Two exponential distributions - r

I am trying to simulate two exponential distributions. For example two CPUs processing jobs e.g. one having average service time 10 min (lambda = 0.1) and another one 20 min (lambda = 0.05) and they work independently. Both of them are busy when a new job arrives.
I would like to simulate the waiting time of a new job
Here is what I did so far.
cpu1 = rexp(n = 10000, rate = .1)
cpu2 = rexp(n = 10000, rate = .05)
I generate 10K data points based on exponential distribution. For each of them new job has to wait min(cpu1[i], cpu2[i]) I store all of them in a data frame and compute the mean.
for (i in seq(1, 10000)) {
if (i == 1) {
df1 <- data.frame(waiting_time=min(cpu1[i], cpu2[i]))
} else {
df1 <- rbind(df1, data.frame(waiting_time=data.frame(waiting_time=min(cpu1[i], cpu2[i])))
}
}
mean(df1$waiting_time)
Is this the right way to do the simulation? or am I doing something wrong?

The simulation is already done, by your definitions. You are asking how to compute the final results, which can be done with mean(pmin(cpu1,cpu2)).

As has been pointed out, mean(pmin(cpu1,cpu2)) is equivalent to the for loop and mean(df1$waiting_time), but much, much faster.
Or you could skip the simulation altogether since the minimum of two independent random exponential variables is also exponentially distributed with a rate equal to the sum of the two rates. Furthermore, the sum of n iid exponential random variables is gamma-distributed with the same rate parameter and a shape parameter equal to n.
So we can simply do rgamma(1, 1e4, 0.15)/1e4 or, equivalently, rgamma(1, 1e4, 0.15*1e4) instead of mean(pmin(cpu1,cpu2)), and the results will have identical distributions.

Related

How to find the probability of extinction = 1 using Galton-Watson process in R?

I am simulating a basic Galton-Watson process (GWP) using a geometric distribution. I'm using this to find the probability of extinction for each generation. My question is, how do I find the generation at which the probability of extinction is equal to 1?
For example, I can create a function for the GWP like so:
# Galton-Watson Process for geometric distribution
GWP <- function(n, p) {
Sn <- c(1, rep(0, n))
for (i in 2:(n + 1)) {
Sn[i] <- sum(rgeom(Sn[i - 1], p))
}
return(Sn)
}
where, n is the number of generations.
Then, if I set the geometric distribution parameter p = 0.25... then to calculate the probability of extinction for, say, generation 10, I just do this:
N <- 10 # Number of elements in the initial population.
GWn <- replicate(N, GWP(10, 0.25)[10])
probExtinction <- sum(GWn==0)/N
probExtinction
This will give me the probability of extinction for generation 10... to find the probability of extinction for each generation I have to change the index value (to the corresponding generation number) when creating GWn... But what I'm trying to do is find at which generation will the probability of extinction = 1.
Any suggestions as to how I might go about solving this problem?
I can tell you how you would do this problem in principle, but I'm going to suggest that you may run into some difficulties (if you already know everything I'm about to say, just take it as advice to the next reader ...)
theoretically, the Galton-Watson process extinction probability never goes exactly to 1 (unless prob==1, or in the infinite-time limit)
of course, for any given replicate and random-number seed you can compute the first time point (if any) at which all of your lineages have gone extinct. This will be highly variable across runs, depending on the random-number seed ...
the distribution of extinction times is extremely skewed; lineages that don't go extinct immediately will last a loooong time ...
I modified your GWP function in two ways to make it more efficient: (1) stop the simulation when the lineage goes extinct; (2) replace the sum of geometric deviates with a single negative binomial deviate (see here)
GWP <- function(n, p) {
Sn <- c(1, rep(0, n))
for (i in 2:(n + 1)) {
Sn[i] <- rnbinom(1, size=Sn[i - 1], prob=p)
if (Sn[i]==0) break ## extinct, bail out
}
return(Sn)
}
The basic strategy now is: (1) run the simulations for a while, keep the entire trajectory; (2) compute extinction probability in every generation; (3) find the first generation such that p==1.
set.seed(101)
N <- 10 # Number of elements in the initial population.
maxgen <- 100
GWn <- replicate(N, GWP(maxgen, 0.5), simplify="array")
probExtinction <- rowSums(GWn==0)/N
which(probExtinction==1)[1]
(Subtract 1 from the last result if you want to start indexing from generation 0.) In this case the answer is NA, because there's 1/10 lineages that manages to stay alive (and indeed gets very large, so it will probably persist almost forever)
plot(0:maxgen, probExtinction, type="s") ## plot extinction probability
matplot(1+GWn,type="l",lty=1,col=1,log="y") ## plot lineage sizes (log(1+x) scale)
## demonstration that (sum(rgeom(n,...)) is equiv to rnbinom(1,size=n,...)
nmax <- 70
plot(prop.table(table(replicate(10000, sum(rgeom(10, prob=0.3))))),
xlim=c(0,nmax))
points(0:nmax,dnbinom(0:nmax, size=10, prob=0.3), col=2,pch=16)

R: How would I repeatedly simulate how many attempts before a success on a 1/10 chance? (and record how many attempts it took?)

R and probability noob here. I'm looking to create a histogram that shows the distribution of how many attempts it took to return a heads, repeated over 1000+ simulated runs on the equivalent of an unfairly weighted coin (0.1 heads, 0.9 tails).
From my understanding, this is not a geometric distribution or binomial distribution (but might make use of either of these to create the simulated results).
The real-world (ish) scenario I am looking to model this for is a speedrun of the game Zelda: Ocarina of Time. One of the goals in this speedrun is to obtain an item from a character that has a 1 in 10 chance of giving the player the item each attempt. As such, the player stops attempting once they receive the item (which they have a 1/10 chance of receiving each attempt). Every run, runners/viewers will keep track of how many attempts it took to receive the item during that run, as this affects the time it takes the runner to complete the game.
This is an example of what I'm looking to create:
(though with more detailed labels on the x axis if possible). In this, I manually flipped a virtual coin with a 1/10 chance of heads over and over. Once I got a successful result I recorded how many attempts it took into a vector in R and then repeated about 100 times - I then mapped this vector onto a histogram to visualise what the distribution would look like for the usual amount of attempts it will take to get a successful result - basically, i'd like to automate this simulation instead of me having to manually flip the virtual unfair coin, write down how many attempts it took before heads, and then enter it into R myself).
I'm not sure if this is quite what you're looking for, but if you create a function for your manual coin flipping, you can just use replicate() to call it many times:
foo <- function(p = 0.1) {
i <- 0
failure <- TRUE
while ( failure ) {
i <- i + 1
if ( sample(x = c(TRUE, FALSE), size = 1, prob = c(p, 1-p)) ) {
failure <- FALSE
}
}
return(i)
}
set.seed(42)
number_of_attempts <- replicate(1000, foo())
hist(number_of_attempts, xlab = "Number of Attempts Until First Success")
As I alluded to in my comment though, I'm not sure why you think the geometric distribution is inappropriate.
It "is used for modeling the number of failures until the first success" (from the Wikipedia on it).
So, we can just sample from it and add one; the approaches are equivalent, but this will be faster when your number of samples is high:
number_of_attempts2 <- rgeom(1000, 0.1) + 1
hist(number_of_attempts2, xlab = "Number of Attempts Until First Success")
I would use the 'rle' function since you can make a lot of simulations in a short period of time. Use this to count the run of tails before a head:
> n <- 1e6
> # generate a long string of flips with unfair coin
> flips <- sample(0:1,
+ n,
+ replace = TRUE,
+ .... [TRUNCATED]
> counts <- rle(flips)
> # now pull out the "lengths" of "0" which will be the tails before
> # a head is flipped
> runs <- counts$lengths[counts$value == 0]
> sprintf("# of simulations: %d max run of tails: %d mean: %.1f\n",
+ length(runs),
+ max(runs),
+ mean(runs))
[1] "# of simulations: 90326 max run of tails: 115 mean: 10.0\n"
> ggplot()+
+ geom_histogram(aes(runs),
+ binwidth = 1,
+ fill = 'blue')
and you get a chart like this:
Histograph of runs
I would tabulate the cumsum.
p=.1
N <- 1e8
set.seed(42)
tosses <- sample(0:1, N, T, prob=c(1-p, p))
attempts <- tabulate(cumsum(tosses))
length(attempts)
# [1] 10003599
hist(attempts, freq=F, col="#F48024")

How to vary multiple parameters with lapply in R

In an attempt to avoid nesting for loops 6-7 times, I am trying to use lapply to find the proportion of randomly drawn values (that are combined in a certain way) that exceed some arbitrary thresholds values. The problem is that I have several parameters that each vary a certain number of ways, and these, in turn, will affect how the values are combined. The goal is to use the results in an ANOVA to see how varying these parameters contributes to reaching those thresholds. However, I don't understand how to do this. I have a feeling that anonymous functions could be useful, but I don't understand how they work with more than 1 parameter.
I tried to simplify the code as much as possible. But again, there are just so many parameters that must be included.
trials = 10
data_means = c(0,1,2,3)
prior_samples = c(2, 8, 32)
data_SD = c(0.5, 1, 2)
thresholds = c(10, 30, 80)
The idea is that there are two distributions, data and prior, which I draw values from. I always draw one from data, but I draw a sample (see prior_samples) of values from the prior distribution. There are four different values that determine the mean of the data distribution (see data_means), but the values are drawn the same number of times (determined by trials) from each of these four "versions" of the data distribution. These are then put into nested lists:
set.seed(123)
data_list = list()
for (nMean in data_means){ #the data values
for (nTrial in 1:trials){
data_list[[paste(nMean, sep="_")]][[paste(nTrial, sep="_")]] = rnorm(1, nMean, 1)
}
}
prior_list = list()
for (nSamples in prior_samples){ #the prior values
for (nTrial in 1:trials){
prior_list[[paste(nSamples, sep="_")]][[paste(nTrial, sep="_")]] = rnorm(nSamples, 0, 1)
}
}
Then I create another list for the prior values, because I want to calculate the means and standard deviations (SD) of the samples of prior values. I include normal SD, as well as SD/2 and SD*2:
prior_SD = list("mean"=0, "standard_devations"=list("SD/2"=0, "SD"=0, "SD*2"=0))
prior_mean_SD = rep(list(prior_SD), trials)
prior_nested_list = list("2"=prior_mean_SD, "8"=prior_mean_SD, "32"=prior_mean_SD)
for (nSamples in 1:length(prior_samples)){
for (nTrial in 1:trials){
prior_nested_list[[nSamples]][[nTrial]][["mean"]]=mean(prior_list[[nSamples]][[nTrial]])
prior_nested_list[[nSamples]][[nTrial]][["standard_devations"]][["SD/2"]]=sum(sd(prior_list[[nSamples]][[nTrial]])/2)
prior_nested_list[[nSamples]][[nTrial]][["standard_devations"]][["SD"]]=sd(prior_list[[nSamples]][[nTrial]])
prior_nested_list[[nSamples]][[nTrial]][["standard_devations"]][["SD*2"]]=sum(sd(prior_list[[nSamples]][[nTrial]])*2)
}
}
Then I combinde the values from the data list and the last list, using list.zip from rlist:
library(rlist)
dataMean0 = list.zip(dMean0=data_list[["0"]], pSample2=prior_nested_list[["2"]],
pSample8=prior_nested_list[["8"]], pSample32=prior_nested_list[["32"]])
dataMean1 = list.zip(dMean1=data_list[["1"]], pSample2=prior_nested_list[["2"]],
pSample8=prior_nested_list[["8"]], pSample32=prior_nested_list[["32"]])
dataMean2 = list.zip(dMean2=data_list[["2"]], pSample2=prior_nested_list[["2"]],
pSample8=prior_nested_list[["8"]], pSample32=prior_nested_list[["32"]])
dataMean3 = list.zip(dMean3=data_list[["3"]], pSample2=prior_nested_list[["2"]],
pSample8=prior_nested_list[["8"]], pSample32=prior_nested_list[["32"]])
all_values = list(mean_difference0=dataMean0, mean_difference1=dataMean1,
mean_difference2=dataMean2, mean_difference3=dataMean3)
Now comes the tricky part. I combine the data values and the prior values in all_values by using this custom function for the Kullback-Leibler divergence. As you can see, there are 6 parameters that varies:
mean_diff refers to the means of the data distribution (data_means). It is named mean_diff beacsue it refers to the difference in mean between the prior distribution (which is always 0), and the data distribution (which can be 0, 1, 2 or 3).
trial refers to trials,
pSample refers to the numbers of samples drawn from the prior distribution (prior_samples)
p_SD refers to the calculations of the SD based on the prior samples (normal SD, SD/2, SD*2)
data_SD refers to the SD of the data distribution, determined by data_SD
threshold refers to thresholds
The Kullback-Leibler divergence function:
kld = function(mean_diff, trial, pSample, p_SD, data_SD, threshold){
prior_mean = all_values[[mean_diff]][[trial]][[pSample]][["mean"]]
data_mean = all_values[[mean_diff]][[trial]][["mean"]]
prior_SD = all_values[[mean_diff]][[trial]][[pSample]][["standard_devations"]][[p_SD]]
posterior_SD = sqrt(1/(1/
((all_values[[mean_diff]][[trial]][[pSample]][["standard_devations"]][[p_SD]]
*all_values[[mean_diff]][[trial]][[pSample]][["standard_devations"]][[p_SD]]))
+1/(data_SD*data_SD)))
length(
which(
(log(prior_SD/posterior_SD) +
(((posterior_SD*posterior_SD) +
(prior_mean -
(((data_SD*data_SD))/
((data_SD*data_SD)+(prior_SD*prior_SD))*prior_mean +
((prior_SD*prior_SD))/
((data_SD*data_SD)+(prior_SD*prior_SD))*data_mean))^2)
/(2*(prior_SD*prior_SD)))-0.5
+
log(posterior_SD/prior_SD) +
((((prior_SD*prior_SD)) +
(prior_mean -
(((data_SD*data_SD))/
((data_SD*data_SD)+(prior_SD*prior_SD))*prior_mean +
((prior_SD*prior_SD))/
((data_SD*data_SD)+(prior_SD*prior_SD))*data_mean))^2)
/(2*(posterior_SD*posterior_SD)))-0.5
)>=threshold))/trials
}
So the question is how can one use lapply on the list with all the values (all_values) while using all the different combinations of the six parameters that are included? The data I want to end up with is the proportions of values (percentage of trials) that exceed the thresholds in all the parameter combinations.
I can't find the info I need, so any tips would be appreciated.

Creating a binary variable with probability in R

I'm trying to make a variable, Var, that takes the value 0 60% of the time, and 1 otherwise, with 50 000 observation.
For a normally distributed, I remember doing the following for a normal distribution, to define n:
Var <- rnorm(50 000, 0, 1)
Is there a way I could combine an ifelse command with the above to specify the number of n as well as the probability of Var being 0?
I would use rbinom like this:
n_ <- 50000
p_ <- 0.4 # it's probability of 1s
Var <- rbinom(n=n_, size=1, prob=p_)
By using of variables, you can change the size and/or probability just by changing of those variables. Hope that's what you are looking for.
If by 60% you mean a probability equal to 0.6 (rather than an empirical frequency), then
Var <- sample(0:1, 50000, prob = c(6, 4), replace = TRUE)
gives a desired sequence of independent Bernoulli(0.6) realizations.
I'm picking nits here, but it actually isn't completely clear exactly what you want.
Do you want to simulate a sample of 50000 from the distribution you describe?
Or, do you want 50000 replications of simulating an observation from the distribution you describe?
These are different things that, in my opinion, should be approached differently.
To simulate a sample of size 50000 from that distribution you would use:
sample(c(0,1), size = 50000, replace = TRUE)
To replicate 50000 simulations of sampling from the distribution you describe I would recommend:
replicate(50000, sample(c(0,1), size = 1, prob = c(0.6, 0.4)))
This might seem silly since these two lines of code produce exactly the same thing, in this case.
But suppose your goal was to investigate properties of samples of size 50000? Then what you would use a bunch (say, 1000) of replication of that first line of code above wrapped inside replicate:
replicate(1000, sample(c(0,1), size = 50000, prob = c(0.6, 0.4), replace = TRUE))
I hope I haven't been too pedantic about this. Having seen simulations go awry it has become my belief that one should keep separate the thing being simulated from the number of simulations you decide to do. The former is fundamental to your problem, while the latter only affects the accuracy of the simulation study and how long it takes.

On average, how many times will this incorrect loop iterate?

In some cases, a loop needs to run for a random number of iterations that ranges from min to max, inclusive. One working solution is to do something like this:
int numIterations = randomInteger(min, max);
for (int i = 0; i < numIterations; i++) {
/* ... fun and exciting things! ... */
}
A common mistake that many beginning programmers make is to do this:
for (int i = 0; i < randomInteger(min, max); i++) {
/* ... fun and exciting things! ... */
}
This recomputes the loop upper bound on each iteration.
I suspect that this does not give a uniform distribution of the number of times the loop will iterate that ranges from min to max, but I'm not sure exactly what distribution you do get when you do something like this. Does anyone know what the distribution of the number of loop iterations will be?
As a specific example: suppose that min = 0 and max = 2. Then there are the following possibilities:
When i = 0, the random value is 0. The loop runs 0 times.
When i = 0, the random value is nonzero. Then:
When i = 1, the random value is 0 or 1. Then the loop runs 1 time.
When i = 1, the random value is 2. Then the loop runs 2 times.
The probability of this first event is 1/3. The second event has probability 2/3, and within it, the first subcase has probability 2/3 and the second event has probability 1/3. Therefore, the average number of distributions is
0 × 1/3 + 1 × 2/3 × 2/3 + 2 × 2/3 × 1/3
= 0 + 4/9 + 4/9
= 8/9
Note that if the distribution were indeed uniform, we'd expect to get 1 loop iteration, but now we only get 8/9 on average. My question is whether it's possible to generalize this result to get a more exact value on the number of iterations.
Thanks!
Final edit (maybe!). I'm 95% sure that this isn't one of the standard distributions that are appropriate. I've put what the distribution is at the bottom of this post, as I think the code that gives the probabilities is more readable! A plot for the mean number of iterations against max is given below.
Interestingly, the number of iterations tails off as you increase max. Would be interesting if someone else could confirm this with their code.
If I were to start modelling this, I would start with the geometric distribution, and try to modify that. Essentially we're looking at a discrete, bounded distribution. So we have zero or more "failures" (not meeting the stopping condition), followed by one "success". The catch here, compared to the geometric or Poisson, is that the probability of success changes (also, like the Poisson, the geometric distribution is unbounded, but I think structurally the geometric is a good base). Assuming min=0, the basic mathematical form for P(X=k), 0 <= k <= max, where k is the number of iterations the loop runs, is, like the geometric distribution, the product of k failure terms and 1 success term, corresponding to k "false"s on the loop condition and 1 "true". (Note that this holds even to calculate the last probability, as the chance of stopping is then 1, which obviously makes no difference to a product).
Following on from this, an attempt to implement this in code, in R, looks like this:
fx = function(k,maximum)
{
n=maximum+1;
failure = factorial(n-1)/factorial(n-1-k) / n^k;
success = (k+1) / n;
failure * success
}
This assumes min=0, but generalizing to arbitrary mins isn't difficult (see my comment on the OP). To explain the code. First, as shown by the OP, the probabilities all have (min+1) as a denominator, so we calculate the denominator, n. Next, we calculate the product of the failure terms. Here factorial(n-1)/factorial(n-1-k) means, for example, for min=2, n=3 and k=2: 2*1. And it generalises to give you (n-1)(n-2)... for the total probability of failure. The probability of success increases as you get further into the loop, until finally, when k=maximum, it is 1.
Plotting this analytic formula gives the same results as the OP, and the same shape as the simulation plotted by John Kugelman.
Incidentally the R code to do this is as follows
plot_probability_mass_function = function(maximum)
{
x=0:maximum;
barplot(fx(x,max(x)), names.arg=x, main=paste("max",maximum), ylab="P(X=x)");
}
par(mfrow=c(3,1))
plot_probability_mass_function(2)
plot_probability_mass_function(10)
plot_probability_mass_function(100)
Mathematically, the distribution is, if I've got my maths right, given by:
which simplifies to
(thanks a bunch to http://www.codecogs.com/latex/eqneditor.php)
The latter is given by the R function
function(x,m) { factorial(m)*(x+1)/(factorial(m-x)*(m+1)^(x+1)) }
Plotting the mean number of iterations is done like this in R
meanf = function(minimum)
{
x = 0:minimum
probs = f(x,minimum)
x %*% probs
}
meanf = function(maximum)
{
x = 0:maximum
probs = f(x,maximum)
x %*% probs
}
par(mfrow=c(2,1))
max_range = 1:10
plot(sapply(max_range, meanf) ~ max_range, ylab="Mean number of iterations", xlab="max")
max_range = 1:100
plot(sapply(max_range, meanf) ~ max_range, ylab="Mean number of iterations", xlab="max")
Here are some concrete results I plotted with matplotlib. The X axis is the value i reached. The Y axis is the number of times that value was reached.
The distribution is clearly not uniform. I don't know what distribution it is offhand; my statistics knowledge is quite rusty.
1. min = 10, max = 20, iterations = 100,000
2. min = 100, max = 200, iterations = 100,000
I believe that it would still, given a sufficient amount of executions, conform to the distribution of the randomInteger function.
But this is probably a question better suited to be asked on MATHEMATICS.
I don’t know the math behind it, but I know how to compute it! In Haskell:
import Numeric.Probability.Distribution
iterations min max = iteration 0
where
iteration i = do
x <- uniform [min..max]
if i < x
then iteration (i + 1)
else return i
Now expected (iterations 0 2) gives you the expected value of ~0.89. Maybe someone with the requisite math knowledge can explain what I’m actually doing here. Because you start at 0, the loop will always run at least min times.

Resources