How to get constraints in matrix format from Gurobi/JuMP? - julia

I have built an LP model in JuMP/Julia using Gurobi solver. I wish to visualize the constraints for checking the overall correctness of my model. In python, we can define a function help to visualize the constraints. Please follow the link below for pythons solution. How to get access to constraint matrix and visualize it in JuMP?
Get constraints in matrix format from gurobipy
Best,
NG

Related

How can one calculate ROC's AUCs in complex designs with clustering in R?

The packages that calculate AUCs I've found so far do not contemplate sample clustering, which increases standard errors compared to simple random sampling. I wonder if the ones provided by these packages could be recalculated to allow for clustering.
Thank you.
Your best bet is probably replicate weights, as long as you can get point estimates of AUC that incorporate weights.
If you convert your design into a replicate-weights design object (using survey::as.svrepdesign()), you can then run any R function or expression using the replicate weights using survey::withReplicates() and return a standard error.

Mathematical constrained optimization in R

I have a mathematical optimization which I wish to solve in R consider this system/problem:
How Can I solve this problem in R?
In this model Budget, p_l for all l and mu_target are fixed constants while muis a given m-dimensional vector and R is a given n by m matrix.
I have looked into constrOptim and lp but I don't have the imagination to implement the constraints
Those functions require that I have a "constraint" matrix but my problem is that I simply don't know how to design that constraint matrix. There are not many examples with decision variables on both sides of the equations.
Have a look on the nloptr package. It has quite extensive documentation with examples. Lots of algorithms to choose from, depending what problem you are trying to resolve.
NLoptr link

SVM using quadprog in R

This set of exercises has the student use a QP solver to solve an SVM in R. The suggested solver is the quadprog package. The quadratic problem is given as:
From the remark about the linear SVM, $K=XX'$, $K$ is a singular matrix usually, at most rank $p$ where $X$ is $n\times p$. But the solver quadprog requires a positive definite matrix, not just PSD, in the place of $K$, as mentioned many places (and verified). Any ideas what the instructor had in mind?
I think the workaround would be to add a small number (such as 1e-7) to the diagonal elements of the matrix which is supposed to be positive definite. I am not certain about the math behind it, but the sources below, as well as my experience, suggest that this solution works.
source: https://stats.stackexchange.com/questions/179900/optimizing-a-support-vector-machine-with-quadratic-programming
source: https://teazrq.github.io/stat542/hw/HW6.pdf

Optimization in R with arbitrary constraints

I have done it in Excel but need to run a proper simulation in R.
I need to minimize function F(x) (x is a vector) while having constraints that sum(x)=1, all values in x are [0,1] and another function G(x) > G_0.
I have tried it with optim and constrOptim. None of them give you this option.
The problem you are referring to is (presumably) a non-linear optimization with non-linear constraints. This is one of the most general optimization problems.
The package I have used for these purposes is called nloptr: see here. From my experience, it is both versatile and fast. You can specify both equality and inequality constaints by setting eval_g_eq and eval_g_ineq, correspondingly. If the jacobians are known explicitly (can be derived analytically), specify them for faster convergence; otherwise, a numerical approximation is used.
Use this list as a general reference to optimization problems.
Write the set of equations using the Lagrange multiplier, then solve using the R command nlm.
You can do this in the OpenMx Package (currently host at the site listed below. Aiming for 2.0 relase on cran this year)
It is a general purpose package mostly used for Structural Equation Modelling, but handling nonlinear constraints.
FOr your case, make an mxModel() with your algebras expressed in mxAlgebras() and the constraints in mxConstraints()
When you mxRun() the model, the algebras will be solved within the constraints, if possible.
http://openmx.psyc.virginia.edu/

Inverse Laplace transform in R

I am trying to do some computations using Laplace transforms in R. I used the
continued fractions approach to compute Laplace transform of a birth-death
process as described in Abate 1999. But I cannot find a simple numerical routine to compute the inverse Laplace transform (evaluated at 0 in my case). Does anyone have ideas on how to do this in R?
Computing inverse Laplace transforms numerically is tricky. I remember seeing some relatively recent results on the ACM. Googling around a bit, I found some
Python code implementing one of these algorithms. Maybe you can adapt it to your purposes.

Resources