Multilayer Perceptron replaced with Single Layer Perceptron - math

I got a problem in understending the difference between MLP and SLP.
I know that in the first case the MLP has more than one layer (the hidden layers) and that the neurons got a non linear activation function, like the logistic function (needed for the gradient descent). But I have read that:
"if all neurons in an MLP had a linear activation function, the MLP
could be replaced by a single layer of perceptrons, which can only
solve linearly separable problems"
I don't understand why in the specific case of the XOR, which is not linearly separable, the equivalent MLP is a two layer network, that for every neurons got a linear activation function, like the step function. I understand that I need two line for the separation, but in this case I cannot apply the rule of the previous statment (the replacement of the MLP with the SLP).
Mlp for xor:
http://s17.postimg.org/c7hwv0s8f/xor.png
In the linked image the neurons A B and C have a linear activation function (like the step function)
Xor:
http://s17.postimg.org/n77pkd81b/xor1.png

A linear function is f(x) = a x + b. If we take another linear function g(z) = c z + d, and apply g(f(x)) (which would be the equivalent of feeding the output of one linear layer as the input to the next linear layer) we get g(f(x)) = c (a x + b) + d = ac x + cb + d = (ac) x + (cb + d) which is in itself another linear function.
The step function is not a linear function - You cannot write it as a x + b. That's why a MLP using a step function is strictly more expressive than a single layer perceptron using a step function.

Related

Flux.jl model always outputs 1.0 after adding Sigmoid activation function

My original issue was that I wanted my model to only output 0-1 so I can map back to my categorical images labels (Flux.jl restrict variables between 0 and 1). So I decided to add a sigmoid activation function as follows:
σ = sigmoid
model = Chain(
resnet[1:end-2],
Dense(2048, 1000),
Dense(1000, 256),
Dense(256, 2, σ), # we get 2048 features out, and we have 2 classes
);
However, now my model only outputs 1.0. Any ideas as to why or if I am using the activation function wrong?
Consider to use an activation function for your hidden layers as multiple linear layers (Dense layers without a non-linear activation function) are just equivalent to a single linear layer. If you are using categories which are exclusive (dog or cat, but not both) which cover all your cases (it will always be a dog or cat and never e.g. an ostrich) then the probabilities should sum to one and a softmax should be more appropriate for the last function.
The softmax function is generally used with the crossentropy
loss function.
model = Chain(
resnet[1:end-2],
Dense(2048, 1000, σ),
Dense(1000, 256, σ),
Dense(256, 2),
softmax
);
For better numerical stability and accuracy, it is recommended to replace crossentropy by and logitcrossentropy respectively (in which case softmax is not necessary).

Simple Iterative Least Square Algorithms with two unknown variables in the same equation

Simple Iterative Least Square Algorithms with two unknown variables in the same equation
Given Equation (1) and data with variables y, d and m, I want to estimate α(αis between 0 and 1) through iterative square approach because β in Equation (2) also contains the unknown estimate α
log(y)=c-βlog⁡(d+2αm/(1-α))
Where
2) β=2/(1-α)
Steps for solving Iterative Square approach algorithms are,
Starts with an initial guess of α,e.g.,(α_0).
Regress (1) with initial(α_0) in place to get the parameter estimate β that is used to calculate a new (α_1).
Use estimate βon (2) to calculate a new (α_1)
Use α_1as the “new guess” and repeat steps 2 and 3 until the initial and new αconverge.
I develop the following R-code that follows the 4 steps. However, I would like to loop in steps 2 and 3 and stop the process after convergence (or near convergence-a little tolerance lance levels)
Data link.
https://www.dropbox.com/sh/luhfcwyfuqousfb/AACOtOEddEDDnzBYsguQhkMGa?dl=0
#Clear working directory
# rm(list=ls())
# Set/Load working directory
#setwd("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop level _test spatial\\02 input data")
# Generating alpha and model distribution
dat<-read.csv("t06_deg_freq.csv")
dat$X<-NULL
dat$ln_deg<-log(dat$degree)
dat$ln_freq<-log(dat$Freq)
summary(dat)
a<-0.98
a1<-range(0.000,1.000)
m<-(weighted.mean(dat$degree, dat$Freq)*0.5)
d<-as.matrix(dat$degree)
fd<-as.matrix(dat$Freq)
xd<-as.matrix(dat$degree+((2*m*a)/(1-a)))
y<-log(fd)
x<-log(xd)
fit <- lm(y ~ x, data=dat)
#summary(fit) # show results
b.fit<-coef(fit)
b<-b.fit[2]
t<-((b-2)/b)
a1<-ifelse(t>max(a1),max(a1),t)

MLE regression that accounts for two constraints

So I am wanting to create a logistic regression that simultaneously satisfies two constraints.
The link here, outlines how to use the Excel solver to maximize the value of Log-Likelihood value of a logistic regression, but I am wanting to implement a similar function in R
What I am trying to create in the end is an injury risk function. These take an S-shape function.
As we see, the risk curves are calculated from the following equation
Lets take some dummy data to begin with
set.seed(112233)
A <- rbinom(153, 1, 0.6)
B <- rnorm(153, mean = 50, sd = 5)
C <- rnorm(153, mean = 100, sd = 15)
df1 <- data.frame(A,B,C)
Lets assume A indicates if a bone was broken, B is the bone density and C is the force applied.
So we can form a logistic regression model that uses B and C are capable of explaining the outcome variable A. A simple example of the regression may be:
Or
glm(A ~ B + C, data=df1, family=binomial())
Now we want to make the first assumption that at zero force, we should have zero risk. This is further explained as A1. on pg.124 here
Here we set our A1=0.05 and solve the equation
A1 = 1 - (1-P(0))^n
where P(0) is the probability of injury when the injury related parameter is zero and n is the sample size.
We have our sample size and can solve for P(0). We get 3.4E-4. Such that:
The second assumption is that we should maximize the log-likelihood function of the regression
We want to maximize the following equation
Where pi is estimated from the above equation and yi is the observed value for non-break for each interval
My what i understand, I have to use one of the two functions in R to define a function for max'ing LL. I can use mle from base R or the mle2 from bbmle package.
I guess I need to write a function along these lines
log.likelihood.sum <- function(sequence, p) {
log.likelihood <- sum(log(p)*(sequence==1)) + sum(log(1-p)*(sequence==0))
}
But I am not sure where I should account for the first assumption. Ie. am I best to build it into the above code, and if so, how? Or will it be more effiecient to write a secondary finction to combine the two assumptions. Any advice would be great, as I have very limited experience in writing and understanding functions

What mathematical methods work for interpolation 2d to 2d functions?

So we have a matrix like
12,32
24,12
...
with length 2xN and another
44,32
44,19
...
with length 2xN and there is some function f(x, y) that returns z[1], z[2]. That 2 matrices that we were given represent known value pairs for x,y and z[1],z[2]. What are interpolation formulas that would help in such case?
If you solve the problem for one return value, you can find two functions f_1(x,y) and f_2(x,y) by interpolation, and compose your function as f(x, y) = [f_1(x,y), f_2(x,y)]. Just pick any method for solving the interpolation function suitable for your problem.
For the actual interpolation problem in two dimensions, there are a lot of ways you can handle this. If simple is what you require, you can go with linear interpolation. If you are OK with piecewise functions, you can go for bezier curves, or splines. Or, if data is uniform, you could get away with a simple polynomial interpolation (well, not quite trivial when in 2D, but easy enough).
EDIT: More information and some links.
A piecewise solution is possible using Bilinear interpolation (wikipedia).
For polynomial interpolation, if your data is on a grid, you can use the following algorithm (I cannot find the reference for it, it is from memory).
If the data points are on a k by l grid, rewrite your polynomial as follows:
f(x,y) = cx_1(x)*y^(k-1) + cx_2(x)*y^(k-2) + ... + cx_k(x)
Here, each coefficient cx_i(x) is also a polynomial of degree l. The first step is to find k polynomials of degree l by interpolating each row or column of the grid. When this is done, you have l coefficient sets (or, in other words, l polynomials) as interpolation points for each cx_i(x) polynomials as cx_i(x0), cx_i(x1), ..., cx_i(xl) (giving you a total of l*k points). Now, you can determine these polynomials using the above constants as the interpolation points, which give you the resulting f(x,y).
The same method is used for bezier curves or splines. The only difference is that you use control points instead of polynomial coefficients. You first get a set of splines that will generate your data points, and then you interpolate the control points of these intermediate curves to get the control points of the surface curve.
Let me add an example to clarify the above algorithm. Let's have the following data points:
0,0 => 1
0,1 => 2
1,0 => 3
1,1 => 4
We start by fitting two polynomials: one for data points (0,0) and (0,1), and another for (1, 0) and (1, 1):
f_0(x) = x + 1
f_1(x) = x + 3
Now, we interpolate in the other direction to determine the coefficients.When we read these polynomial coefficients vertically, we need two polynomials. One evaluates to 1 at both 0 and 1; and another that evaluates to 1 at 0, and 3 at 1:
cy_1(y) = 1
cy_2(y) = 2*y + 1
If we combine these into f(x,y), we get:
f(x,y) = cy_1(y)*x + cy_2(y)
= 1*x + (2*y + 1)*1
= x + 2*y + 1

Fitting polynomials to data

Is there a way, given a set of values (x,f(x)), to find the polynomial of a given degree that best fits the data?
I know polynomial interpolation, which is for finding a polynomial of degree n given n+1 data points, but here there are a large number of values and we want to find a low-degree polynomial (find best linear fit, best quadratic, best cubic, etc.). It might be related to least squares...
More generally, I would like to know the answer when we have a multivariate function -- points like (x,y,f(x,y)), say -- and want to find the best polynomial (p(x,y)) of a given degree in the variables. (Specifically a polynomial, not splines or Fourier series.)
Both theory and code/libraries (preferably in Python, but any language is okay) would be useful.
Thanks for everyone's replies. Here is another attempt at summarizing them. Pardon if I say too many "obvious" things: I knew nothing about least squares before, so everything was new to me.
NOT polynomial interpolation
Polynomial interpolation is fitting a polynomial of degree n given n+1 data points, e.g. finding a cubic that passes exactly through four given points. As said in the question, this was not want I wanted—I had a lot of points and wanted a small-degree polynomial (which will only approximately fit, unless we've been lucky)—but since some of the answers insisted on talking about it, I should mention them :) Lagrange polynomial, Vandermonde matrix, etc.
What is least-squares?
"Least squares" is a particular definition/criterion/"metric" of "how well" a polynomial fits. (There are others, but this is simplest.) Say you are trying to fit a polynomial
p(x,y) = a + bx + cy + dx2 + ey2 + fxy
to some given data points (xi,yi,Zi) (where "Zi" was "f(xi,yi)" in the question). With least-squares the problem is to find the "best" coefficients (a,b,c,d,e,f), such that what is minimized (kept "least") is the "sum of squared residuals", namely
S = ∑i (a + bxi + cyi + dxi2 + eyi2 + fxiyi - Zi)2
Theory
The important idea is that if you look at S as a function of (a,b,c,d,e,f), then S is minimized at a point at which its gradient is 0. This means that for example ∂S/∂f=0, i.e. that
∑i2(a + … + fxiyi - Zi)xiyi = 0
and similar equations for a, b, c, d, e.
Note that these are just linear equations in a…f. So we can solve them with Gaussian elimination or any of the usual methods.
This is still called "linear least squares", because although the function we wanted was a quadratic polynomial, it is still linear in the parameters (a,b,c,d,e,f). Note that the same thing works when we want p(x,y) to be any "linear combination" of arbitrary functions fj, instead of just a polynomial (= "linear combination of monomials").
Code
For the univariate case (when there is only variable x — the fj are monomials xj), there is Numpy's polyfit:
>>> import numpy
>>> xs = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> ys = [1.1, 3.9, 11.2, 21.5, 34.8, 51, 70.2, 92.3, 117.4, 145.5]
>>> p = numpy.poly1d(numpy.polyfit(xs, ys, deg=2))
>>> print p
2
1.517 x + 2.483 x + 0.4927
For the multivariate case, or linear least squares in general, there is SciPy. As explained in its documentation, it takes a matrix A of the values fj(xi). (The theory is that it finds the Moore-Penrose pseudoinverse of A.) With our above example involving (xi,yi,Zi), fitting a polynomial means the fj are the monomials x()y(). The following finds the best quadratic (or best polynomial of any other degree, if you change the "degree = 2" line):
from scipy import linalg
import random
n = 20
x = [100*random.random() for i in range(n)]
y = [100*random.random() for i in range(n)]
Z = [(x[i]+y[i])**2 + 0.01*random.random() for i in range(n)]
degree = 2
A = []
for i in range(n):
A.append([])
for xd in range(degree+1):
for yd in range(degree+1-xd):
A[i].append((x[i]**xd)*(y[i]**yd)) #f_j(x_i)
c,_,_,_ = linalg.lstsq(A,Z)
j = 0
for xd in range(0,degree+1):
for yd in range(0,degree+1-xd):
print " + (%.2f)x^%dy^%d" % (c[j], xd, yd),
j += 1
prints
+ (0.01)x^0y^0 + (-0.00)x^0y^1 + (1.00)x^0y^2 + (-0.00)x^1y^0 + (2.00)x^1y^1 + (1.00)x^2y^0
so it has discovered that the polynomial is x2+2xy+y2+0.01. [The last term is sometimes -0.01 and sometimes 0, which is to be expected because of the random noise we added.]
Alternatives to Python+Numpy/Scipy are R and Computer Algebra Systems: Sage, Mathematica, Matlab, Maple. Even Excel might be able to do it. Numerical Recipes discusses methods to implement it ourselves (in C, Fortran).
Concerns
It is strongly influenced by how the points are chosen. When I had x=y=range(20) instead of the random points, it always produced 1.33x2+1.33xy+1.33y2, which was puzzling... until I realised that because I always had x[i]=y[i], the polynomials were the same: x2+2xy+y2 = 4x2 = (4/3)(x2+xy+y2). So the moral is that it is important to choose the points carefully to get the "right" polynomial. (If you can chose, you should choose Chebyshev nodes for polynomial interpolation; not sure if the same is true for least squares as well.)
Overfitting: higher-degree polynomials can always fit the data better. If you change the degree to 3 or 4 or 5, it still mostly recognizes the same quadratic polynomial (coefficients are 0 for higher-degree terms) but for larger degrees, it starts fitting higher-degree polynomials. But even with degree 6, taking larger n (more data points instead of 20, say 200) still fits the quadratic polynomial. So the moral is to avoid overfitting, for which it might help to take as many data points as possible.
There might be issues of numerical stability I don't fully understand.
If you don't need a polynomial, you can obtain better fits with other kinds of functions, e.g. splines (piecewise polynomials).
Yes, the way this is typically done is by using least squares. There are other ways of specifying how well a polynomial fits, but the theory is simplest for least squares. The general theory is called linear regression.
Your best bet is probably to start with Numerical Recipes.
R is free and will do everything you want and more, but it has a big learning curve.
If you have access to Mathematica, you can use the Fit function to do a least squares fit. I imagine Matlab and its open source counterpart Octave have a similar function.
For (x, f(x)) case:
import numpy
x = numpy.arange(10)
y = x**2
coeffs = numpy.polyfit(x, y, deg=2)
poly = numpy.poly1d(coeffs)
print poly
yp = numpy.polyval(poly, x)
print (yp-y)
Bare in mind that a polynomial of higher degree ALWAYS fits the data better. Polynomials of higher degree typically leads to highly improbable functions (see Occam's Razor), though (overfitting). You want to find a balance between simplicity (degree of polynomial) and fit (e.g. least square error). Quantitatively, there are tests for this, the Akaike Information Criterion or the Bayesian Information Criterion. These tests give a score which model is to be prefered.
If you want to fit the (xi, f(xi)) to an polynomial of degree n then you would set up a linear least squares problem with the data (1, xi, xi, xi^2, ..., xi^n, f(xi) ). This will return a set of coefficients (c0, c1, ..., cn) so that the best fitting polynomial is *y = c0 + c1 * x + c2 * x^2 + ... + cn * x^n.*
You can generalize this two more than one dependent variable by including powers of y and combinations of x and y in the problem.
Lagrange polynomials (as #j w posted) give you an exact fit at the points you specify, but with polynomials of degree more than say 5 or 6 you can run into numerical instability.
Least squares gives you the "best fit" polynomial with error defined as the sum of squares of the individual errors. (take the distance along the y-axis between the points you have and the function that results, square them, and sum them up) The MATLAB polyfit function does this, and with multiple return arguments, you can have it automatically take care of scaling/offset issues (e.g. if you have 100 points all between x=312.1 and 312.3, and you want a 6th degree polynomial, you're going to want to calculate u = (x-312.2)/0.1 so the u-values are distributed between -1 and +=).
NOTE that the results of least-squares fits are strongly influenced by the distribution of x-axis values. If the x-values are equally spaced, then you'll get larger errors at the ends. If you have a case where you can choose the x values and you care about the maximum deviation from your known function and an interpolating polynomial, then the use of Chebyshev polynomials will give you something that is close to the perfect minimax polynomial (which is very hard to calculate). This is discussed at some length in Numerical Recipes.
Edit: From what I gather, this all works well for functions of one variable. For multivariate functions it is likely to be much more difficult if the degree is more than, say, 2. I did find a reference on Google Books.
at college we had this book which I still find extremely useful: Conte, de Boor; elementary numerical analysis; Mc Grow Hill. The relevant paragraph is 6.2: Data Fitting.
example code comes in FORTRAN, and the listings are not very readable either, but the explanations are deep and clear at the same time. you end up understanding what you are doing, not just doing it (as is my experience of Numerical Recipes).
I usually start with Numerical Recipes but for things like this I quickly have to grab Conte-de Boor.
maybe better posting some code... it's a bit stripped down, but the most relevant parts are there. it relies on numpy, obviously!
def Tn(n, x):
if n==0:
return 1.0
elif n==1:
return float(x)
else:
return (2.0 * x * Tn(n - 1, x)) - Tn(n - 2, x)
class ChebyshevFit:
def __init__(self):
self.Tn = Memoize(Tn)
def fit(self, data, degree=None):
"""fit the data by a 'minimal squares' linear combination of chebyshev polinomials.
cfr: Conte, de Boor; elementary numerical analysis; Mc Grow Hill (6.2: Data Fitting)
"""
if degree is None:
degree = 5
data = sorted(data)
self.range = start, end = (min(data)[0], max(data)[0])
self.halfwidth = (end - start) / 2.0
vec_x = [(x - start - self.halfwidth)/self.halfwidth for (x, y) in data]
vec_f = [y for (x, y) in data]
mat_phi = [numpy.array([self.Tn(i, x) for x in vec_x]) for i in range(degree+1)]
mat_A = numpy.inner(mat_phi, mat_phi)
vec_b = numpy.inner(vec_f, mat_phi)
self.coefficients = numpy.linalg.solve(mat_A, vec_b)
self.degree = degree
def evaluate(self, x):
"""use Clenshaw algorithm
http://en.wikipedia.org/wiki/Clenshaw_algorithm
"""
x = (x-self.range[0]-self.halfwidth) / self.halfwidth
b_2 = float(self.coefficients[self.degree])
b_1 = 2 * x * b_2 + float(self.coefficients[self.degree - 1])
for i in range(2, self.degree):
b_1, b_2 = 2.0 * x * b_1 + self.coefficients[self.degree - i] - b_2, b_1
else:
b_0 = x*b_1 + self.coefficients[0] - b_2
return b_0
Remember, there's a big difference between approximating the polynomial and finding an exact one.
For example, if I give you 4 points, you could
Approximate a line with a method like least squares
Approximate a parabola with a method like least squares
Find an exact cubic function through these four points.
Be sure to select the method that's right for you!
It's rather easy to scare up a quick fit using Excel's matrix functions if you know how to represent the least squares problem as a linear algebra problem. (That depends on how reliable you think Excel is as a linear algebra solver.)
The lagrange polynomial is in some sense the "simplest" interpolating polynomial that fits a given set of data points.
It is sometimes problematic because it can vary wildly between data points.

Resources