I'm trying to implement a function which calc sum of list , its name is sum -
(define (sum elemList)
(if
(null? elemList)
(+ (car elemList) (sum (cdr elemList)))
0
)
)
The above implementation gives wrong result , for example -
> (sum (list 1 2 3 4 ))
0
What I did wrong here ?
I think you swapped the then and the else part of the if:
(define (sum elemList)
(if
(null? elemList)
0
(+ (car elemList) (sum (cdr elemList)))
)
)
In the original function, for every non-empty list, 0 is returned.
You can also use apply
(define (sum elemList) (apply + elemList))
Should give you the same results
Please refer by this link for more details.
-http://groups.umd.umich.edu/cis/course.des/cis400/scheme/listsum.htm
(define(list-sum lst)
(cond
((null ? lst)
0)
((pair? (car lst))
(+(list-sum (car lst)) (list-sum (cdr lst))))
(else
(+ (car lst) (list-sum (cdr lst))))))
Related
last-non-zero takes a list of numbers and return the last cdr whose car is 0.
So, I can implement it using continuations, but how do I do this with natural recursion.
(define last-non-zero
(lambda (ls)
(let/cc return
(letrec
((lnz
(lambda (ls)
(cond
((null? ls) '())
((zero? (car ls)) ;; jump out when we get to last 0.
(return (lnz (cdr ls))))
(else
(cons (car ls) (lnz (cdr ls))))))))
(lnz ls)))))
Here's an obvious version which is not tail-recursive:
(define (last-non-zero l)
;; Return the last cdr of l which does not contain zero
;; or #f if there is none
(cond
((null? l)
#f)
((zero? (car l))
(let ((lnzc (last-non-zero (cdr l))))
;; This is (or lnzc (cdr l)) but that makes me feel bad
(if lnzc
lnzc
(cdr l))))
(else
(last-non-zero (cdr l)))))
Here is that version turned into a tail-recursive equivalent with also the zero test moved around a bit.
(define (last-non-zero l)
(let lnzl ([lt l]
[r #f])
(if (null? lt)
r
(lnzl (cdr lt) (if (zero? (car lt)) (cdr lt) r)))))
It's much clearer in this last version that the list is traversed exactly once.
Please indicate if I have correctly understood the problem:
#lang scheme
; returns cdr after last zero in lst
(define (last-non-zero lst)
; a helper function with 'saved' holding progress
(define (lnz-iter lst saved)
(if (null? lst)
saved
(if (zero? (car lst))
(lnz-iter (cdr lst) (cdr lst))
(lnz-iter (cdr lst) saved))))
(lnz-iter lst '()))
(last-non-zero '(1 2 3 0 7 9)) ; result (7 9)
Racket's takef-right can do it:
> (takef-right '(1 2 0 3 4 0 5 6 7) (lambda (n) (not (zero? n))))
'(5 6 7)
But assuming you have an assignment where you're supposed to write the logic yourself instead of just using a built in function, one easy if not very efficient approach is to reverse the list, build a new list out of everything up to the first zero, and return that. Something like:
(define (last-non-zero ls)
(let loop ([res '()]
[ls (reverse ls)])
(if (or (null? ls) (zero? (car ls)))
res
(loop (cons (car ls) res) (cdr ls)))))
Using your implementation where you return the argument in the event there are no zero you can just have a variable to keep the value you think has no zero values until you hit it and then update both:
(define (last-non-zero lst)
(let loop ((lst lst) (result lst))
(cond ((null? lst) result)
((zero? (car lst)) (loop (cdr lst) (cdr lst)))
(else (loop (cdr lst) result)))))
(last-non-zero '()) ; ==> ()
(last-non-zero '(2 3)) ; ==> (2 3)
(last-non-zero '(2 3 0)) ; ==> ()
(last-non-zero '(2 3 0 1 2)) ; ==> (1 2)
(define last-non-zero
(lambda (l)
((lambda (s) (s s l (lambda (x) x)))
(lambda (s l* ret)
(if (null? l*)
(ret '())
(let ((a (car l*))
(r (cdr l*)))
(if (zero? a)
(s s r (lambda (x) x))
(s s r
(lambda (r)
(ret (cons a r)))))))))))
Also possible, to use foldr:
(define (last-non-zero l)
(reverse (foldl (lambda (e res) (if (zero? e) '() (cons e res))) 0 l)))
Or use recursion:
(define (last-non-zero l (res '()))
(cond ((empty? l) res)
((zero? (car l)) (last-non-zero (cdr l) (cdr l)))
(else (last-non-zero (cdr l) res))))
i need to create a list such that the min is always at the outside in a list.
Example
input (1 2 3)
output (1 (2 3))
Here is my code, assuming that the numbers are in descending order, which i wish to extent later to a general case.
I am getting an unexpected output of (3 2 1 0 -1 -2 -3 ()).
How do I achieve this in scheme any ideas?'
(define (find-min-rest L)
(if (null? (cdr L)) (let ( (x (car L))) (cons x '( ())))
(let* ((ret-ans (find-min-rest (cdr L))) (cur-elem (car L)) (mini (car ret-ans)) (rem-list (cdr ret-ans)))
(cond ((> cur-elem mini) (cons cur-elem (cons mini rem-list)))))))
It'll be simpler if you use built-in procedures, and split the problem in parts. Notice that the following assumes that there's a single minimum, adjust as necessary:
(define (find-min-rest L)
(let* ((the-min (apply min L))
(the-rest (remove the-min L)))
(list the-min the-rest)))
(find-min-rest '(1 2 3))
=> '(1 (2 3))
The code
(define (find-min-rest L)
(if (null? (cdr L)) (let ( (x (car L))) (cons x '( ())))
(let* ((ret-ans (find-min-rest (cdr L))) (cur-elem (car L)) (mini (car ret-ans)) (rem-list (cdr ret-ans)))
(cond ((> cur-elem mini) (cons cur-elem (cons mini rem-list)))))))
I have a requirement to return the last negative number in a list, using a recursive procedure. Right now I have a recursive procedure that returns all negative numbers in the list.
(define returnLastNeg
(lambda (lst)
(if (null? lst)
'()
(if (positive? (car lst))
(returnLastNeg (cdr lst))
(cons (car lst) (returnLastNeg (cdr lst)))))))
calling it with (returnLastNeg'(1 -2 -3 4 -5 6)) returns
Output:
'(-2 -3 -5)
I need it to only return -5 though. I tried to modify my procedure to check to see if the last element in the list is positive. If it is, I want to remove the last element and then call the procedure again. But when I do that I get an error (below)
Modified procedure:
(define returnLastNeg-modified
(lambda (lst)
(if (null? lst)
'()
(if (positive? (last lst))
(remove (last lst) (lst))
(cons (car lst) (returnLastNeg-modified (cdr lst)))))))
ERROR:
application: not a procedure;
expected a procedure that can be applied to arguments
given: '(1 -2 -3 4 -5 6)
arguments...: [none]
>
A simpler approach would be with a helper procedure (called "sub") in this example:
(define returnLastNeg
(lambda (lst)
(define sub
(lambda (lst last-neg)
(if (null? lst)
last-neg
(let ((c (car lst)))
(sub (cdr lst)
(if (negative? c) c last-neg))))))
(sub lst null)))
EDIT
Knowing that
(define <procedureName> (lambda (<params>) ... )
is the same as
(define (<procedureName> <params>) ... )
and reformatting a little, this becomes:
(define (returnLastNeg lst)
(define (sub lst last-neg)
(if (null? lst)
last-neg
(let ((c (car lst)))
(sub (cdr lst) (if (negative? c) c last-neg)))))
(sub lst null))
I hope it's clearer
last-neg gets set to null by the very last expression
the recursive call to sub has 2 parameters (split on 2 lines in the initial version, but newlines don't matter).
This is the same as the even shorter version
(define (returnLastNeg lst)
(let sub ((lst lst) (last-neg null))
(if (null? lst)
last-neg
(let ((c (car lst)))
(sub (cdr lst) (if (negative? c) c last-neg))))))
using a so-called "named let".
;Question 3
(defun listcheck(lst)
(cond
((not (null lst))
(cond
((eq (car lst) 'a) (+ (listcheck (cdr lst)) 1))
( T (listcheck (cdr lst)))
)
)
)
0
)
this function prints out 0 at all times not sure where im going wrong any input would help
It's printing 0 because the function ends with 0, outside the cond. So it returns this in all cases, not just the base of the recursion. That should only be returned when lst is null.
(defun listcheck(lst)
(cond ((null lst) 0)
((eq (car lst) 'a) (+ (listcheck (cdr lst)) 1))
(T (listcheck (cdr lst)))))
I have tried many times but I still stuck in this problem, here is my input:
(define *graph*
'((a . 2) (b . 2) (c . 1) (e . 1) (f . 1)))
and I want the output to be like this: ((2 a b) (1 c e f))
Here is my code:
(define group-by-degree
(lambda (out-degree)
(if (null? (car (cdr out-degree)))
'done
(if (equal? (cdr (car out-degree)) (cdr (car (cdr out-degree))))
(list (cdr (car out-degree)) (append (car (car out-degree))))
(group-by-degree (cdr out-degree))))))
Can you please show me what I have done wrong cos the output of my code is (2 a). Then I think the idea of my code is correct.
Please help!!!
A very nice and elegant way to solve this problem, would be to use hash tables to keep track of the pairs found in the list. In this way we only need a single pass over the input list:
(define (group-by-degree lst)
(hash->list
(foldl (lambda (key ht)
(hash-update
ht
(cdr key)
(lambda (x) (cons (car key) x))
'()))
'#hash()
lst)))
The result will appear in a different order than the one shown in the question, but nevertheless it's correct:
(group-by-degree *graph*)
=> '((1 f e c) (2 b a))
If the order in the output list is a problem try this instead, it's less efficient than the previous answer, but the output will be identical to the one in the question:
(define (group-by-degree lst)
(reverse
(hash->list
(foldr (lambda (key ht)
(hash-update
ht
(cdr key)
(lambda (x) (cons (car key) x))
'()))
'#hash()
lst))))
(group-by-degree *graph*)
=> '((2 a b) (1 c e f))
I don't know why the lambda is necessary; you can directly define a function with (define (function arg1 arg2 ...) ...)
That aside, however, to put it briefly, the problen is that the cars and cdrs are messed up. I couldn't find a way to tweak your solution to work, but here is a working implementation:
; appends first element of pair into a sublist whose first element
; matches the second of the pair
(define (my-append new lst) ; new is a pair
(if (null? lst)
(list (list (cdr new) (car new)))
(if (equal? (car (car lst)) (cdr new))
(list (append (car lst) (list (car new))))
(append (list (car lst)) (my-append new (cdr lst)))
)
)
)
; parses through a list of pairs and appends them into the list
; according to my-append
(define (my-combine ind)
(if (null? ind)
'()
(my-append (car ind) (my-combine (cdr ind))))
)
; just a wrapper for my-combine, which evaluates the list backwards
; this sets the order right
(define (group-by-degree out-degree)
(my-combine (reverse out-degree)))