I'm writing a program that works with images and at some point I need to posterize the image. This means I need to bin the colors, but I'm having trouble deciding how to tell how close one color is to another.
Given a color in RGB, I can think of at least 2 ways to see how different they are:
|r1 - r2| + |g1 - g2| + |b1 - b2|
sqrt((r1 - r2)^2 + (g1 - g2)^2 + (b1 - b2)^2)
And if I move into HSV, I can think of other ways of doing it.
So I ask, ignoring speed, what is the best way to tell how similar two colors are? Best meaning most accurate to the human eye.
Well, if speed is not an issue, the most accurate way would be to take some sample images and apply the filter to them using various cutoff values for the distance (distance being determined by one of the equations on the Color_difference page that astander linked to, meaning you'd have to use one of those color spaces listed there with the calculations, then convert to sRGB or something [which also means that you'd need to convert the image into the other color space first if it's not in it to begin with]), and then have a large number of people examine the images to see what looks best to them, then go with the cutoff value for the images that the majority agrees looks best.
Basically, it's largely a matter of subjectiveness; in fact, it also depends on how stylized you want the images, and you might even want to add in some sort of control so that you can alter the cutoff distance on the fly.
If speed does become a bit of an issue and/or you want more simplicity, then just use your second choice for distance calculation (which is simply the CIE76 equation; just make sure to use the Lab* color space) with the cutoff being around 2 or 2.3.
What do you mean by "posterize the image"?
If you're trying to cluster the colors into bins, you should look at
cluster analysis
Just a comment if you are going to move to HSV (or similar spaces):
Diffing on H: difference between 0° and 359° is numerically big but perceptually is negligible.
H difference if V or S are small - is small.
For computer vision apps, more important not perceptual difference (used mostly by paint manufacturers) but are these colors belong to the same object/segment or not. Which means that we might partially ignore V, which can change from lighting conditions.
Related
I have the following equation, which I try to implement. The upcoming question is not necessarily about this equation, but more generally, on how to deal with divisions by zero in image processing:
Here, I is an image, W is the difference between the image and its denoised version (so, W expresses the noise in the image), and K is an estimated fingerprint, gained from d images of the same camera. All calculations are done pixel-wise; so the equations does not involve a matrix multiplication. For more on the Idea of estimating digital fingerprints consult corresponding literature like the general wikipedia article or scientific papers.
However my problem arises when an Image has a pixel with value Zero, e.g. perfect black (let's say we only have one image, k=1, so the Zero gets not overwritten by the pixel value of the next image by chance, if the next pixelvalue is unequal Zero). Then I have a division by zero, which apparently is not defined.
How can I overcome this problem? One option I came up with was adding +1 to all pixels right before I even start the calculations. However this shifts the range of pixel values from [0|255] to [1|256], which then makes it impossible to work with data type uint8.
Other authors in papers I read on this topic, often do not consider values close the range borders. For example they only calculate the equation for pixelvalues [5|250]. They reason this, not because of the numerical problem but they say, if an image is totally saturated, or totally black, the fingerprint can not even be estimated properly in that area.
But again, my main concern is not about how this algorithm performs best, but rather in general: How to deal with divisions by 0 in image processing?
One solution is to use subtraction instead of division; however subtraction is not scale invariant it is translation invariant.
[e.g. the ratio will always be a normalized value between 0 and 1 ; and if it exceeds 1 you can reverse it; you can have the same normalization in subtraction but you need to find the max values attained by the variables]
Eventualy you will have to deal with division. Dividing a black image with itself is a proper subject - you can translate the values to some other range then transform back.
However 5/8 is not the same as 55/58. So you can take this only in a relativistic way. If you want to know the exact ratios you better stick with the original interval - and handle those as special cases. e.g if denom==0 do something with it; if num==0 and denom==0 0/0 that means we have an identity - it is exactly as if we had 1/1.
In PRNU and Fingerprint estimation, if you check the matlab implementation in Jessica Fridrich's webpage, they basically create a mask to get rid of saturated and low intensity pixels as you mentioned. Then they convert Image matrix to single(I) which makes the image 32 bit floating point. Add 1 to the image and divide.
To your general question, in image processing, I like to create mask and add one to only zero valued pixel values.
img=imread('my gray img');
a_mat=rand(size(img));
mask=uint8(img==0);
div= a_mat/(img+mask);
This will prevent division by zero error. (Not tested but it should work)
I'm not sure this is the right place but here I go:
I have a database of 300 picture in high-resolution. I want to compute the PCA on this database and so far here is what I do: - reshape every image as a single column vector - create a matrix of all my data (500x300) - compute the average column and substract it to my matrix, this gives me X - compute the correlation C = X'X (300x300) - find the eigenvectors V and Eigen Values D of C. - the PCA matrix is given by XV*D^-1/2, where each column is a Principal Component
This is great and gives me correct component.
Now what I'm doing is doing the same PCA on the same database, except that the images have a lower resolution.
Here are my results, low-res on the left and high-res on the right. Has you can see most of them are similar but SOME images are not the same (the ones I circled)
Is there any way to explain this? I need for my algorithm to have the same images, but one set in high-res and the other one in low-res, how can I make this happen?
thanks
It is very possible that the filter you used could have done a thing or two to some of the components. After all, lower resolution images don't contain higher frequencies that, too, contribute to which components you're going to get. If component weights (lambdas) at those images are small, there's also a good possibility of errors.
I'm guessing your component images are sorted by weight. If they are, I would try to use a different pre-downsampling filter and see if it gives different results (essentially obtain lower resolution images by different means). It is possible that the components that come out differently have lots of frequency content in the transition band of that filter. It looks like images circled with red are nearly perfect inversions of each other. Filters can cause such things.
If your images are not sorted by weight, I wouldn't be surprised if the ones you circled have very little weight and that could simply be a computational precision error or something of that sort. In any case, we would probably need a little more information about how you downsample, how you sort the images before displaying them. Also, I wouldn't expect all images to be extremely similar because you're essentially getting rid of quite a few frequency components. I'm pretty sure it wouldn't have anything to do with the fact that you're stretching out images into vectors to compute PCA, but try to stretch them out in a different direction (take columns instead of rows or vice versa) and try that. If it changes the result, then perhaps you might want to try to perform PCA somewhat differently, not sure how.
I need to place 1 to 100 nodes (actually 25px dots) on a html5 canvas. I need to make them look randomly distributed so using some kind of grid is out. I also need to ensure these dots are not touching or overlapping. I would also like to not have big blank areas. Can someone tell me what this kind of algorithm is called? A reference to an open source project that does this would also be appreciated.
Thanks all
Guido
What you are looking for is called a Poisson-disc distribution. It occurs in nature in the distribution of photoreceptor cells on your retina. There is a great article about this by Mike Bostock (StackOverflow profile) called Visualizing Algorithms. It has JavaScript demos and a lot of code to look at.
In the interest of doing more then dropping a link into the answer, I will try to give a brief summary of the article:
Mitchell's best-candidate algorithm
A simple approximation known as Mitchell’s best-candidate algorithm. It is easy to implement both crowds some spaces and leaves gaps in other. The algorithm adds new points one at a time. For each new sample, the best-candidate algorithm generates a fixed number of candidates, say 10. The point furthest from any other point is added to the set and the process is repeated until the desired density is achieved.
Bridson's Algorithm
Bridson’s algorithm for Poisson-disc sampling (original paper pdf) scales linearly and is easy to implement as well. This algorithm grows from an initial point and (IMHO) is quite fun to watch (again see Mike Bostock's article). All points in the set are either active or inactive. all points are added as active. One point is chosen from the active set and some number of candidate points are generated in the annulus (a.k.a ring) that extends from the sample with the inner circle having a radius r and the outer circle having a radius 2r. Candidate sample less then r distance away from any point in the FinalSet are rejected. Once a sample is found that is not rejected it is added the the FinalSet. If all the candidate sample are rejected the original point is marked as inactive on the assumption that is has so many neighboring points that no more can be added around it. When all samples are inactive the algorithm terminates.
A grid of size r/√2 can be used to greatly increase the speed of checking candidate points. Only one point may ever be in a grid square and only a limited number of adjacent squares need to be checked.
The easiest way would be to just generate random (x, y) coordinates for each one, repeating if they are touching or overlapping.
Pseudocode:
do N times
{
start:
x = rand(0, width)
y = rand(0, height)
for each other point, p
if distance(p.x, p.y, x, y) < radius * 2
goto start
add_point(x, y);
}
This is O(n^2), but if n is only going to be 100 then that's fine.
I don't know if this is a named algorithm, but it sounds like you could assign each node a position on a “grid”, then pick a random offset. That would give the appearance of some chaos while still guaranteeing that there are no big empty spaces.
For example:
node.x = node.number / width + (Math.random() - 0.5) * SOME_SCALE;
node.y = node.number % height + (Math.random() - 0.5) * SOME_SCALE;
Maybe you could use a grid of circles and place one 25px-dot in every circle? Wouldn't really be random, but look good.
Or you could place dots randomly and then make empty areas attract dots and give dots a limited-range-repulsion, but that is maybe too complicated and takes too much CPU time for this simple task.
I was wondering what kind of model / method / technique Trendly might use to achieve this model:
[It tries to find the moments where significant changes set in and ignores random movements]
Any pointers very welcome! :)
I've never seen 'Trendly', and don't know anything about it, but if I wanted to produce that red line from that blue line, in an algorithmic fashion, I would try:
Fourier the whole data set
Choose a block size longer than the period of the dominant frequency
Divide the data up into blocks of the chosen size
Compare adjacent ones with a statistical test of some sort.
Where the test says two blocks belong to the same underlying distribution, merge them.
If any were merged, go back to 4.
Red trend line is the mean of each block.
A simple "median" function could produce smoother curves over a mostly un-smooth curve.
Otherwise, a brute-force or genetic algorithm could be used; attempting to find the way to split the data into sections, so that more sections = worse solution, and less accuracy of the lines = worse solution.
Another way would be like this: Start at the beginning. As soon as the line moves outside of some radius (3 above or 3 below the first, for instance) set the new height to an average of the current line's height and the previous marker.
If you keep doing that, it would ignore small fluctuations. However, if the fluctuation was large enough, it would still effect it.
I have some kind of a shape consisting of vertical, horizontal and diagonal lines. I have starting X,Y and ending X,Y (this is my input - just 2 points defining a line) of each line and I would like to make the whole shape scalable (just by changing the value of a scale ratio variable), so that I can still preserve the proper connection of the lines and the proportions as well. Just for getting a better idea of what I mean: it'd be as if I had the same lines in a vector editor.
Would that be possible with an algorithm, and could you please, give me another possible solution if there is no such algorithm ?
Thank you very much in advance!
what point do you want it to scale about? You could scale relative to the first point, the center, or some other arbitrary location. Typically, you subtract out an offset (for instance the first point in your input), multiply by a scale factor, and then add back the offset.
A more systematic approach in computer graphics would be to use a transformation matrix... although thats probably overkill in your case.