans::emmeans(my_model,pairwise ~ treatment * level, type="response")
lettering <- CLD(lsm.mixed_C,alpha=0.05,Letters=letters,
adjust= "tukey")

The short answer is because you badly need to include the interaction in your model. Compare:
model2 <- lmer((continuous) ~ treatment * level + (1|random),
data= df, REML = TRUE)
emmip(model2, treatment ~ level)
with:
emmip(model, treatment ~ level)
In model2, both EMMs at level L are close to zero. If you remove the interaction from the model, you force those two profiles to be parallel, while maintaining a sizeable positive difference between treatments CCF and UN, forcing the estimate for UN to go negative. In actual fact, though, all six estimates for treatment x level combinations are seriously distorted.
I can't repeat it enough. emmeans() summarizes a model. If you give it a bad model, you get dumb results. Thanks for the great illustration of this point.

Related

Calculating kappa statistics using irr R library

This was the question where it was shown how to use the concept.
I have naive question about this function which was give here which is this where it assigns predicted levels the cluster.
pred2labels = function(pred,actual){
pred = as.character(pred)
actual = as.character(actual)
tab = as.matrix(table(pred,actual))
assignment = colnames(tab)[max.col(tab)]
names(assignment) = rownames(tab)
assignment[pred]
}
I tried to do the same my question is do i need to generate a predicted labels for my data of clusters?
here is my data frame
dput(bb)
structure(list(FAB = structure(c(4L, 2L, 5L, 3L, 4L, 5L, 4L,
4L, 5L, 3L, 4L, 2L, 4L, 3L, 2L, 3L, 5L, 5L, 4L, 3L, 2L, 5L, 3L,
5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 2L, 3L, 5L, 3L, 5L, 3L,
2L, 1L, 6L, 6L, 5L, 5L, 5L, 6L, 6L, 3L, 7L, 3L, 5L, 6L, 2L, 5L,
2L, 3L, 3L, 2L, 6L, 2L, 2L, 2L, 2L, 1L, 6L, 2L, 5L, 2L, 2L, 9L,
5L, 1L, 5L, 2L, 5L, 5L, 6L, 2L, 3L, 6L, 5L, 2L, 1L, 8L, 3L, 5L,
3L, 6L, 1L, 2L, 2L, 5L, 3L, 5L, 6L, 5L, 5L, 3L, 5L, 3L, 2L, 3L,
3L, 2L, 6L, 1L, 2L, 3L, 6L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 2L,
2L, 5L, 2L, 3L, 2L, 3L, 5L, 1L, 3L, 1L, 6L, 5L, 5L, 3L, 5L, 3L,
2L, 1L, 2L, 5L, 7L, 8L, 6L, 2L, 8L, 3L, 3L, 1L, 2L, 2L, 2L, 1L,
3L, 6L, 5L, 3L, 1L, 2L, 3L, 2L, 1L, 3L, 5L, 2L, 9L, 2L, 1L, 1L,
2L, 6L, 6L), .Label = c("M0", "M1", "M2", "M3", "M4", "M5", "M6",
"M7", "nc"), class = "factor"), RISK_CYTO = structure(c(1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 2L,
4L, 2L, 4L, 2L, 4L, 4L, 4L, 4L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 4L, 4L, 4L, 2L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L), .Label = c("Good", "Intermediate",
"N.D.", "Poor"), class = "factor"), Class = c(1L, 1L, 2L, 1L,
1L, 2L, 1L, 1L, 4L, 1L, 1L, 4L, 1L, 1L, 4L, 1L, 2L, 4L, 1L, 4L,
1L, 4L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 4L, 5L,
3L, 2L, 2L, 4L, 3L, 6L, 2L, 2L, 6L, 2L, 2L, 2L, 3L, 6L, 5L, 2L,
2L, 3L, 6L, 2L, 4L, 5L, 6L, 2L, 3L, 3L, 4L, 5L, 3L, 5L, 4L, 2L,
4L, 3L, 4L, 2L, 3L, 4L, 4L, 5L, 2L, 2L, 5L, 5L, 2L, 4L, 4L, 6L,
6L, 4L, 2L, 3L, 5L, 3L, 2L, 3L, 2L, 3L, 2L, 2L, 4L, 2L, 3L, 2L,
4L, 3L, 5L, 4L, 6L, 2L, 5L, 4L, 3L, 4L, 5L, 4L, 2L, 4L, 6L, 4L,
1L, 4L, 5L, 6L, 1L, 4L, 4L, 5L, 4L, 2L, 3L, 5L, 3L, 5L, 2L, 2L,
4L, 2L, 1L, 4L, 3L, 5L, 5L, 6L, 2L, 2L, 3L, 6L, 1L, 5L, 5L, 5L,
5L, 3L, 3L, 6L, 5L, 4L, 6L, 3L, 5L, 5L, 5L, 5L, 5L, 2L, 1L, 5L,
6L, 5L, 5L, 6L, 2L, 2L)), row.names = c(NA, -170L), class = "data.frame")
My steps were this
library(irr)
clus_arrange = bb %>% dplyr::select(Class,FAB)
names(clus_arrange)[1] = "clus"
clus_arrange$predicted_label = pred2labels(clus_arrange$clus,clus_arrange$FAB)
kappam.light(cluster_r)
My output is this
Light's Kappa for m Raters
Subjects = 170
Raters = 2
Kappa = 0.266
z = 6.62
p-value = 3.58e-11
My question is the approach right way of doing it what i had followed from that answer?
UPDATED ANSWER BASED ON THIS TUTORIAL
table <- table(clus_arrange$FAB, clus_arrange$clus)
table
kappam.fleiss(table, detail=TRUE)
My question is which one is methodically and logically correct

How to reshape conjoint data from wide to long?

users,
I have received a data from a conjoint survey experiment. What I want to do is to reshape from wide to long format. However, this seems to be slightly complicated. I am pretty sure it is possible to do with cj_tidy (package cregg) but can't solve it myself.
In the survey, the respondents were asked to compare two organizations that vary across 7 profiles (Efficiency Opennes Inclusion Leader Gain & System). In total, respondents were presented with four comparisons. So 2 organizations and 4 comparisons (4x2). They had to choose one of the presented organization and rate them separately after choosing one.
At the moment, the profile variables are structured in this way: org1_Efficiency_conj_1, org1_Opennes_conj1 ..etc. The first part "org" indicates whether it is the first or second organization. The last part "conj", indicated the order of the conjoint/comparison, where the "conj4" is the last comparison. The CHOICE variables also follow the order of conjoint – for example,"CHOICE_conj1", "CHOICE_conj2", where =1 means the respondent chose "org1". If =2, then org2 was chosen. The RATING> variable indicates a value from 0 to 10 for each organization: RATING_conj1_org1; RATING_conj1_org2 etc..
The current wide format of the data is not suitable for conjoint analysis - what I need is to create 8 observations for each respondent (4x2=8) where the variable CHOICE would indicate which of the organizations were chosen (where =1 if yes; and =0 if no). In a similar way, the variable RATING should indicate the rating given by respondents for both of the organizations (0 to 10).
This is how I would like the data to look like:
Note please that there are also covariates such as Q1 and Q2 in the picture, they are not a part of the experiment and should remain constant for each individual observation.
Below I share 50 observations from my real data.
> dput(cjdata_wide) structure(list(ID = 1:50, org1_Effeciency_conj_1 =
> c(3L, 2L, 1L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 2L, 1L, 1L, 1L, 1L, 1L, 3L,
> 2L, 3L, 3L, 3L, 2L, 3L, 1L, 2L, 1L, 3L, 3L, 1L, 1L, 3L, 1L, 1L, 3L,
> 3L, 2L, 3L, 2L, 3L, 2L, 1L, 1L, 3L, 2L, 1L, 1L, 1L, 2L, 2L, 1L ),
> org1_Oppenes_conj_1 = c(3L, 3L, 1L, 3L, 1L, 3L, 2L, 3L, 2L, 3L, 1L,
> 1L, 1L, 2L, 3L, 2L, 2L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 1L, 3L,
> 1L, 2L, 2L, 3L, 2L, 2L, 1L, 3L, 1L, 3L, 2L, 2L, 1L, 2L, 3L, 3L, 3L,
> 3L, 3L, 2L, 3L, 1L), org1_Inclusion_conj_1 = c(2L, 1L, 1L, 2L, 2L,
> 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L,
> 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
> 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L), org1_Leader_conj_1 =
> c(5L, 6L, 3L, 6L, 1L, 4L, 2L, 6L, 1L, 6L, 1L, 2L, 2L, 6L, 3L, 2L, 6L,
> 3L, 5L, 6L, 3L, 1L, 4L, 3L, 5L, 5L, 2L, 1L, 4L, 1L, 3L, 4L, 2L, 3L,
> 5L, 2L, 1L, 3L, 3L, 2L, 1L, 4L, 1L, 5L, 2L, 6L, 1L, 4L, 2L, 3L),
> org1_Gain_conj_1 = c(4L, 4L, 1L, 3L, 3L, 8L, 3L, 2L, 6L, 5L, 1L, 6L,
> 3L, 8L, 1L, 3L, 6L, 2L, 2L, 5L, 5L, 3L, 4L, 8L, 6L, 4L, 5L, 6L, 6L,
> 8L, 4L, 4L, 5L, 7L, 6L, 7L, 3L, 7L, 8L, 2L, 6L, 4L, 6L, 4L, 8L, 4L,
> 6L, 4L, 3L, 6L), org1_System_conj_1 = c(5L, 4L, 5L, 1L, 4L, 4L, 5L,
> 1L, 2L, 2L, 4L, 3L, 1L, 4L, 4L, 2L, 3L, 3L, 2L, 4L, 3L, 1L, 4L, 3L,
> 1L, 1L, 5L, 3L, 1L, 3L, 5L, 4L, 5L, 3L, 2L, 4L, 1L, 2L, 3L, 4L, 1L,
> 1L, 3L, 5L, 5L, 5L, 1L, 1L, 5L, 3L), org2_Effeciency_conj_1 = c(2L,
> 1L, 3L, 2L, 1L, 3L, 1L, 2L, 2L, 2L, 3L, 2L, 3L, 3L, 3L, 2L, 2L, 1L,
> 2L, 2L, 2L, 3L, 1L, 3L, 1L, 3L, 2L, 1L, 2L, 2L, 1L, 2L, 3L, 1L, 2L,
> 1L, 1L, 3L, 2L, 1L, 3L, 3L, 2L, 3L, 3L, 2L, 2L, 3L, 3L, 3L),
> org2_Oppenes_conj_1 = c(1L, 1L, 3L, 1L, 3L, 1L, 1L, 2L, 3L, 2L, 3L,
> 3L, 2L, 1L, 1L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 3L, 1L,
> 2L, 3L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 3L, 1L, 2L, 3L, 1L, 1L, 1L,
> 2L, 1L, 1L, 1L, 3L), org2_Inclusion_conj_1 = c(1L, 2L, 2L, 1L, 1L,
> 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L,
> 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
> 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L), org2_Leader_conj_1 =
> c(4L, 5L, 6L, 3L, 2L, 5L, 1L, 3L, 6L, 2L, 4L, 6L, 6L, 5L, 6L, 4L, 1L,
> 2L, 4L, 2L, 4L, 6L, 5L, 6L, 4L, 1L, 3L, 5L, 3L, 5L, 6L, 1L, 6L, 4L,
> 1L, 3L, 4L, 2L, 1L, 3L, 4L, 3L, 5L, 2L, 4L, 4L, 3L, 3L, 4L, 2L),
> org2_Gain_conj_1 = c(5L, 1L, 6L, 5L, 8L, 6L, 4L, 3L, 8L, 8L, 7L, 7L,
> 7L, 5L, 7L, 7L, 2L, 6L, 7L, 7L, 6L, 8L, 3L, 1L, 8L, 2L, 6L, 2L, 5L,
> 6L, 7L, 1L, 7L, 2L, 2L, 5L, 8L, 6L, 2L, 7L, 8L, 7L, 1L, 8L, 4L, 3L,
> 4L, 7L, 7L, 7L), org2_System_conj_1 = c(3L, 3L, 3L, 4L, 3L, 3L, 3L,
> 5L, 4L, 4L, 1L, 4L, 3L, 1L, 5L, 5L, 5L, 4L, 3L, 3L, 4L, 4L, 1L, 5L,
> 5L, 3L, 4L, 2L, 5L, 2L, 2L, 5L, 3L, 4L, 3L, 5L, 5L, 5L, 5L, 2L, 3L,
> 4L, 2L, 1L, 3L, 3L, 2L, 4L, 4L, 2L), org1_Effeciency_conj_2 = c(2L,
> 1L, 2L, 3L, 3L, 2L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 2L, 3L, 3L, 2L, 3L,
> 3L, 1L, 2L, 1L, 2L, 3L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 2L, 1L, 2L,
> 1L, 1L, 3L, 1L, 3L, 1L, 2L, 3L, 3L, 1L, 2L, 1L, 2L, 3L, 3L),
> org1_Oppenes_conj_2 = c(1L, 3L, 2L, 1L, 2L, 3L, 3L, 2L, 1L, 3L, 3L,
> 2L, 1L, 2L, 3L, 3L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 3L, 2L, 1L, 3L, 2L,
> 3L, 3L, 3L, 3L, 2L, 2L, 1L, 2L, 1L, 2L, 3L, 2L, 1L, 1L, 1L, 1L, 1L,
> 1L, 3L, 3L, 2L, 3L), org1_Inclusion_conj_2 = c(2L, 1L, 1L, 2L, 1L,
> 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
> 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L,
> 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L), org1_Leader_conj_2 =
> c(3L, 3L, 2L, 2L, 5L, 5L, 6L, 2L, 2L, 1L, 6L, 5L, 2L, 1L, 2L, 4L, 5L,
> 4L, 3L, 6L, 4L, 1L, 5L, 3L, 1L, 5L, 5L, 4L, 6L, 6L, 5L, 6L, 5L, 4L,
> 4L, 6L, 3L, 4L, 6L, 2L, 4L, 4L, 1L, 4L, 4L, 3L, 3L, 1L, 4L, 4L),
> org1_Gain_conj_2 = c(3L, 1L, 7L, 7L, 2L, 1L, 8L, 1L, 2L, 7L, 5L, 4L,
> 4L, 3L, 6L, 3L, 1L, 1L, 8L, 3L, 4L, 3L, 3L, 5L, 4L, 3L, 4L, 8L, 6L,
> 8L, 3L, 1L, 8L, 5L, 6L, 3L, 3L, 6L, 7L, 1L, 3L, 6L, 5L, 7L, 6L, 6L,
> 3L, 4L, 2L, 6L), org1_System_conj_2 = c(5L, 1L, 5L, 1L, 4L, 3L, 3L,
> 4L, 2L, 1L, 5L, 3L, 5L, 3L, 4L, 2L, 2L, 3L, 4L, 1L, 1L, 4L, 3L, 4L,
> 3L, 2L, 1L, 1L, 4L, 5L, 2L, 3L, 5L, 3L, 5L, 2L, 4L, 2L, 1L, 5L, 5L,
> 1L, 2L, 2L, 5L, 2L, 4L, 3L, 2L, 3L), org2_Effeciency_conj_2 = c(3L,
> 3L, 1L, 2L, 2L, 1L, 3L, 1L, 3L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 3L, 1L,
> 2L, 3L, 3L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 2L, 3L, 3L, 3L,
> 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L),
> org2_Oppenes_conj_2 = c(2L, 2L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 2L, 2L,
> 3L, 3L, 1L, 2L, 1L, 2L, 3L, 3L, 3L, 3L, 2L, 3L, 1L, 1L, 3L, 1L, 3L,
> 2L, 2L, 2L, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, 2L, 2L, 2L, 2L, 2L,
> 2L, 2L, 1L, 1L, 2L), org2_Inclusion_conj_2 = c(1L, 2L, 2L, 1L, 2L,
> 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L,
> 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
> 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L), org2_Leader_conj_2 =
> c(6L, 6L, 1L, 4L, 1L, 4L, 4L, 1L, 4L, 4L, 1L, 3L, 5L, 2L, 1L, 5L, 4L,
> 6L, 4L, 2L, 3L, 3L, 1L, 4L, 2L, 2L, 6L, 6L, 1L, 5L, 4L, 4L, 1L, 3L,
> 3L, 4L, 5L, 5L, 3L, 3L, 6L, 3L, 2L, 5L, 2L, 6L, 4L, 2L, 5L, 1L),
> org2_Gain_conj_2 = c(8L, 5L, 3L, 6L, 8L, 2L, 2L, 2L, 7L, 6L, 4L, 1L,
> 6L, 7L, 2L, 1L, 2L, 2L, 3L, 2L, 5L, 5L, 4L, 2L, 7L, 2L, 7L, 4L, 7L,
> 1L, 2L, 5L, 1L, 2L, 7L, 1L, 6L, 2L, 8L, 7L, 7L, 1L, 6L, 3L, 3L, 2L,
> 5L, 3L, 4L, 2L), org2_System_conj_2 = c(1L, 5L, 3L, 4L, 5L, 1L, 4L,
> 3L, 4L, 4L, 4L, 5L, 2L, 2L, 1L, 3L, 4L, 4L, 5L, 2L, 5L, 1L, 2L, 1L,
> 2L, 3L, 3L, 4L, 1L, 3L, 3L, 5L, 4L, 5L, 1L, 5L, 5L, 5L, 4L, 3L, 2L,
> 4L, 4L, 3L, 3L, 4L, 3L, 1L, 1L, 2L), org1_Effeciency_conj_3 = c(1L,
> 3L, 3L, 1L, 2L, 3L, 3L, 1L, 2L, 3L, 1L, 3L, 3L, 3L, 2L, 3L, 2L, 1L,
> 1L, 2L, 2L, 3L, 2L, 1L, 3L, 3L, 2L, 3L, 2L, 1L, 2L, 3L, 3L, 1L, 3L,
> 3L, 2L, 1L, 1L, 1L, 3L, 2L, 3L, 1L, 3L, 3L, 2L, 3L, 3L, 1L),
> org1_Oppenes_conj_3 = c(2L, 3L, 3L, 3L, 1L, 2L, 1L, 2L, 1L, 2L, 3L,
> 2L, 3L, 3L, 1L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 1L, 3L, 1L, 3L, 3L, 1L,
> 3L, 1L, 2L, 3L, 2L, 1L, 3L, 1L, 3L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 3L,
> 3L, 2L, 3L, 3L, 3L), org1_Inclusion_conj_3 = c(1L, 1L, 1L, 2L, 1L,
> 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L,
> 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L,
> 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L), org1_Leader_conj_3 =
> c(3L, 1L, 5L, 6L, 3L, 2L, 2L, 6L, 4L, 3L, 3L, 2L, 2L, 1L, 2L, 3L, 5L,
> 6L, 4L, 1L, 2L, 4L, 5L, 1L, 2L, 2L, 2L, 6L, 4L, 6L, 4L, 6L, 1L, 1L,
> 3L, 5L, 4L, 1L, 3L, 6L, 2L, 6L, 6L, 1L, 2L, 2L, 6L, 2L, 6L, 5L),
> org1_Gain_conj_3 = c(2L, 7L, 2L, 4L, 6L, 7L, 2L, 4L, 1L, 5L, 5L, 7L,
> 5L, 7L, 7L, 3L, 2L, 6L, 2L, 5L, 6L, 6L, 7L, 3L, 5L, 6L, 3L, 8L, 1L,
> 2L, 8L, 5L, 2L, 8L, 5L, 6L, 5L, 2L, 5L, 3L, 3L, 2L, 4L, 2L, 4L, 5L,
> 7L, 6L, 2L, 7L), org1_System_conj_3 = c(5L, 5L, 1L, 1L, 4L, 3L, 1L,
> 1L, 2L, 5L, 1L, 5L, 2L, 1L, 5L, 4L, 1L, 1L, 3L, 4L, 5L, 1L, 5L, 3L,
> 3L, 5L, 1L, 3L, 2L, 5L, 2L, 1L, 5L, 1L, 3L, 2L, 5L, 5L, 2L, 1L, 3L,
> 2L, 2L, 4L, 4L, 4L, 2L, 3L, 5L, 4L), org2_Effeciency_conj_3 = c(2L,
> 1L, 2L, 2L, 1L, 2L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 2L, 1L, 1L, 1L, 3L,
> 3L, 1L, 3L, 1L, 1L, 2L, 2L, 1L, 3L, 2L, 1L, 3L, 1L, 1L, 1L, 3L, 1L,
> 2L, 1L, 2L, 3L, 3L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L),
> org2_Oppenes_conj_3 = c(1L, 1L, 1L, 2L, 3L, 3L, 2L, 1L, 3L, 3L, 1L,
> 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 2L, 3L, 1L, 2L, 3L,
> 1L, 2L, 1L, 1L, 3L, 3L, 1L, 3L, 1L, 2L, 3L, 3L, 3L, 3L, 3L, 1L, 2L,
> 2L, 1L, 1L, 2L, 1L), org2_Inclusion_conj_3 = c(2L, 2L, 2L, 1L, 2L,
> 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
> 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L,
> 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L), org2_Leader_conj_3 =
> c(1L, 5L, 2L, 1L, 2L, 4L, 4L, 1L, 2L, 4L, 5L, 5L, 5L, 4L, 3L, 4L, 6L,
> 3L, 2L, 2L, 5L, 2L, 2L, 5L, 5L, 3L, 5L, 3L, 3L, 1L, 5L, 5L, 2L, 2L,
> 2L, 2L, 1L, 6L, 1L, 5L, 1L, 5L, 1L, 2L, 6L, 6L, 4L, 3L, 2L, 6L),
> org2_Gain_conj_3 = c(1L, 8L, 3L, 5L, 2L, 6L, 3L, 2L, 7L, 1L, 2L, 2L,
> 8L, 1L, 2L, 6L, 1L, 8L, 6L, 3L, 7L, 4L, 5L, 2L, 6L, 8L, 2L, 7L, 6L,
> 8L, 5L, 7L, 3L, 6L, 1L, 8L, 4L, 3L, 7L, 5L, 8L, 8L, 3L, 6L, 3L, 4L,
> 5L, 4L, 4L, 5L), org2_System_conj_3 = c(4L, 1L, 4L, 3L, 3L, 5L, 3L,
> 3L, 4L, 2L, 3L, 1L, 1L, 5L, 2L, 3L, 3L, 2L, 5L, 3L, 1L, 2L, 3L, 5L,
> 1L, 4L, 5L, 2L, 3L, 2L, 3L, 2L, 4L, 3L, 5L, 3L, 1L, 1L, 3L, 2L, 4L,
> 5L, 5L, 3L, 1L, 1L, 4L, 1L, 4L, 5L), org1_Effeciency_conj_4 = c(1L,
> 1L, 2L, 2L, 3L, 2L, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 2L, 3L,
> 3L, 1L, 1L, 3L, 1L, 3L, 2L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 1L, 3L, 2L,
> 3L, 3L, 2L, 3L, 1L, 2L, 2L, 3L, 2L, 1L, 1L, 3L, 3L, 1L, 3L),
> org1_Oppenes_conj_4 = c(2L, 1L, 2L, 2L, 2L, 3L, 2L, 3L, 2L, 1L, 1L,
> 1L, 3L, 1L, 3L, 2L, 2L, 3L, 2L, 3L, 1L, 3L, 3L, 1L, 1L, 1L, 3L, 1L,
> 1L, 1L, 2L, 3L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 3L, 1L, 3L, 3L, 1L, 3L,
> 3L, 3L, 2L, 3L, 2L), org1_Inclusion_conj_4 = c(2L, 2L, 1L, 2L, 2L,
> 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
> 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L,
> 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L), org1_Leader_conj_4 =
> c(4L, 6L, 5L, 1L, 2L, 1L, 1L, 3L, 3L, 6L, 2L, 5L, 6L, 6L, 6L, 2L, 3L,
> 3L, 4L, 4L, 4L, 1L, 5L, 5L, 2L, 6L, 2L, 5L, 4L, 4L, 2L, 5L, 6L, 5L,
> 1L, 4L, 4L, 3L, 4L, 2L, 3L, 2L, 5L, 1L, 3L, 6L, 2L, 6L, 4L, 1L),
> org1_Gain_conj_4 = c(3L, 1L, 2L, 3L, 4L, 7L, 2L, 7L, 4L, 1L, 6L, 3L,
> 5L, 8L, 3L, 7L, 8L, 1L, 3L, 6L, 7L, 1L, 1L, 1L, 1L, 3L, 4L, 3L, 1L,
> 8L, 3L, 2L, 1L, 7L, 2L, 4L, 4L, 1L, 6L, 8L, 6L, 3L, 7L, 3L, 8L, 7L,
> 3L, 1L, 3L, 3L), org1_System_conj_4 = c(5L, 1L, 2L, 3L, 2L, 5L, 5L,
> 2L, 3L, 5L, 3L, 4L, 5L, 2L, 4L, 2L, 3L, 2L, 4L, 4L, 1L, 1L, 4L, 3L,
> 2L, 4L, 3L, 1L, 5L, 5L, 2L, 4L, 5L, 4L, 3L, 3L, 1L, 5L, 4L, 1L, 2L,
> 3L, 5L, 5L, 3L, 2L, 5L, 2L, 3L, 3L), org2_Effeciency_conj_4 = c(3L,
> 3L, 3L, 1L, 1L, 3L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 3L, 2L, 1L, 1L,
> 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 3L, 2L, 2L, 1L, 3L, 1L, 3L,
> 2L, 2L, 3L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 3L, 2L, 2L, 3L, 1L),
> org2_Oppenes_conj_4 = c(1L, 3L, 1L, 3L, 3L, 2L, 3L, 2L, 3L, 2L, 2L,
> 3L, 2L, 2L, 2L, 1L, 3L, 1L, 3L, 2L, 2L, 1L, 1L, 3L, 3L, 2L, 1L, 3L,
> 3L, 2L, 3L, 1L, 3L, 3L, 2L, 1L, 3L, 1L, 3L, 1L, 2L, 2L, 1L, 2L, 1L,
> 1L, 2L, 3L, 1L, 1L), org2_Inclusion_conj_4 = c(1L, 1L, 2L, 1L, 1L,
> 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
> 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L,
> 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L), org2_Leader_conj_4 =
> c(1L, 5L, 2L, 6L, 6L, 6L, 2L, 1L, 2L, 4L, 5L, 3L, 4L, 4L, 2L, 1L, 6L,
> 1L, 1L, 2L, 6L, 3L, 1L, 4L, 4L, 3L, 3L, 4L, 6L, 5L, 3L, 2L, 3L, 6L,
> 6L, 5L, 2L, 6L, 3L, 5L, 5L, 1L, 6L, 5L, 4L, 5L, 1L, 2L, 2L, 6L),
> org2_Gain_conj_4 = c(5L, 8L, 1L, 2L, 7L, 2L, 7L, 8L, 2L, 6L, 7L, 7L,
> 7L, 5L, 8L, 4L, 6L, 6L, 6L, 4L, 6L, 6L, 7L, 2L, 5L, 6L, 6L, 1L, 8L,
> 5L, 2L, 5L, 6L, 3L, 3L, 7L, 7L, 8L, 4L, 7L, 5L, 2L, 2L, 7L, 6L, 4L,
> 7L, 4L, 4L, 1L), org2_System_conj_4 = c(2L, 3L, 3L, 2L, 4L, 4L, 4L,
> 4L, 1L, 4L, 1L, 2L, 4L, 5L, 2L, 3L, 5L, 1L, 1L, 1L, 5L, 4L, 2L, 2L,
> 3L, 2L, 1L, 4L, 3L, 4L, 5L, 3L, 1L, 3L, 2L, 4L, 4L, 1L, 3L, 3L, 4L,
> 5L, 4L, 4L, 1L, 1L, 3L, 5L, 5L, 1L), CHOICE_conj1 = c(2L, 2L, 1L, 2L,
> 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L,
> 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
> 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L ), RATING_conj1_org1 =
> c(1L, 3L, 6L, 5L, 3L, 1L, 5L, 2L, 0L, 7L, 6L, 8L, 5L, 10L, 8L, 10L,
> 1L, 6L, 5L, 8L, 2L, 7L, 0L, 6L, 8L, 0L, 4L, 2L, 8L, 6L, 7L, 7L, 7L,
> 2L, 3L, 8L, 6L, 7L, 2L, 7L, 3L, 8L, 5L, 7L, 8L, 6L, 6L, 10L, 3L, 9L),
> RATING_conj1_org2 = c(7L, 6L, 4L, 7L, 7L, 1L, 6L, 6L, 0L, 3L, 2L, 0L,
> 0L, 9L, 5L, 3L, 1L, 6L, 8L, 5L, 2L, 2L, 0L, 4L, 5L, 0L, 6L, 8L, 3L,
> 5L, 6L, 6L, 5L, 8L, 3L, 8L, 3L, 1L, 5L, 9L, 7L, 3L, 7L, 6L, 6L, 4L,
> 4L, 0L, 6L, 7L), CHOICE_conj2 = c(1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L,
> 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
> 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L,
> 2L, 1L, 1L, 2L, 1L, 1L, 2L), RATING_conj2_org1 = c(5L, 4L, 4L, 4L,
> 5L, 1L, 5L, 7L, 0L, 3L, 5L, 6L, 5L, 9L, 5L, 3L, 1L, 4L, 4L, 8L, 3L,
> 7L, 0L, 9L, 9L, 1L, 3L, 2L, 3L, 5L, 6L, 4L, 5L, 8L, 3L, 7L, 6L, 1L,
> 7L, 0L, 7L, 6L, 6L, 8L, 9L, 7L, 5L, 10L, 7L, 7L), RATING_conj2_org2 =
> c(0L, 2L, 7L, 4L, 8L, 1L, 7L, 8L, 0L, 3L, 6L, 0L, 0L, 7L, 8L, 10L,
> 0L, 3L, 6L, 8L, 2L, 5L, 0L, 4L, 5L, 2L, 5L, 5L, 7L, 5L, 5L, 7L, 1L,
> 2L, 3L, 8L, 3L, 7L, 3L, 6L, 2L, 8L, 8L, 8L, 7L, 6L, 6L, 5L, 5L, 9L),
> CHOICE_conj3 = c(2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L,
> 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L,
> 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L,
> 2L, 1L, 1L), RATING_conj3_org1 = c(4L, 6L, 4L, 6L, 7L, 1L, 6L, 3L,
> 0L, 6L, 2L, 7L, 0L, 9L, 5L, 3L, 1L, 3L, 4L, 7L, 1L, 8L, 0L, 5L, 5L,
> 1L, 5L, 2L, 8L, 5L, 5L, 5L, 3L, 8L, 2L, 4L, 5L, 7L, 8L, 6L, 7L, 6L,
> 4L, 9L, 7L, 5L, 4L, 2L, 8L, 9L), RATING_conj3_org2 = c(7L, 4L, 6L,
> 5L, 6L, 1L, 3L, 7L, 0L, 3L, 2L, 3L, 3L, 6L, 5L, 10L, 0L, 3L, 4L, 10L,
> 0L, 4L, 0L, 7L, 5L, 2L, 3L, 2L, 3L, 5L, 8L, 2L, 7L, 2L, 7L, 5L, 3L,
> 3L, 0L, 0L, 2L, 6L, 7L, 8L, 5L, 2L, 8L, 10L, 6L, 8L), CHOICE_conj4 =
> c(2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L,
> 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L,
> 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L),
> RATING_conj4_org1 = c(4L, 5L, 8L, 6L, 4L, 1L, 8L, 3L, 0L, 7L, 5L, 5L,
> 2L, 8L, 7L, 10L, 1L, 5L, 5L, 10L, 1L, 3L, 0L, 6L, 7L, 1L, 2L, 5L, 7L,
> 8L, 7L, 3L, 6L, 2L, 2L, 8L, 5L, 5L, 4L, 5L, 3L, 7L, 3L, 8L, 8L, 6L,
> 2L, 10L, 7L, 7L), RATING_conj4_org2 = c(6L, 4L, 4L, 4L, 5L, 1L, 6L,
> 7L, 0L, 3L, 6L, 2L, 0L, 5L, 5L, 3L, 0L, 3L, 4L, 9L, 4L, 8L, 0L, 5L,
> 6L, 2L, 8L, 3L, 2L, 5L, 5L, 7L, 2L, 6L, 7L, 8L, 3L, 3L, 1L, 5L, 7L,
> 10L, 7L, 10L, 5L, 5L, 7L, 5L, 5L, 8L), Q7 = c(0L, 0L, 8L, 9L, 6L,
> 10L, 2L, 2L, 6L, 8L, 0L, 0L, 5L, 2L, 7L, 7L, 3L, 0L, 0L, 5L, 6L, 4L,
> 7L, 2L, 977L, 0L, 6L, 3L, 2L, 4L, 7L, 8L, 2L, 1L, 9L, 8L, 10L, 6L,
> 0L, 9L, 5L, 0L, 3L, 0L, 0L, 0L, 2L, 5L, 977L, 2L), Q8 = c(1L, 1L, 2L,
> 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 977L, 1L, 2L, 2L, 1L, 3L, 1L, 1L,
> 3L, 1L, 3L, 1L, 2L, 1L, 977L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
> 3L, 3L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 977L, 1L), Q9 = c(4L, 8L,
> 1L, 0L, 4L, 0L, 8L, 7L, 0L, 0L, 10L, 10L, 0L, 4L, 0L, 10L, 4L, 5L,
> 10L, 8L, 2L, 9L, 0L, 5L, 2L, 0L, 5L, 4L, 4L, 8L, 0L, 0L, 5L, 6L, 2L,
> 0L, 0L, 0L, 7L, 4L, 5L, 5L, 6L, 10L, 7L, 4L, 6L, 0L, 977L, 7L), Q10 =
> c(8L, 10L, 7L, 5L, 7L, 2L, 7L, 8L, 0L, 2L, 10L, 10L, 0L, 10L, 2L,
> 10L, 8L, 8L, 10L, 8L, 7L, 10L, 5L, 7L, 4L, 0L, 7L, 7L, 10L, 10L, 4L,
> 2L, 5L, 9L, 5L, 6L, 2L, 4L, 10L, 3L, 5L, 7L, 9L, 10L, 10L, 10L, 8L,
> 977L, 977L, 10L), Q11 = c(10L, 9L, 1L, 4L, 5L, 0L, 5L, 6L, 1L, 3L,
> 9L, 10L, 0L, 10L, 7L, 7L, 5L, 7L, 10L, 10L, 9L, 7L, 0L, 8L, 7L, 0L,
> 7L, 7L, 8L, 10L, 5L, 2L, 2L, 10L, 5L, 1L, 2L, 4L, 6L, 4L, 7L, 10L,
> 6L, 8L, 8L, 6L, 8L, 6L, 977L, 10L), Q12 = c(0L, 0L, 0L, 5L, 1L, 10L,
> 2L, 0L, 0L, 2L, 0L, 0L, 5L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
> 0L, 0L, 10L, 3L, 0L, 0L, 977L, 10L, 7L, 0L, 0L, 5L, 8L, 2L, 0L, 966L,
> 7L, 977L, 0L, 0L, 0L, 0L, 0L, 0L, 977L, 977L, 0L), Q13 = c(2L, 2L,
> 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
> 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L,
> 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 977L, 2L), Q14 =
> c(3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
> 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
> 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), Q1 =
> c(2L, 2L, 8L, 6L, 5L, 1L, 7L, 3L, 7L, 4L, 1L, 6L, 4L, 1L, 5L, 10L,
> 5L, 4L, 3L, 7L, 2L, 5L, 3L, 5L, 977L, 0L, 5L, 4L, 4L, 7L, 5L, 3L, 8L,
> 3L, 3L, 0L, 5L, 6L, 3L, 4L, 0L, 3L, 3L, 2L, 7L, 4L, 2L, 7L, 4L, 7L),
> Q2 = c(1L, 1L, 1L, 977L, 1L, 3L, 3L, 1L, 2L, 2L, 3L, 1L, 2L, 1L, 3L,
> 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 977L, 2L, 3L, 3L, 1L, 1L, 3L, 2L,
> 1L, 1L, 3L, 3L, 2L, 3L, 3L, 2L, 1L, 3L, 3L, 3L, 977L, 1L, 3L, 977L,
> 977L, 1L), gender = c(1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
> 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L,
> 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
> 1L, 2L, 2L, 1L), profile_age = c(5L, 2L, 5L, 5L, 3L, 5L, 2L, 5L, 3L,
> 5L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 2L, 5L, 5L, 5L, 5L, 2L, 5L, 5L,
> 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 1L, 5L, 5L, 1L, 1L, 1L, 1L, 1L,
> 1L, 1L, 1L, 1L, 1L, 1L, 1L ), educ = c(6L, 5L, 2L, 5L, 6L, 6L, 4L, 6L,
> 3L, 5L, 4L, 5L, 6L, 4L, 4L, 6L, 6L, 6L, 3L, 6L, 5L, 6L, 5L, 5L, 3L,
> 4L, 6L, 6L, 5L, 3L, 3L, 4L, 3L, 6L, 3L, 5L, 5L, 6L, 3L, 5L, 3L, 3L,
> 3L, 3L, 4L, 5L, 5L, 4L, 2L, 3L)), class = "data.frame", row.names =
> c(NA,
> -50L))
What I have done so far is this:
library(cregg)
str(long <- cj_tidy(cjdata_wide,
profile_variables = c("All the profile variables"),
task_variables = c("CHOICE AND RATING VARIABLES HERE"),
id = ~ id))
stopifnot(nrow(long) == nrow(data)*4*2
But I'm keep getting errors. I have tried to follow the example given by the cregg package - but with no success. Any help is much appreciated! I am open to all possible ways, be it so through cregg package or tidyr for instance.
Your data not being in a standard form mades this a difficult problem. Here is a solution using the tidyr package.
The solutions involves 3 parts, dealing with the profiles, the rating and finally the rating choice.
The key to the profiles part was to pivot long and breaking up the profile names into component parts and then pivot wider for the column headings.
The rating and binary choice involved pivoting longer and then aligning the rows.
library(tidyr)
library(dplyr)
#Get the categories part correct
answer <-cjdata_wide %>% pivot_longer(cols=starts_with("org"), names_to=c("org", "Cat", "conj", "order"), values_to= "values", names_sep="_") %>% select(-c("conj"))
answer <-answer %>% select(!starts_with("RATING") & !starts_with("CHOICE"))
answer <-pivot_wider(answer, names_from = "Cat", values_from = "values")
#get the ratings column corretn
rating <-cjdata_wide %>% select(starts_with("RATING") )
rating <- rating%>% pivot_longer(cols=everything(), names_to=c("Rating", "conj", "order"), values_to= "Choice_Rating", names_sep="_") %>% select(-c("conj"))
answer$Choice_Rating <- rating$Choice_Rating
#Get the choice correct
choice <-cjdata_wide %>% select(starts_with("CHOICE") )
choiceRate <- choice%>% pivot_longer(cols=everything(), names_to=c("Choice", "conj"), values_to= "Choice_Rating", names_sep="_") %>% select(-c("conj"))
answer$Choice_binary <-ifelse(substr(answer$org, 4,4) == rep(choiceRate$Choice_Rating,each=2), 1, 0)
answer
It may be possible to simplify the above. Good luck.
Update per Comment
The final data frame has pairs of rows which corresponds to org 1 or 2. I duplicated the choice so that Choice_Rating column is the same length as the Organization ("org" column). I then compared Choice_Rating & Organization and setting the final value to either 0 or 1 depending on the match.
For question in the comment, A simple way is to convert the factor column to integers with as.integer() function, then the first factor becomes 1 and the second becomes 2 etc. (may need to relevel in order to get the proper order).
Another option is to create a new "org" column with your factor names properly listed.
Hopefully this provides enough guidance.

Sort ggplot boxplots by median with facets

I'm trying to get ggplot to order my boxplots based on median value after splittin the data into several different facets.
This is part of a larger Shiny app I've written. Under default parameters, I can generate three faceted boxplots that order correctly:
boxData <- structure(list(Classification = structure(c(4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Pluripotent/ Undifferentiated",
"Endoderm", "Mesoderm", "Ectoderm"), class = c("ordered", "factor"
)), value = c(0.000255214868214152, 0.000108050996652777, 0.00751505823956855,
8.71801689770664, 5.71059263813113e-05, 4.90291746067526e-05,
0.000129388767504551, 2.52712436532327e-07, 5345.09546573398,
0.0020991194782334, 4.33360773005175e-06, 1.8200776481618, 3.44754305553851e-06,
4.38932775031697, 0.00720892572385782, 7.53517216121544e-05,
0.221288441144887, 0.00104230990042965, 0.00288742662358172,
4.20947546944294e-05, 9.62973878475845e-07, 0.00710967831313203,
26.9833955280036, 0.00265697432110539, 1.41814003567946, 0.261340025051291,
0.00159083508412152, 9.55044905589291e-06, 0.0122931632086495,
8.54789134364452e-06, 2.01899938950824e-05, 1.55354988683742e-06,
0.000441285511108929, 0.000353500530366103, 0.125347054487635,
109.440278770173, 2.03304264082645e-05, 2.01899938950824e-05,
0.000148628664387571, 2.89902659683517e-06, 207.073625180606,
3.52469070261441e-07, 3.15047327017105e-06, 0.639049681601525,
2.11937734339159e-05, 0.484309094613314, 0.0126387710681522,
0.000124981311087457, 0.010701820155981, 0.00520458916051572,
0.002548740132205, 6.70653961877279e-06, 1.1372650836283e-06,
0.0028674817110041, 6.38196191847228, 0.00104230990042965, 2.77791027153022,
0.385285554179204, 3.23552539344696, 0.00129215960928528, 3313.17800288969,
0.42454812322342, 0.427501088945987, 0.0252775421363044, 1.3790172222154e-05,
0.000499925244349826, 0.575943821174679, 3.66456124110476e-05,
0.000979273863184647, 1.71186456807568e-06, 0.000506903940694852,
3.95489796579998e-05, 7.60789146241221e-07, 5.53083255055159e-07,
0.000283178626588241, 5.68632541814152e-07, 89.5114292952616,
2.15183665744117e-06, 9.48447928546097e-06, 1.10616651011032e-06,
6.83831307491562e-05, 0.000231612381626088, 0.361984543094889,
5.91197625260395e-05, 0.000979273863184647, 2.83936549218472e-06,
0.000979273863184647, 5.11112358098405e-05, 1.714153924998e-07,
5.19634300333657e-07, 0.000285939985649123, 0.000340041865397713,
0.11809338012465, 60.884369685235, 2.29364239206782e-05, 1.59952159960469e-05,
0.000213718586351138, 2.65657707341963e-06, 3635.65603745587,
1.08786283557826e-07, 3.36257994807117e-06, 0.482299092292068,
1.40214978558205e-05, 0.506277403675245, 0.00847835446782661,
5.84677257215999e-05, 0.00674484030136259, 0.00483589957358377,
0.0017456741452281, 6.45120458509457e-06, 6.32689066217975e-07,
0.00245170310797391, 9.30496033238278, 0.000922604532223834,
1.94261499108326, 0.348202870167258, 0.000995700862302919, 9.18683915124066e-06,
0.00490340621594781, 9.51081233425213e-06, 1.64449027258861e-05,
1.32828853670982e-06, 0.000283964853893518, 0.000480891817820092,
0.103521332666818, 96.202334596196, 1.57750051307367e-05, 2.09600255345096e-05,
0.000200793473806753, 1.29196641682183e-06, 179.519904082227,
2.39744324779145e-07, 2.44454941589392e-06, 0.492433221447773,
1.07746460295468e-05, 0.437695664847132, 0.00947275639891981,
9.69768554804815e-05, 0.0056325346541415, 0.00470366164543522,
0.00172164093341244, 6.91422987569681e-06, 8.82439067876674e-07,
0.00253816223135828, 5.84822979360013, 0.000929021754230271,
2.31017156910716, 0.278934830581241, 2.84415482117455, 0.00100262650949219,
2661.45599990874, 0.357992185300285, 0.37579036951639, 0.0210213626331535,
1.87597483406766e-05, 4.9165300967331e-05, 0.353063601096188,
2.84344613435294e-05, 0.00277749494255326, 1.32828853670982e-06,
0.00108958918195797, 9.25073867082013e-06, 1.4059026149049e-07,
4.29154362580066e-07, 0.000537294242854559, 8.10925044524043e-06,
0.020165038913309, 9.91469621624329e-06, 1.63313094852695e-05,
8.58308725160133e-07, 2.34183669433728e-05, 0.000352033415883844,
0.28087497575791, 4.58728478413563e-05, 0.0007598488052299, 1.48407969771465e-06,
0.0223745115812679, 1.15479796826903e-05, 1.33006491938229e-07,
4.03200286568411e-07, 83.9815202938853, 211.131788444181, 1.73147313103931,
0.162893393670412, 6347.61978641754, 1.56049096034741, 0.532923368033971,
0.651573574681646, 22.0392007421302, 0.05154584678813, 85997.0767809387,
2.10234581817541, 1994.76074197656, 17462.8329237372, 1.76785506212734,
49735.9012814537, 1.57134503333516, 340.615434516655, 3.73730938753272,
2.07340220203944, 0.974004268543241, 53.8920290309386, 28.8800232787977,
0.0604547706008708, 6.41744933081988, 1.9615580079771, 0.384751805040216,
1.53900722016086, 1.68412590721683, 2.31658561238929, 1.62675839626425,
2.23767420207142, 1.67249279982813, 1.53900722016086, 1.51781925297405,
0.717972255311719, 1.08072540203935, 1.6958399292663, 1.74351647907412,
1.6958399292663, 0.98077900398855, 0.000159075579756261, 1.32133840565826,
1.57134503333516, 1.79253339913881, 2.00277451142267, 1.74351647907412,
2.66105808216138, 0.90250072746243, 2.059080166868, 1.50733490955838,
1.3966785324674, 1.61552155521922, 1.42602571736414, 1.90791910109511,
1.38703096913138, 1.38703096913138, 1.49692298679269, 1.69583992926629,
2.16145080407871, 2.67956720485568, 1.3966785324674, 1.53900722016086,
1.70763542878249, 0.921464186198703, 3.32188009636358, 10.5707072452661,
6.5522935828786, 1.68412590721683, 7.57896056479413, 1.43594451062343,
0.312515575646302, 34.1070955541741, 2339.52511354582, 11.0962477530511,
8.17942824487938, 1.68412590721683, 0.418123199957032, 804.528657067602,
0.679243142274472, 1.47631440568283, 1.75564359521904, 2.81278639982623,
4.14680440407889, 1.68412590721683, 2.33269873957693, 1.68412590721683,
1.70763542878249, 1.37745004638314, 1.68412590721683), listElement = structure(c(3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Endoderm",
"Mesoderm", "Ectoderm"), class = "factor")), .Names = c("Classification",
"value", "listElement"), row.names = c(NA, -270L), class = "data.frame")
To generate the boxplot:
boxData$temp <- paste(substr(boxData$Classification,1,6),
as.character(boxData$listElement))
ggplot(boxData, aes(reorder(boxData$temp, value, median),value, fill=Classification))+
geom_boxplot()+
scale_y_log10()+
ylab("Fold Expression Change")+
xlab("Gene Classification")+
theme(axis.text.x=element_text(angle=90, hjust=1, size=6))+
facet_wrap(~listElement, scales='free', ncol=1)+
scale_x_discrete(labels=setNames(as.character(boxData$Classification), boxData$temp))
But if a parameter is changed and we only have two samples rather than three (In this case, the same data, but with twice as many 'endoderm' samples and no 'mesoderm' samples), the boxplots look really weird:
boxData <- structure(list(Classification = structure(c(4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Pluripotent/ Undifferentiated",
"Endoderm", "Mesoderm", "Ectoderm"), class = c("ordered", "factor"
)), value = c(0.000255214868214152, 0.000108050996652777, 0.00751505823956855,
8.71801689770664, 5.71059263813113e-05, 4.90291746067526e-05,
0.000129388767504551, 2.52712436532327e-07, 5345.09546573398,
0.0020991194782334, 4.33360773005175e-06, 1.8200776481618, 3.44754305553851e-06,
4.38932775031697, 0.00720892572385782, 7.53517216121544e-05,
0.221288441144887, 0.00104230990042965, 0.00288742662358172,
4.20947546944294e-05, 9.62973878475845e-07, 0.00710967831313203,
26.9833955280036, 0.00265697432110539, 1.41814003567946, 0.261340025051291,
0.00159083508412152, 9.55044905589291e-06, 0.0122931632086495,
8.54789134364452e-06, 2.01899938950824e-05, 1.55354988683742e-06,
0.000441285511108929, 0.000353500530366103, 0.125347054487635,
109.440278770173, 2.03304264082645e-05, 2.01899938950824e-05,
0.000148628664387571, 2.89902659683517e-06, 207.073625180606,
3.52469070261441e-07, 3.15047327017105e-06, 0.639049681601525,
2.11937734339159e-05, 0.484309094613314, 0.0126387710681522,
0.000124981311087457, 0.010701820155981, 0.00520458916051572,
0.002548740132205, 6.70653961877279e-06, 1.1372650836283e-06,
0.0028674817110041, 6.38196191847228, 0.00104230990042965, 2.77791027153022,
0.385285554179204, 3.23552539344696, 0.00129215960928528, 3313.17800288969,
0.42454812322342, 0.427501088945987, 0.0252775421363044, 1.3790172222154e-05,
0.000499925244349826, 0.575943821174679, 3.66456124110476e-05,
0.000979273863184647, 1.71186456807568e-06, 0.000506903940694852,
3.95489796579998e-05, 7.60789146241221e-07, 5.53083255055159e-07,
0.000283178626588241, 5.68632541814152e-07, 89.5114292952616,
2.15183665744117e-06, 9.48447928546097e-06, 1.10616651011032e-06,
6.83831307491562e-05, 0.000231612381626088, 0.361984543094889,
5.91197625260395e-05, 0.000979273863184647, 2.83936549218472e-06,
0.000979273863184647, 5.11112358098405e-05, 1.714153924998e-07,
5.19634300333657e-07, 3.36257994807117e-06, 0.482299092292068,
1.40214978558205e-05, 0.00847835446782661, 5.84677257215999e-05,
0.00674484030136259, 0.00483589957358377, 0.0017456741452281,
6.45120458509457e-06, 6.32689066217975e-07, 0.00245170310797391,
9.30496033238278, 0.000922604532223834, 1.94261499108326, 0.348202870167258,
0.506277403675245, 0.000285939985649123, 0.000340041865397713,
0.11809338012465, 60.884369685235, 2.29364239206782e-05, 1.59952159960469e-05,
0.000213718586351138, 2.65657707341963e-06, 3635.65603745587,
1.08786283557826e-07, 83.9815202938853, 211.131788444181, 1.73147313103931,
0.162893393670412, 6347.61978641754, 1.56049096034741, 0.532923368033971,
0.651573574681646, 22.0392007421302, 0.05154584678813, 85997.0767809387,
2.10234581817541, 1994.76074197656, 17462.8329237372, 1.76785506212734,
49735.9012814537, 1.57134503333516, 340.615434516655, 3.73730938753272,
2.07340220203944, 0.974004268543241, 53.8920290309386, 28.8800232787977,
0.0604547706008708, 6.41744933081988, 1.9615580079771, 1.57750051307367e-05,
2.09600255345096e-05, 0.000200793473806753, 1.29196641682183e-06,
179.519904082227, 2.39744324779145e-07, 2.44454941589392e-06,
0.492433221447773, 1.07746460295468e-05, 0.437695664847132, 0.00947275639891981,
9.69768554804815e-05, 0.0056325346541415, 0.00470366164543522,
0.00172164093341244, 6.91422987569681e-06, 8.82439067876674e-07,
1.57134503333516, 1.79253339913881, 2.00277451142267, 1.74351647907412,
2.66105808216138, 0.90250072746243, 2.059080166868, 1.50733490955838,
1.3966785324674, 1.61552155521922, 0.384751805040216, 1.53900722016086,
1.68412590721683, 0.000995700862302919, 9.18683915124066e-06,
0.00490340621594781, 9.51081233425213e-06, 1.64449027258861e-05,
1.32828853670982e-06, 0.000283964853893518, 0.000480891817820092,
0.103521332666818, 96.202334596196, 1.6958399292663, 0.98077900398855,
0.000159075579756261, 2.31658561238929, 1.62675839626425, 2.23767420207142,
1.67249279982813, 1.53900722016086, 1.51781925297405, 0.717972255311719,
1.08072540203935, 1.6958399292663, 1.74351647907412, 1.32133840565826,
0.0210213626331535, 1.87597483406766e-05, 4.9165300967331e-05,
0.00253816223135828, 5.84822979360013, 0.000929021754230271,
2.31017156910716, 0.278934830581241, 2.84415482117455, 0.00100262650949219,
2661.45599990874, 0.357992185300285, 0.37579036951639, 1.42602571736414,
1.90791910109511, 1.38703096913138, 0.353063601096188, 2.84344613435294e-05,
0.00277749494255326, 1.32828853670982e-06, 0.00108958918195797,
9.25073867082013e-06, 1.4059026149049e-07, 4.29154362580066e-07,
0.000537294242854559, 8.10925044524043e-06, 0.020165038913309,
9.91469621624329e-06, 1.63313094852695e-05, 8.58308725160133e-07,
1.43594451062343, 0.312515575646302, 34.1070955541741, 2339.52511354582,
11.0962477530511, 8.17942824487938, 1.68412590721683, 0.418123199957032,
804.528657067602, 0.679243142274472, 10.5707072452661, 6.5522935828786,
1.68412590721683, 1.38703096913138, 1.49692298679269, 1.69583992926629,
2.16145080407871, 2.67956720485568, 1.3966785324674, 1.53900722016086,
1.70763542878249, 0.921464186198703, 3.32188009636358, 7.57896056479413,
2.34183669433728e-05, 0.000352033415883844, 0.28087497575791,
4.58728478413563e-05, 0.0007598488052299, 1.48407969771465e-06,
0.0223745115812679, 1.15479796826903e-05, 1.33006491938229e-07,
4.03200286568411e-07, 1.47631440568283, 1.75564359521904, 2.81278639982623,
4.14680440407889, 1.68412590721683, 2.33269873957693, 1.68412590721683,
1.70763542878249, 1.37745004638314, 1.68412590721683), listElement = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Endoderm",
"Ectoderm"), class = "factor")), .Names = c("Classification",
"value", "listElement"), row.names = c(NA, -270L), class = "data.frame")
Running the same code as above:
boxData$temp <- paste(substr(boxData$Classification,1,6),
as.character(boxData$listElement))
ggplot(boxData, aes(reorder(boxData$temp, value, median),value, fill=Classification))+
geom_boxplot()+
scale_y_log10()+
ylab("Fold Expression Change")+
xlab("Gene Classification")+
theme(axis.text.x=element_text(angle=90, hjust=1, size=6))+
facet_wrap(~listElement, scales='free', ncol=1)+
scale_x_discrete(labels=setNames(as.character(boxData$Classification), boxData$temp))
gives a strange-looking graph:
This graph should look the same as the first graph, just with two facets rather than three. If I don't try to reorder the values by median, this graph plots fine. I've fiddled with a number of things, but can't seem to fix this issue. I'm sure I've made a stupid mistake somewhere, but can't seem to find it.
Any help would be greatly appreciated!
It looks to me that you are reordering the factor "temp" without releveling the dataset. What about bringing the ordering operation outside the ggplot call?
boxData$temp <- paste(substr(boxData$Classification,1,6),
as.character(boxData$listElement))
fac <- with(boxData, reorder(temp, value, median, order = TRUE))
boxData$temp <- factor(boxData$temp, levels = levels(fac))
ggplot(boxData, aes(temp,value, fill=Classification))+
geom_boxplot()+
scale_y_log10()+
ylab("Fold Expression Change")+
xlab("Gene Classification")+
theme(axis.text.x=element_text(angle=90, hjust=1, size=6))+
facet_wrap(~listElement, scales='free', ncol=1)+
scale_x_discrete(labels=setNames(as.character(boxData$Classification), boxData$temp))
This is what you would expect, right?

Setting up an Mlogit in R with many observations for each category

I'm trying to use Mlogit in R, I'm a little new to logits, and I'm having trouble setting up my problem in the Mlogit framework. I'm actually not entirely sure that mlogit is the right approach. Here is an analogous problem.
Consider a baseball dataset, with an outcome variable that takes on "out" "single" "double" "triple" and "homerun." For explanatory variables, we have the name of the batter, the name of the pitcher, and the stadium. There are hundreds of observations for each batter, including many with the batter facing the same pitcher.
I figured this is definitely a multinomial logit because I have multiple categorical outcomes, but I am not sure because all of the documentation seems to be dealing with "choices" between alternatives, which this isn't really. I tried to start my logit model by having a factor variable for the hitter, another one for the pitcher, and another one for the stadium. When I tried this in R, I get
Error in row.names<-.data.frame(*tmp*, value = value) : invalid 'row.names' length
With some googling I think maybe it is expecting only one observation for each combination of hitter, pitcher, and park? Maybe not? What am I doing wrong? How should I set this up?
Edit:
Example of data here
https://docs.google.com/spreadsheets/d/19fiq_QEMj4nAPcTqIRxeaYNPgqeHxKAEuPrfHMeIJ7o/edit?usp=sharing
Here are some suggestions on how you can start analyzing your data.
# Your dataset
dts <- structure(list(outcome = c(1L, 1L, 2L, 3L, 1L, 3L, 2L, 3L, 3L,
3L, 3L, 1L, 2L, 2L, 2L, 1L, 3L, 2L, 2L, 2L, 1L, 2L, 3L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 3L, 2L, 3L, 1L, 2L, 2L, 3L, 2L, 3L, 3L, 3L,
2L, 1L, 1L, 1L, 2L, 3L, 2L, 1L), hitter = structure(c(3L, 3L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("james",
"jill", "john"), class = "factor"), pitcher = structure(c(3L,
3L, 1L, 1L, 1L, 1L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 3L, 1L, 1L,
2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 3L, 2L, 1L, 2L, 3L, 2L,
3L, 2L, 1L, 1L, 2L, 2L, 1L, 3L, 3L, 1L, 2L, 2L, 1L, 1L, 2L, 2L
), .Label = c("bill", "bob", "brett"), class = "factor"), place = structure(c(3L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 5L,
5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L
), .Label = c("ca", "co", "dc", "ny", "tn"), class = "factor")), .Names = c("outcome",
"hitter", "pitcher", "place"), class = "data.frame", row.names = c(NA,
-49L))
# Estimation of a multinomial logistic regression model
library(mlogit)
dts.wide <- mlogit.data(dts, choice="outcome", shape="wide")
fit.mlogit <- mlogit(outcome ~ 1 | hitter+pitcher+place, data=dts.wide)
# Results
library(stargazer)
stargazer(fit.mlogit, type="text")
# Model coefficients with standard errors and statistical significance (stars)
==========================================
Dependent variable:
---------------------------
outcome
------------------------------------------
2:(intercept) 19.456
(3,056.626)
3:(intercept) 35.179
(4,172.540)
2:hitterjill -17.543
(3,056.625)
3:hitterjill -33.117
(4,172.540)
2:hitterjohn -0.188
(0.996)
3:hitterjohn -1.410
(1.056)
2:pitcherbob -0.070
(1.005)
3:pitcherbob -1.270
(1.091)
2:pitcherbrett -0.908
(1.063)
3:pitcherbrett -2.284*
(1.257)
2:placeco -1.655
(1.557)
3:placeco -17.688
(2,840.270)
2:placedc -19.428
(3,056.626)
3:placedc -34.479
(4,172.540)
2:placeny -18.802
(3,056.625)
3:placeny -32.873
(4,172.540)
2:placetn -18.885
(3,056.626)
3:placetn -32.140
(4,172.540)
------------------------------------------
Observations 49
R2 0.155
Log Likelihood -44.605
LR Test 16.388 (df = 18)
==========================================
Note: *p<0.1; **p<0.05; ***p<0.01
More details on the estimation of multinomial logistic models in R are available here.

summarise with dplyr outputting only one value

I have a dataset like so:
> dput(data_melt)
structure(list(Compound = structure(c(2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Compd1", "Compound1"
), class = "factor"), Concentration = structure(c(5L, 1L, 2L,
3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L,
3L, 4L, 5L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 5L, 1L,
2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 5L, 1L, 2L, 3L, 4L, 5L, 1L,
2L, 3L, 4L, 5L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 5L,
1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 5L, 1L, 2L, 3L, 4L, 5L,
1L, 2L, 3L, 4L, 5L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L,
5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L), .Label = c(".01uM",
".1uM", "1.0uM", "10uM", "DMSO"), class = "factor"), Co.Agonist = structure(c(1L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L), .Label = c("High/High",
"High/Low", "Low/High"), class = "factor"), variable = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), class = "factor", .Label = c("Tau1",
"Tau2", "Peak.Mean", "Area.Mean", "SS1.Mean")), value = c(1.38196479885153,
1.14405508500302, 0.988961970528585, 1.44849126088629, 0.492462666110073,
NA, 2.17712741416582, 1.67028746892543, 1.96489211952819, 1.2460774224718,
NA, 0.485501088636007, 0.580120526488655, 0.530538989313623,
0.884536240505712, 0.322958355856638, 0.740882962734369, 1.18088839355135,
1.48745421674211, 1.16792544841743, 1.11656132754921, 1.14457816659658,
0.0675070264176897, 0.176054869732887, 0.174862277854592, 0.200470189214318,
0.187717771153427, 0.181176140081454, 0.117339926372974, 0.0941816692818621,
0.156408537242293, 0.171156092362873, 0.0642141717879837, 0.107013341555486,
0.0892122245482354, 0.151976744172333, 0.198474636073771, 0.188703600586299,
0.10970902239241, 0.117358989261514, 0.100312892958432, 0.118208485589655,
0.154895187369863, 0.101035151359696, -3926.26508451201, -696.475731092535,
-4384.77847338655, -718.718487256701, -3164.8941685203, -818.006663108841,
-4658.25223372398, -826.496302684798, -2416.89272653148, -2558.96929067338,
-672.257745869921, -3996.85447223941, -706.5215296652, -4190.52281192937,
-726.870892539311, -2852.22943401345, -831.88857277573, -4580.4780146496,
-816.712564805672, -6189.10619924791, -2540.95473989213, -713.422629648631,
7712.37025286162, 1906.38208801373, 7583.22998649368, 1879.68741296455,
7424.47445663593, 2236.40541039894, 6178.69685860507, 2064.41869983299,
5953.06397562968, 6373.90332689516, 1813.36551434687, 4585.08608292281,
1524.44544360278, 4343.20955707026, 1547.28354007935, 4772.3012092321,
1889.5819203618, 4251.33850498831, 1687.78145119834, 5978.28926211454,
3879.07376129486, 1533.61842684178, -622.178041494169, -301.118488704851,
-618.132026278872, -302.614140229218, -821.035687044046, -383.60893819189,
-683.302506820162, -331.474546574133, -764.139865695781, -546.931098421476,
-300.006976301825, -622.178041494169, -301.118488704851, -618.132026278872,
-302.614140229218, -821.035687044046, -383.60893819189, -683.302506820162,
-331.474546574133, -764.139865695781, -546.931098421476, -300.006976301825
)), .Names = c("Compound", "Concentration", "Co.Agonist", "variable",
"value"), row.names = c(NA, -110L), class = c("data.table", "data.frame"
), .internal.selfref = <pointer: 0x0000000000120788>)
>
My goal is to summarize the value column by the preceding columns (Compound name, Concentration, Co.Agonist, and variable.
I've tried this:
DatAgg = data_melt %>% group_by(Concentration,Co.Agonist,variable)%>%
summarise(mean=mean(data_melt$value,na.rm=TRUE),sd=sd(data_melt$value))
but the output doesn't collapse the data.frame to only the unique combinations and it only returns one value for all the variables.
I'm looking to use this dplyr solution to get mean and sd for each unique combination of the group_by variables.
The syntax should be
data_melt %>%
group_by(Concentration,Co.Agonist,variable) %>%
summarise(Mean = mean(value, na.rm=TRUE),
Sd = sd(value, na.rm=TRUE))
In the OP's code, it was taking the mean of the whole 'value' column (mean(data_melt$value, na.rm=TRUE)) after grouping by the variables. So, there will be a single unique value.
As the 'data_melt' is a data.table object, data.table methods can be used as well.
data_melt[, .(Mean = mean(value, na.rm=TRUE), Sd = sd(value, na.rm=TRUE)),
by = .(Concentration, Co.Agonist, variable)]

Resources