estimating heteroskedastic logit model - r

Suppose (following Train, Discrete Choice Analysis with Simulation, chapter 3.2) you have a discrete choice model, observations from several cities, and you suspect that the variances of the unobserved factors differ over cities. The suggested appropriate
model is heteroskedastic logit (or probit). Can this setup be estimated in R? As far as I can see, the mlogit package doesn't do this
(it doesn't allow you to specify that the source of the heterogeneity is the cities). Is that correct, or am I missing
something? If it is right, any suggestions for an R package?

Related

MCAR (Multivariate Conditional Autoregressive) model in R

I am performing a spatial analysis of student grades according to their city of origin using R. I have several covariates such as poverty, education and socio-cultural indices. So far I have fitted univariate models such as: linear regression, weighted linear regression and CAR (conditional autoregressive).
Now, I am reading "Hierarchical Modeling and Analysis for Spatial Data" from Banerjee, Carlin and Gelfand. I am interested in applying multivariate models, in particular a MCAR (Multivariate Conditional Autoregressive) model.
However, I have not found any code in R (or Python) that has it implemented. The most possible has been the "spatialreg" library that includes univariate CAR and SAR models.
Is there any library that you know of that includes them? Thanks in advance
I have found "CARBayes" package. This works perfectly for fitting MCAR model.

Negative binomial model with multiply imputed, weighted dataset in R

I am running an analysis of hospital length of stay based on a number of parameters in R, with one primary exposure. Many of the covariates are missing, most commonly lab values, because these aren't checked for all patients. I've worked out what seems to be a good multiple imputation schema using MICE. Because of imbalance between exposed and unexposed groups, I'm also weighting using propensity scores.
I've managed to run a successful weighted Poisson model with MICE and WeightThem. However, when I checked the models for overdispersion, it does appear that the variance is greater than the mean, implying I should be using a quasipoisson or negative binomial model. However, I can't find documentation on negative binomial models with WeightThem or WeightIt in R.
Does anyone have any experience? To run a negative binomial model, i can just use the following code:
results <- with(models, MASS::glm.nb(LOS ~ exposure + covariate1 + covariate2)
in which "models" is the multiply-imputed WeightIt object.
However, according to the WeightIt documentation, when using any glm model you need to run it as a svyglm to get proper standard errors:
results <- with(models, svyglm(LOS ~ exposure + covariate1 + covariate2,
family = poisson()))
There is a function in the sjstats package called svyglm.nb, but this requires creating a design matrix or the model won't run. I have no idea how/whether this is necessary - is the first version (just glm.nb) sufficient? Am I entirely thinking about this wrong?
Thanks so much, advice is much appreciated.

Multivariate Analysis on random forest results

Apologies in advance for no data samples:
I built out a random forest of 128 trees with no tuning having 1 binary outcome and 4 explanatory continuous variables. I then compared the AUC of this forest against a forest already built and predicting on cases. What I want to figure out is how to determine what exactly is lending predictive power to this new forest. Univariate analysis with the outcome variable led to no significant findings. Any technique recommendations would be greatly appreciated.
EDIT: To summarize, I want to perform multivariate analysis on these 4 explanatory variables to identify what interactions are taking place that may explain the forest's predictive power.
Random Forest is what's known as a "black box" learning algorithm, because there is no good way to interpret the relationship between input and outcome variables. You can however use something like the variable importance plot or partial dependence plot to give you a sense of what variables are contributing the most in making predictions.
Here are some discussions on variable importance plots, also here and here. It is implemented in the randomForest package as varImpPlot() and in the caret package as varImp(). The interpretation of this plot depends on the metric you are using to assess variable importance. For example if you use MeanDecreaseAccuracy, a high value for a variable would mean that on average, a model that includes this variable reduces classification error by a good amount.
Here are some other discussions on partial dependence plots for predictive models, also here. It is implemented in the randomForest package as partialPlot().
In practice, 4 explanatory variables is not many, so you can just easily run a binary logistic regression (possibly with a L2 regularization) for a more interpretative model. And compare it's performance against a random forest. See this discussion about variable selection. It is implemented in the glmnet package. Basically a L2 regularization, also known as ridge, is a penalty term added to your loss function that shrinks your coefficients for reduced variance, at the expense of increased bias. This effectively reduces prediction error if the amount of reduced variance more than compensates for the bias (this is often the case). Since you only have 4 inputs variables, I suggested L2 instead of L1 (also known as lasso, which also does automatic feature selection). See this answer for ridge and lasso shrinkage parameter tuning using cv.glmnet: How to estimate shrinkage parameter in Lasso or ridge regression with >50K variables?

hurdle models using continuous data and covariates

I was wondering if I get some advice about fitting hurdle models using continuous data and covariates.
I have some continuous data that are generally well fit using a right-skewed distribution such as a Pareto, Gamma, or Weibull distribution. However, there several zeros in my data which are important to my analysis. In addition, I have some categorical (two-level) covariates and would like to model the parameters of a distribution as a function of these covariates in order to formally evaluate their importance (e.g., using AIC).
I have seen examples of hurdle models fit using continuous data but have not yet found any examples of how to incorporate covariates and a model-selection framework. Does anyone have any suggestions as to how to proceed or know of any R packages that allow this procedure? I have included some code below to reproduce the type of data I am working with. The non-zero data are generated via a generalized Pareto distribution from the package texmex. The parameters were estimated directly from my non-zero data. I have also included the code to plot the data in a histogram to see their distribution.
library("texmex")
set.seed(101)
zeros <- rep(0,8)
non_zeros <- rgpd(17, sigm=exp(-10.4856), xi=0.1030, u = 0)
all.data <- c(zeros,non_zeros)
hist(non_zeros,breaks=50,xlim=c(0,0.00015),ylim=c(0,9),main="",xlab="",
col="gray")
hist(zeros,add=TRUE,col="black",breaks=100,xlim=c(0,0.00015),ylim=c(0,9))
legend("topright",legend=c("zeros"),col="black",lwd=8)

Assigning prior weights/preferences to predictor variables for regression tree analysis

Within R's "rpart" package for classification/regression trees, is it possible to specify prior weights for the predictor variables? Alternatively, is this a possibility with the BART (Bayesian Additive Regression Trees) package, random forests, or any other package in R?
Based on expert opinion, I would like to force certain predictor variables to be included. Thanks

Resources