I'd like to calculate the geomean using each row from three columns. I found solutions to calculate it from the values in one column (example), but not from a row.
Here's a simplified example:
data <- structure(list(fs_id = structure(1:8, levels = c("CON1", "NC",
"water", "SCR1", "FAN1_1", "CON2", "SCR2", "FAN1_2"), class = "factor"),
twodct_ATP5B = c(1.06960527260684, 0.00241424406360917, NA,
0.953100847649869, 0.404512354245938, 0.934924336678708,
1.32283164360403, 0.194667767059346), twodct_EIF4A2 = c(1.07741209897215,
NA, NA, 1.01873805854745, 0.467988708062081, 0.928149963188649,
1.31762036152893, 0.33377442013251), twodct_GAPDH = c(1.04388739915294,
0.000156497290441042, NA, 0.972431569982792, 0.547030142788418,
0.957957726869246, 0.942311505534324, 0.337842927620691)), row.names = c(NA,
-8L), class = c("tbl_df", "tbl", "data.frame"))
The table looks like this:
> data
# A tibble: 8 × 4
fs_id twodct_ATP5B twodct_EIF4A2 twodct_GAPDH
<fct> <dbl> <dbl> <dbl>
1 CON1 1.07 1.08 1.04
2 NC 0.00241 NA 0.000156
3 water NA NA NA
4 SCR1 0.953 1.02 0.972
5 FAN1_1 0.405 0.468 0.547
6 CON2 0.935 0.928 0.958
7 SCR2 1.32 1.32 0.942
8 FAN1_2 0.195 0.334 0.338
I want to get the row wise geomean of columns twodct_ATP5B, twodct_EIF4A2 and twodct_GAPDH.
I've had a crack like this, but doesn't seem to work:
data %>%
rowwise() %>%
dplyr::mutate(geomean = exp(mean(log(select(., c("twodct_ATP5B", "twodct_EIF4A2", "twodct_GAPDH")))))) %>%
ungroup()
This is a good time to use c_across within the rowwise:
data %>%
rowwise() %>%
dplyr::mutate(geomean = exp(mean(log(c_across(c(twodct_ATP5B, twodct_EIF4A2, twodct_GAPDH)))))) %>%
ungroup()
# # A tibble: 8 × 5
# fs_id twodct_ATP5B twodct_EIF4A2 twodct_GAPDH geomean
# <fct> <dbl> <dbl> <dbl> <dbl>
# 1 CON1 1.07 1.08 1.04 1.06
# 2 NC 0.00241 NA 0.000156 NA
# 3 water NA NA NA NA
# 4 SCR1 0.953 1.02 0.972 0.981
# 5 FAN1_1 0.405 0.468 0.547 0.470
# 6 CON2 0.935 0.928 0.958 0.940
# 7 SCR2 1.32 1.32 0.942 1.18
# 8 FAN1_2 0.195 0.334 0.338 0.280
You can vectorize the computation by rowMeans(). It's optional to set na.rm = TRUE in rowMeans() to omit missing values.
data %>%
mutate(geomean = exp(rowMeans(log(pick(twodct_ATP5B, twodct_EIF4A2, twodct_GAPDH)))))
# # A tibble: 8 × 5
# fs_id twodct_ATP5B twodct_EIF4A2 twodct_GAPDH geomean
# <fct> <dbl> <dbl> <dbl> <dbl>
# 1 CON1 1.07 1.08 1.04 1.06
# 2 NC 0.00241 NA 0.000156 NA
# 3 water NA NA NA NA
# 4 SCR1 0.953 1.02 0.972 0.981
# 5 FAN1_1 0.405 0.468 0.547 0.470
# 6 CON2 0.935 0.928 0.958 0.940
# 7 SCR2 1.32 1.32 0.942 1.18
# 8 FAN1_2 0.195 0.334 0.338 0.280
Note: pick() is a new function since dplyr v1.1.0. If you have not updated, replace it with across or select. pick(a, b, c) is equivalent to
across(c(a, b, c)) (c() is necessary)
select(., a, b, c) (The dot is necessary)
Related
I have imported an excel sheet in R which is a compilation of several dataframes with identical columnnames. To illustrate it looks like this:
df <- tibble( empty = c(runif(3), NA, NA, NA, NA),
A = c(runif(3), NA, NA, NA, NA),
B = c(runif(3), NA, NA, NA, NA),
C = c(runif(3), NA, NA, NA, NA),
empty = c(runif(6), NA),
A = c(runif(6), NA),
B = c(runif(6), NA),
C = c(runif(6), NA),
empty = c(runif(5), NA, NA),
A = c(runif(5), NA, NA),
B = c(runif(5), NA, NA),
C = c(runif(5), NA, NA),
.name_repair = "minimal")
How can I transform this dataframe in this result:
> df1
# A tibble: 3 x 4
empty A B C
<dbl> <dbl> <dbl> <dbl>
1 0.200 0.0665 0.723 0.487
2 0.576 0.990 0.969 0.289
3 0.727 0.192 0.780 0.243
> df2
# A tibble: 6 x 4
empty A B C
<dbl> <dbl> <dbl> <dbl>
1 0.556 0.698 0.796 0.357
2 0.308 0.542 0.867 0.103
3 0.643 0.792 0.385 0.882
4 0.675 0.504 0.489 0.0515
5 0.426 0.775 0.410 0.748
6 0.343 0.752 0.185 0.542
> df3
# A tibble: 5 x 4
empty A B C
<dbl> <dbl> <dbl> <dbl>
1 0.229 0.0508 0.0880 0.486
2 0.146 0.295 0.562 0.731
3 0.292 0.804 0.133 0.0480
4 0.0404 0.399 0.366 0.152
5 0.226 0.702 0.476 0.416
The column with name empty has actually no name although I don't know how to assign this in this example.
The reason I ask this question is because I have several other sheets with a different number of similar columns per sheet (D, E etc).
I found a nice post here:
split data frame with recurring column names
although this post looks the same, it is quit different.
Thanks!
This puts the results in a list which should be more convenient than sequentially named data frames.
first_col = "empty"
name_groups = cumsum(names(df) == "empty")
result = split.default(df, name_groups)
# omit rows that have only missing values
result = lapply(result, \(x) x[rowSums(is.na(x)) < ncol(x), ])
result
# $`1`
# # A tibble: 3 × 4
# empty A B C
# <dbl> <dbl> <dbl> <dbl>
# 1 0.590 0.602 0.527 0.900
# 2 0.0450 0.713 0.936 0.911
# 3 0.567 0.781 0.349 0.686
#
# $`2`
# # A tibble: 6 × 4
# empty A B C
# <dbl> <dbl> <dbl> <dbl>
# 1 0.480 0.543 0.744 0.0684
# 2 0.0423 0.799 0.927 0.537
# 3 0.962 0.0745 0.851 0.0639
# 4 0.615 0.546 0.390 0.0985
# 5 0.258 0.857 0.139 0.172
# 6 0.944 0.375 0.356 0.715
#
# $`3`
# # A tibble: 5 × 4
# empty A B C
# <dbl> <dbl> <dbl> <dbl>
# 1 0.790 0.572 0.600 0.701
# 2 0.732 0.610 0.0395 0.283
# 3 0.130 0.168 0.120 0.0682
# 4 0.112 0.682 0.586 0.640
# 5 0.211 0.267 0.0189 0.606
If you really want df1, df2, ... in your global environment, add these lines:
names(result) = paste0("df", names(result))
list2env(result, envir = .GlobalEnv)
When the number of repetition is constant (here 4) then we could do something likes this:
base R:
df1 <- df[,1:4]
df2 <- df[,5:8]
df3 <- df[,9:12]
> df1
# A tibble: 7 x 4
empty A B C
<dbl> <dbl> <dbl> <dbl>
1 0.120 0.448 0.0453 0.315
2 0.337 0.296 0.757 0.448
3 0.533 0.574 0.681 0.324
4 NA NA NA NA
5 NA NA NA NA
6 NA NA NA NA
7 NA NA NA NA
> df2
# A tibble: 7 x 4
empty A B C
<dbl> <dbl> <dbl> <dbl>
1 0.420 0.306 0.472 0.107
2 0.639 0.666 0.349 0.768
3 0.469 0.311 0.100 0.744
4 0.00122 0.586 0.437 0.796
5 0.122 0.00989 0.289 0.408
6 0.570 0.253 0.877 0.197
7 NA NA NA NA
> df3
# A tibble: 7 x 4
empty A B C
<dbl> <dbl> <dbl> <dbl>
1 0.812 0.0464 0.473 0.638
2 0.340 0.482 0.269 0.164
3 0.0323 0.952 0.842 0.282
4 0.511 0.263 0.934 0.183
5 0.0711 0.483 0.763 0.639
6 NA NA NA NA
7 NA NA NA NA
df1 <- df[,1:4][1:3,]
df2 <- df[,5:8][1:6,]
df3 <- df[,9:12][1:5,]
Another possible solution, based on tidyverse:
library(tidyverse)
stack(df) %>%
filter(!is.na(values)) %>%
group_by(aux = cumsum(ind == "empty" & lag(ind, default = "") != "empty")) %>%
group_split() %>%
map(~ pivot_wider(.x %>% select(-aux), names_from = "ind",
values_from = "values", values_fn = list) %>% unnest(everything()))
#> [[1]]
#> # A tibble: 3 × 4
#> empty A B C
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.865 0.0634 0.127 0.136
#> 2 0.343 0.431 0.943 0.985
#> 3 0.482 0.635 0.150 0.263
#>
#> [[2]]
#> # A tibble: 6 × 4
#> empty A B C
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.0656 0.514 0.834 0.662
#> 2 0.977 0.657 0.878 0.427
#> 3 0.670 0.641 0.910 0.175
#> 4 0.402 0.0494 0.433 0.0241
#> 5 0.211 0.388 0.971 0.273
#> 6 0.681 0.355 0.749 0.0536
#>
#> [[3]]
#> # A tibble: 5 × 4
#> empty A B C
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.440 0.856 0.00734 0.0474
#> 2 0.0347 0.328 0.471 0.845
#> 3 0.106 0.393 0.303 0.811
#> 4 0.385 0.184 0.540 0.180
#> 5 0.564 0.579 0.414 0.0110
This is similar to purrr::map_dfr binds by columns, not row as expected but the solutions there aren't working for me. I have a dataframe like
beta_df <- structure(list(intercept = c(-2.75747056032685, -2.90831892599742,
-2.92478082251453, -2.99701559041538, -2.88885796048347, -3.09564193631675
), B1 = c(0.0898235360814854, 0.0291839369781567, 0.0881023522236231,
0.231703026085554, 0.0441573699433149, 0.258219673780526), B2 = c(-0.222367437619057,
0.770536384299238, 0.199648657850609, 0.0529038155448773, 0.00310458335580774,
0.132604387458483), B3 = c(1.26339268033385, 1.29883641278223,
0.949504940387809, 1.26904511447941, 0.863882674439083, 0.823907268679309
), B4 = c(2.13662994525526, 1.02340744740827, 0.959079691725652,
1.60672779812489, 1.19095838867883, -0.0693120654049908)), row.names = c(NA,
-6L), class = c("tbl_df", "tbl", "data.frame"))
#> # A tibble: 6 × 5
#> intercept B1 B2 B3 B4
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -2.76 0.0898 -0.222 1.26 2.14
#> 2 -2.91 0.0292 0.771 1.30 1.02
#> 3 -2.92 0.0881 0.200 0.950 0.959
#> 4 -3.00 0.232 0.0529 1.27 1.61
#> 5 -2.89 0.0442 0.00310 0.864 1.19
#> 6 -3.10 0.258 0.133 0.824 -0.0693
I'd like to turn this into a tibble with columns for the mean, 0.025 and 0.975 quantiles. For the quantile function this works:
beta_df %>%
map_dfr(quantile,0.025)
#> # A tibble: 5 × 1
#> `2.5%`
#> <dbl>
#> 1 -3.08
#> 2 0.0311
#> 3 -0.194
#> 4 0.829
#> 5 0.0592
And this gets me both quantiles
bind_cols(beta_df %>%
map_dfr(quantile, 0.025),
beta_df %>%
map_dfr(quantile, 0.975))
#> # A tibble: 5 × 2
#> `2.5%` `97.5%`
#> <dbl> <dbl>
#> 1 -3.08 -2.77
#> 2 0.0311 0.255
#> 3 -0.194 0.699
#> 4 0.829 1.30
#> 5 0.0592 2.07
But for mean,
beta_df %>%
map_dfr(mean)
#> # A tibble: 1 × 5
#> intercept B1 B2 B3 B4
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -2.93 0.124 0.156 1.08 1.14
Gives me a long row rather than a column. How can I turn the mean of each column of the original dataframe into a row of a single column dataframe labelled mean?
The reason is because the output of quantile() is a named vector whereas for the mean() is just a single value.
Lets create a custom function with the mean that outputs a named vector,
myMean <- function(x) {setNames(mean(x), nm = 'theMean')}
Applying that using map_dfr we get,
library(dplyr)
beta_df %>%
purrr::map_dfr(myMean)
# A tibble: 5 x 1
theMean
<dbl>
1 -2.93
2 0.124
3 0.156
4 1.08
5 1.14
This is a shortened version of my real df. I have a function (called: calc) which creates a new variable called 'total', for simplicity this adds up three variables: a, b, c. When I add a dataframe, to that function, that does not feature one variable (say c) so only has a & b, the function falls over. Is there a 'function' / simple way that counts the variables regardless if they are missing?
calc <- function(x) {x %>% mutate(total = a + b + c)}
data.2 has two columns a & b with many rows of values, but when running that in the function it cannot find c so does not calculate.
new.df <- calc(data.2)
Many thanks.
If you want to perform rowwise sum or mean they have na.rm argument which you can use to ignore NA values.
library(dplyr)
calc <- function(x) {x %>% mutate(total = rowSums(select(., a:c), na.rm = TRUE))}
In general case if you are not able to find a function which gives you an out-of-box solution you can replace NA values with 0 maybe and then perform the operation that you want to perform.
calc <- function(x) {
x %>%
mutate(across(a:c, tidyr::replace_na, 0),
total = a + b + c)
}
You can use rowwise() and c_across() with any_of() (or any other tidyselect function) from dplyr (>= 1.0.0).
library(dplyr)
df <- data.frame(a = rnorm(10), b = rnorm(10))
dfc <- data.frame(a = rnorm(10), b = rnorm(10), c = rnorm(10))
calc <- function(x) {
x %>%
rowwise() %>%
mutate(total = sum(c_across(any_of(c("a", "b", "c"))))) %>%
ungroup()
}
calc(df)
#> # A tibble: 10 x 3
#> a b total
#> <dbl> <dbl> <dbl>
#> 1 -0.884 0.851 -0.0339
#> 2 -1.56 -0.464 -2.02
#> 3 -0.884 0.815 -0.0689
#> 4 -1.46 -0.259 -1.71
#> 5 0.211 -0.528 -0.317
#> 6 1.85 0.190 2.04
#> 7 -1.31 -0.921 -2.23
#> 8 0.450 0.394 0.845
#> 9 -1.14 0.428 -0.714
#> 10 -1.11 0.417 -0.698
calc(dfc)
#> # A tibble: 10 x 4
#> a b c total
#> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.0868 0.632 1.81 2.36
#> 2 0.568 -0.523 0.240 0.286
#> 3 -0.0325 0.377 -0.437 -0.0921
#> 4 0.660 0.456 1.28 2.39
#> 5 -0.123 1.75 -1.03 0.599
#> 6 0.641 1.39 0.902 2.93
#> 7 0.266 0.520 0.904 1.69
#> 8 -1.53 0.319 0.439 -0.776
#> 9 0.942 0.468 -1.69 -0.277
#> 10 0.254 -0.600 -0.196 -0.542
If you want to be able to generalize beyond those 3 variables you can use any tidyselect methodology.
df <- data.frame(a = rnorm(10), b = rnorm(10))
dfc <- data.frame(a = rnorm(10), b = rnorm(10), c = rnorm(10))
calc <- function(x) {
x %>%
rowwise() %>%
mutate(total = sum(c_across(everything()))) %>%
ungroup()
}
calc(df)
#> # A tibble: 10 x 3
#> a b total
#> <dbl> <dbl> <dbl>
#> 1 0.775 1.17 1.95
#> 2 -1.05 1.21 0.155
#> 3 2.07 -0.264 1.81
#> 4 1.11 0.793 1.90
#> 5 -0.700 -0.216 -0.916
#> 6 -1.04 -1.03 -2.07
#> 7 -0.525 1.60 1.07
#> 8 0.354 0.828 1.18
#> 9 0.126 0.110 0.236
#> 10 -0.0954 -0.603 -0.698
calc(dfc)
#> # A tibble: 10 x 4
#> a b c total
#> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.616 0.767 0.0462 0.196
#> 2 -0.370 -0.538 -0.186 -1.09
#> 3 0.337 1.11 -0.700 0.751
#> 4 -0.993 -0.531 -0.984 -2.51
#> 5 0.0538 1.50 -0.0808 1.47
#> 6 -0.907 -1.54 -0.734 -3.18
#> 7 -1.65 -0.242 1.43 -0.455
#> 8 -0.166 0.447 -0.281 -0.000524
#> 9 0.0637 -0.0185 0.754 0.800
#> 10 1.81 -1.09 -2.15 -1.42
Created on 2020-09-10 by the reprex package (v0.3.0)
It's not so hard to backtest a portfolio with given weights and a set rebalancing frequency (e.g. daily/weekly...). There are R packages doing this, for example PerformanceAnalytics, or tidyquant's tq_portfolio which uses that function.
I would like to backtest a portfolio that is re-balanced when the weights deviate by a certain threshold given in percentage points.
Say I have two equally-weighted stocks and a threshold of +/-15 percentage points, I would rebalance to the initial weights when one of the weights exceeds 65%.
For example I have 3 stocks with equal weights (we should also be able to set other weights).
library(dplyr)
set.seed(3)
n <- 6
rets <- tibble(period = rep(1:n, 3),
stock = c(rep("A", n), rep("B", n), rep("C", n)),
ret = c(rnorm(n, 0, 0.3), rnorm(n, 0, 0.2), rnorm(n, 0, 0.1)))
target_weights <- tibble(stock = c("A", "B", "C"), target_weight = 1/3)
rets_weights <- rets %>%
left_join(target_weights, by = "stock")
rets_weights
# # A tibble: 18 x 4
# period stock ret target_weight
# <int> <chr> <dbl> <dbl>
# 1 1 A -0.289 0.333
# 2 2 A -0.0878 0.333
# 3 3 A 0.0776 0.333
# 4 4 A -0.346 0.333
# 5 5 A 0.0587 0.333
# 6 6 A 0.00904 0.333
# 7 1 B 0.0171 0.333
# 8 2 B 0.223 0.333
# 9 3 B -0.244 0.333
# 10 4 B 0.253 0.333
# 11 5 B -0.149 0.333
# 12 6 B -0.226 0.333
# 13 1 C -0.0716 0.333
# 14 2 C 0.0253 0.333
# 15 3 C 0.0152 0.333
# 16 4 C -0.0308 0.333
# 17 5 C -0.0953 0.333
# 18 6 C -0.0648 0.333
Here are the actual weights without rebalancing:
rets_weights_actual <- rets_weights %>%
group_by(stock) %>%
mutate(value = cumprod(1+ret)*target_weight[1]) %>%
group_by(period) %>%
mutate(actual_weight = value/sum(value))
rets_weights_actual
# # A tibble: 18 x 6
# # Groups: period [6]
# period stock ret target_weight value actual_weight
# <int> <chr> <dbl> <dbl> <dbl> <dbl>
# 1 1 A -0.289 0.333 0.237 0.268
# 2 2 A -0.0878 0.333 0.216 0.228
# 3 3 A 0.0776 0.333 0.233 0.268
# 4 4 A -0.346 0.333 0.153 0.178
# 5 5 A 0.0587 0.333 0.162 0.207
# 6 6 A 0.00904 0.333 0.163 0.238
# 7 1 B 0.0171 0.333 0.339 0.383
# 8 2 B 0.223 0.333 0.415 0.437
# 9 3 B -0.244 0.333 0.314 0.361
# 10 4 B 0.253 0.333 0.393 0.458
# 11 5 B -0.149 0.333 0.335 0.430
# 12 6 B -0.226 0.333 0.259 0.377
# 13 1 C -0.0716 0.333 0.309 0.349
# 14 2 C 0.0253 0.333 0.317 0.335
# 15 3 C 0.0152 0.333 0.322 0.371
# 16 4 C -0.0308 0.333 0.312 0.364
# 17 5 C -0.0953 0.333 0.282 0.363
# 18 6 C -0.0648 0.333 0.264 0.385
So I want that if in any period any stock's weight goes over or under the threshold (for example 0.33+/-0.1), the portfolio weights should be set back to the initial weights.
This has to be done dynamically, so we could have a lot of periods and a lot of stocks. Rebalancing could be necessary several times.
What I tried to solve it: I tried to work with lag and set the initial weights when the actual weights exceed the threshold, however I was unable to do so dynamically, as the weights depend on the returns given the rebalanced weights.
The approach to rebalance upon deviation by more than a certain threshold is called percentage-of-portfolio rebalancing.
My solution is to iterate period-by-period and check if the upper or lower threshold was passed. If so we reset to the initial weights.
library(tidyverse)
library(tidyquant)
rets <- FANG %>%
group_by(symbol) %>%
mutate(ret = adjusted/lag(adjusted)-1) %>%
select(symbol, date, ret) %>%
pivot_wider(names_from = "symbol", values_from = ret)
weights <- rep(0.25, 4)
threshold <- 0.05
r_out <- tibble()
i0 <- 1
trade_rebalance <- 1
pf_value <- 1
for (i in 1:nrow(rets)) {
r <- rets[i0:i,]
j <- 0
r_i <- r %>%
mutate_if(is.numeric, replace_na, 0) %>%
mutate_if(is.numeric, list(v = ~ pf_value * weights[j <<- j + 1] * cumprod(1 + .))) %>%
mutate(pf = rowSums(select(., contains("_v")))) %>%
mutate_at(vars(ends_with("_v")), list(w = ~ ./pf))
touch_upper_band <- any(r_i[nrow(r_i),] %>% select(ends_with("_w")) %>% unlist() > weights + threshold)
touch_lower_band <- any(r_i[nrow(r_i),] %>% select(ends_with("_w")) %>% unlist() < weights - threshold)
if (touch_upper_band | touch_lower_band | i == nrow(rets)) {
i0 <- i + 1
r_out <- bind_rows(r_out, r_i %>% mutate(trade_rebalance = trade_rebalance))
pf_value <- r_i[[nrow(r_i), "pf"]]
trade_rebalance <- trade_rebalance + 1
}
}
r_out %>% head()
# # A tibble: 6 x 15
# date FB AMZN NFLX GOOG FB_v AMZN_v NFLX_v GOOG_v pf FB_v_w AMZN_v_w NFLX_v_w GOOG_v_w trade_rebalance
# <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 2013-01-02 0 0 0 0 0.25 0.25 0.25 0.25 1 0.25 0.25 0.25 0.25 1
# 2 2013-01-03 -0.00821 0.00455 0.0498 0.000581 0.248 0.251 0.262 0.250 1.01 0.245 0.248 0.259 0.247 1
# 3 2013-01-04 0.0356 0.00259 -0.00632 0.0198 0.257 0.252 0.261 0.255 1.02 0.251 0.246 0.255 0.249 1
# 4 2013-01-07 0.0229 0.0359 0.0335 -0.00436 0.263 0.261 0.270 0.254 1.05 0.251 0.249 0.257 0.243 1
# 5 2013-01-08 -0.0122 -0.00775 -0.0206 -0.00197 0.259 0.259 0.264 0.253 1.04 0.251 0.250 0.255 0.245 1
# 6 2013-01-09 0.0526 -0.000113 -0.0129 0.00657 0.273 0.259 0.261 0.255 1.05 0.261 0.247 0.249 0.244 1
r_out %>% tail()
# # A tibble: 6 x 15
# date FB AMZN NFLX GOOG FB_v AMZN_v NFLX_v GOOG_v pf FB_v_w AMZN_v_w NFLX_v_w GOOG_v_w trade_rebalance
# <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 2016-12-22 -0.0138 -0.00553 -0.00727 -0.00415 0.945 1.10 1.32 1.08 4.45 0.213 0.247 0.297 0.243 10
# 2 2016-12-23 -0.00111 -0.00750 0.0000796 -0.00171 0.944 1.09 1.32 1.08 4.43 0.213 0.246 0.298 0.243 10
# 3 2016-12-27 0.00631 0.0142 0.0220 0.00208 0.950 1.11 1.35 1.08 4.49 0.212 0.247 0.301 0.241 10
# 4 2016-12-28 -0.00924 0.000946 -0.0192 -0.00821 1.11 1.12 1.10 1.11 4.45 0.250 0.252 0.247 0.250 11
# 5 2016-12-29 -0.00488 -0.00904 -0.00445 -0.00288 1.11 1.11 1.10 1.11 4.42 0.250 0.252 0.248 0.251 11
# 6 2016-12-30 -0.0112 -0.0200 -0.0122 -0.0140 1.09 1.09 1.08 1.09 4.36 0.251 0.250 0.248 0.251 11
Here we would have rebalanced 11 times.
r_out %>%
mutate(performance = pf-1) %>%
ggplot(aes(x = date, y = performance)) +
geom_line(data = FANG %>%
group_by(symbol) %>%
mutate(performance = adjusted/adjusted[1L]-1),
aes(color = symbol)) +
geom_line(size = 1)
The approach is slow and using a loop is far from elegant. If anyone has a better solution, I would happily upvote and accept.
[enter image description here][1]Dear all,
I have a very large file (14,566,680 records) with 2 variables (ID and A).
The first variable (ID) is the individual (n=258) and each individual has 56,460 records (A)
I would like to write out a "transpose" file (i.e. 258 lines & 54460 columns).
When I execute the following code:
system.time(snp1 %>%
#filter(`Sample ID`=='8362974') %>%
select(`Sample ID`,A) %>%
mutate(id = row_number()) %>%
#head(n=nsnp) %>%
pivot_wider(names_from=id,
values_from = A)->T)
I got the following error:
Error in rep_len(NA_integer_, n) : invalid 'length.out' value
In addition: Warning message:
In nrow * ncol : NAs produced by integer overflow
Timing stopped at: 28.73 0.62 29.36
If I use only 1 ID it works correctly
Best
Stefano
Does it work if you group the records by individual before calculating the row_number (record ID)?
# made up sample
df <- tibble(`Sample ID` = rep(1:258, each = 56460)) %>%
mutate(A = rnorm(nrow(.)))
df %>%
group_by(`Sample ID`) %>%
mutate(id = row_number()) %>%
pivot_wider(names_from=id,
values_from = A)
# A tibble: 258 x 56,461
# Groups: Sample ID [258]
`Sample ID` `1` `2` `3` `4` `5` `6` `7`
<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1.49 0.546 0.0517 -0.480 -0.500 0.266 -1.52
2 2 -0.391 -0.855 -1.28 -0.0277 -0.999 0.617 -0.415
3 3 0.200 0.484 1.08 -0.568 1.16 1.75 -0.143
4 4 0.212 0.371 0.674 0.0481 -1.09 -1.07 0.160
5 5 0.409 1.54 0.931 -0.280 1.27 0.0447 0.426
6 6 -0.936 0.903 -0.0408 0.590 -1.52 -1.14 -0.600
7 7 -1.97 0.336 -0.233 0.488 0.995 -0.933 -1.90
8 8 -0.396 2.12 1.10 0.304 0.290 0.595 -1.32
9 9 -1.31 -0.124 -0.804 -0.447 1.12 -0.721 0.378
10 10 0.977 0.818 1.51 -0.258 -0.00794 0.0386 2.03
# ... with 248 more rows, and 56,453 more variables: ...