Sum of columns with similar column name - r

I have multiple columns. Some of them contain a certain string, say "ABC DEF".
I need the sum of the columns containing this string (I'm working with dplyr).
df <- data.frame("aaa" = 2:5, "bbb" = 1:4, "ABC_DEF" = 1:4, "DEF" = 2:5, "ABC_DEF_GHI" = 3:6, "aaa_ABC_DEF" = 2:5)
aaa bbb ABC_DEF DEF ABC_DEF_GHI aaa_ABC_DEF
1 2 1 1 2 3 2
2 3 2 2 3 4 3
3 4 3 3 4 5 4
4 5 4 4 5 6 5
I tried something like this:
df %>%
mutate(ABC_DEF = sum(select(c(contains("ABC_DEF")))))
With this I get the error : ! contains() must be used within a selecting function.
Desired output:
aaa bbb ABC_DEF_G DEF ABC_DEF_GHI aaa_ABC_DEF ABC_DEF
1 2 1 1 2 3 2 6
2 3 2 2 3 4 3 9
3 4 3 3 4 5 4 12
4 5 4 4 5 6 5 15
Can anyone help me how I could do it?

You can use a combination of rowwise and c_across to do the job.
library(dplyr)
df %>% rowwise() %>%
mutate(ABC.DEF.1 = sum(c_across(contains("ABC.DEF")))) %>%
ungroup()
# A tibble: 4 × 7
aaa bbb ABC.DEF DEF ABC.DEF.GHI aaa.ABC.DEF ABC.DEF.1
<int> <int> <int> <int> <int> <int> <int>
1 2 1 1 2 3 2 6
2 3 2 2 3 4 3 9
3 4 3 3 4 5 4 12
4 5 4 4 5 6 5 15

With dplyr and rowSums(),
require(dplyr)
df <- data.frame("aaa" = 2:5, "bbb" = 1:4, "ABC DEF" = 1:4, "DEF" = 2:5, "ABC DEF GHI" = 3:6, "aaa ABC DEF" = 2:5)
df %>%
select(contains('ABC.DEF')) %>%
mutate(ABC.DEF.SUM = rowSums(across(everything())))
Output
ABC.DEF ABC.DEF.GHI aaa.ABC.DEF ABC.DEF.SUM
1 1 3 2 6
2 2 4 3 9
3 3 5 4 12
4 4 6 5 15

Related

Nested list to grouped rows in R

I have the following nested list called l (dput below):
> l
$A
$A$`1`
[1] 1 2 3
$A$`2`
[1] 3 2 1
$B
$B$`1`
[1] 2 2 2
$B$`2`
[1] 3 4 3
I would like to convert this to a grouped dataframe where A and B are the first group column and 1 and 2 are the subgroups with respective values. The desired output should look like this:
group subgroup values
1 A 1 1
2 A 1 2
3 A 1 3
4 A 2 3
5 A 2 2
6 A 2 1
7 B 1 2
8 B 1 2
9 B 1 2
10 B 2 3
11 B 2 4
12 B 2 3
As you can see A and B are the main group and 1 and 2 are the subgroups. Using purrr::flatten(l) or unnest doesn't work. So I was wondering if anyone knows how to convert a nested list to a grouped row dataframe?
dput of l:
l <- list(A = list(`1` = c(1, 2, 3), `2` = c(3, 2, 1)), B = list(`1` = c(2,
2, 2), `2` = c(3, 4, 3)))
Using stack and rowbind with id:
data.table::rbindlist(lapply(l, stack), idcol = "id")
# id values ind
# 1: A 1 1
# 2: A 2 1
# 3: A 3 1
# 4: A 3 2
# 5: A 2 2
# 6: A 1 2
# 7: B 2 1
# 8: B 2 1
# 9: B 2 1
# 10: B 3 2
# 11: B 4 2
# 12: B 3 2
You can use enframe() to convert the list into a data.frame, and unnest the value column twice.
library(tidyr)
tibble::enframe(l, name = "group") %>%
unnest_longer(value, indices_to = "subgroup") %>%
unnest(value)
# A tibble: 12 × 3
group value subgroup
<chr> <dbl> <chr>
1 A 1 1
2 A 2 1
3 A 3 1
4 A 3 2
5 A 2 2
6 A 1 2
7 B 2 1
8 B 2 1
9 B 2 1
10 B 3 2
11 B 4 2
12 B 3 2
Turn the list directly into a data frame, then pivot it into a long format and arrange to your desired order.
library(tidyverse)
lst %>%
as.data.frame() %>%
pivot_longer(everything(), names_to = c("group", "subgroup"),
values_to = "values",
names_pattern = "(.+?)\\.(.+?)") %>%
arrange(group, subgroup)
# A tibble: 12 × 3
group subgroup values
<chr> <chr> <dbl>
1 A 1 1
2 A 1 2
3 A 1 3
4 A 2 3
5 A 2 2
6 A 2 1
7 B 1 2
8 B 1 2
9 B 1 2
10 B 2 3
11 B 2 4
12 B 2 3
You can combine rrapply with unnest, which has the benefit to work in lists of arbitrary lengths:
library(rrapply)
library(tidyr)
rrapply(l, how = "melt") |>
unnest(value)
# A tibble: 12 × 3
L1 L2 value
<chr> <chr> <dbl>
1 A 1 1
2 A 1 2
3 A 1 3
4 A 2 3
5 A 2 2
6 A 2 1
7 B 1 2
8 B 1 2
9 B 1 2
10 B 2 3
11 B 2 4
12 B 2 3

Split information from two columns, R, tidyverse

i've got some data in two columns:
# A tibble: 16 x 2
code niveau
<chr> <dbl>
1 A 1
2 1 2
3 2 2
4 3 2
5 4 2
6 5 2
7 B 1
8 6 2
9 7 2
My desired output is:
A tibble: 16 x 3
code niveau cat
<chr> <dbl> <chr>
1 A 1 A
2 1 2 A
3 2 2 A
4 3 2 A
5 4 2 A
6 5 2 A
7 B 1 B
8 6 2 B
I there a tidy way to convert these data without looping through it?
Here some dummy data:
data<-tibble(code=c('A', 1,2,3,4,5,'B', 6,7,8,9,'C',10,11,12,13), niveau=c(1, 2,2,2,2,2,1,2,2,2,2,1,2,2,2,2))
desired_output<-tibble(code=c('A', 1,2,3,4,5,'B', 6,7,8,9,'C',10,11,12,13), niveau=c(1, 2,2,2,2,2,1,2,2,2,2,1,2,2,2,2),
cat=c(rep('A', 6),rep('B', 5), rep('C', 5)))
Nicolas
Probably, you can create a new column cat and replace code values with NA where there is a number. We can then use fill to replace missing values with previous non-NA value.
library(dplyr)
data %>% mutate(cat = replace(code, grepl('\\d', code), NA)) %>% tidyr::fill(cat)
# A tibble: 16 x 3
# code niveau cat
# <chr> <dbl> <chr>
# 1 A 1 A
# 2 1 2 A
# 3 2 2 A
# 4 3 2 A
# 5 4 2 A
# 6 5 2 A
# 7 B 1 B
# 8 6 2 B
# 9 7 2 B
#10 8 2 B
#11 9 2 B
#12 C 1 C
#13 10 2 C
#14 11 2 C
#15 12 2 C
#16 13 2 C
We can use str_detect from stringr
library(dplyr)
library(stringr)
library(tidyr)
data %>%
mutate(cat = replace(code, str_detect(code, '\\d'), NA)) %>%
fill(cat)

Create new column based on condition from other column per group using tidy evaluation

Similar to this question but I want to use tidy evaluation instead.
df = data.frame(group = c(1,1,1,2,2,2,3,3,3),
date = c(1,2,3,4,5,6,7,8,9),
speed = c(3,4,3,4,5,6,6,4,9))
> df
group date speed
1 1 1 3
2 1 2 4
3 1 3 3
4 2 4 4
5 2 5 5
6 2 6 6
7 3 7 6
8 3 8 4
9 3 9 9
The task is to create a new column (newValue) whose values equals to the values of the date column (per group) with one condition: speed == 4. Example: group 1 has a newValue of 2 because date[speed==4] = 2.
group date speed newValue
1 1 1 3 2
2 1 2 4 2
3 1 3 3 2
4 2 4 4 4
5 2 5 5 4
6 2 6 6 4
7 3 7 6 8
8 3 8 4 8
9 3 9 9 8
It worked without tidy evaluation
df %>%
group_by(group) %>%
mutate(newValue=date[speed==4L])
#> # A tibble: 9 x 4
#> # Groups: group [3]
#> group date speed newValue
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 3 2
#> 2 1 2 4 2
#> 3 1 3 3 2
#> 4 2 4 4 4
#> 5 2 5 5 4
#> 6 2 6 6 4
#> 7 3 7 6 8
#> 8 3 8 4 8
#> 9 3 9 9 8
But had error with tidy evaluation
my_fu <- function(df, filter_var){
filter_var <- sym(filter_var)
df <- df %>%
group_by(group) %>%
mutate(newValue=!!filter_var[speed==4L])
}
my_fu(df, "date")
#> Error in quos(..., .named = TRUE): object 'speed' not found
Thanks in advance.
We can place the evaluation within brackets. Otherwise, it may try to evaluate the whole expression (filter_var[speed = 4L]) instead of filter_var alone
library(rlang)
library(dplyr)
my_fu <- function(df, filter_var){
filter_var <- sym(filter_var)
df %>%
group_by(group) %>%
mutate(newValue=(!!filter_var)[speed==4L])
}
my_fu(df, "date")
# A tibble: 9 x 4
# Groups: group [3]
# group date speed newValue
# <dbl> <dbl> <dbl> <dbl>
#1 1 1 3 2
#2 1 2 4 2
#3 1 3 3 2
#4 2 4 4 4
#5 2 5 5 4
#6 2 6 6 4
#7 3 7 6 8
#8 3 8 4 8
#9 3 9 9 8
Also, you can use from sqldf. Join df with a constraint on that:
library(sqldf)
df = data.frame(group = c(1,1,1,2,2,2,3,3,3),
date = c(1,2,3,4,5,6,7,8,9),
speed = c(3,4,3,4,5,6,6,4,9))
sqldf("SELECT df_origin.*, df4.`date` new_value FROM
df df_origin join (SELECT `group`, `date` FROM df WHERE speed = 4) df4
on (df_origin.`group` = df4.`group`)")

Count distinct values that are not the same as the current row's values

Suppose I have a data frame:
df <- data.frame(SID=sample(1:4,15,replace=T), Var1=c(rep("A",5),rep("B",5),rep("C",5)), Var2=sample(2:4,15,replace=T))
which comes out to something like this:
SID Var1 Var2
1 4 A 2
2 3 A 2
3 4 A 3
4 3 A 3
5 1 A 4
6 1 B 2
7 3 B 2
8 4 B 4
9 4 B 4
10 3 B 2
11 2 C 2
12 2 C 2
13 4 C 4
14 2 C 4
15 3 C 3
What I hope to accomplish is to find the count of unique SIDs (see below under update, this should have said count of unique (SID, Var1) combinations) where the given row's Var1 is excluded from this count and the count is grouped on Var2. So for the example above, I would like to output:
SID Var1 Var2 Count.Excluding.Var1
1 4 A 2 3
2 3 A 2 3
3 4 A 3 1
4 3 A 3 1
5 1 A 4 3
6 1 B 2 3
7 3 B 2 3
8 4 B 4 3
9 4 B 4 3
10 3 B 2 3
11 2 C 2 4
12 2 C 2 4
13 4 C 4 2
14 2 C 4 2
15 3 C 3 2
For the 1st observation, we have a count of 3 because there are 3 unique combinations of (SID, Var1) for the given Var2 value (2, in this case) where Var1 != A (Var1 value of 1st observation) -- specifically, the count includes observation 6, 7 and 11, but not 12 because we already accounted for a (SID, Var1)=(2,C) and not row 2 because we do not want Var1 to be "A". All of these rows have the same Var2 value.
I'd preferably like to use dplyr functions and the %>% operator.
&
UPDATE
I apologize for the confusion and my incorrect explanation above. I have corrected what I intended on asking for in the paranthesis, but I am leaving my original phrasing as well because majority of answers seem to interpret it this way.
As for the example, I apologize for not setting the seed. There seems to have been some confusion with regards to the Count.Excluding.Var1 for rows 11 and 12. With unique (SID, Var1) combinations, rows 11 and 12 should make sense as these count rows 1,2,6, and 7 xor 8.
A simple mapply can do the trick. But as OP requested for %>% based solution, an option could be as:
df %>% mutate(Count.Excluding.Var1 =
mapply(function(x,y)nrow(unique(df[df$Var1 != x & df$Var2 == y,1:2])),.$Var1,.$Var2))
# SID Var1 Var2 Count.Excluding.Var1
# 1 4 A 2 3
# 2 2 A 3 3
# 3 4 A 4 3
# 4 4 A 4 3
# 5 3 A 4 3
# 6 4 B 3 1
# 7 3 B 3 1
# 8 3 B 3 1
# 9 4 B 2 3
# 10 2 B 3 1
# 11 2 C 2 2
# 12 4 C 4 2
# 13 1 C 4 2
# 14 1 C 2 2
# 15 3 C 4 2
Data:
The above results are based on origional data provided by OP.
df <- data.frame(SID=sample(1:4,15,replace=T), Var1=c(rep("A",5),rep("B",5),rep("C",5)), Var2=sample(2:4,15,replace=T))
could not think of a dplyr solution, but here's one with apply
df$Count <- apply(df, 1, function(x) length(unique(df$SID[(df$Var1 != x['Var1']) & (df$Var2 == x['Var2'])])))
# SID Var1 Var2 Count
# 1 4 A 2 3
# 2 3 A 2 3
# 3 4 A 3 1
# 4 3 A 3 1
# 5 1 A 4 2
# 6 1 B 2 3
# 7 3 B 2 3
# 8 4 B 4 3
# 9 4 B 4 3
# 10 3 B 2 3
# 11 2 C 2 3
# 12 2 C 2 3
# 13 4 C 4 2
# 14 2 C 4 2
# 15 3 C 3 2
Here is a dplyr solution, as requested. For future reference, please use set.seed so we can reproduce your desired output with sample, else I have to enter data by hand...
I think this is your logic? You want the n_distinct(SID) for each Var2, but for each row, you want to exclude rows which have the same Var1 as the current row. So a key observation here is row 3, where a simple grouped summarise would yield a count of 2. Of the rows with Var2 = 3, row 3 has SID = 4, row 4 has SID = 3, row 15 has SID = 3, but we don't count row 3 or row 4, so final count is one unique SID.
Here we get first the count of unique SID for each Var2, then the count of unique SID for each Var1, Var2 combo. First count is too large by the amount of additional unique SID for each combo, so we subtract it and add one. There is an edge case where for a Var1, there is only one corresponding Var2. This should return 0 since you exclude all the possible values of SID. I added two rows to illustrate this.
library(tidyverse)
df <- read_table2(
"SID Var1 Var2
4 A 2
3 A 2
4 A 3
3 A 3
1 A 4
1 B 2
3 B 2
4 B 4
4 B 4
3 B 2
2 C 2
2 C 2
4 C 4
2 C 4
3 C 3
1 D 5
2 D 5"
)
df %>%
group_by(Var2) %>%
mutate(SID_per_Var2 = n_distinct(SID)) %>%
group_by(Var1, Var2) %>%
mutate(SID_per_Var1Var2 = n_distinct(SID)) %>%
ungroup() %>%
add_count(Var1) %>%
add_count(Var1, Var2) %>%
mutate(
Count.Excluding.Var1 = if_else(
n > nn,
SID_per_Var2 - SID_per_Var1Var2 + 1,
0
)
) %>%
select(SID, Var1, Var2, Count.Excluding.Var1)
#> # A tibble: 17 x 4
#> SID Var1 Var2 Count.Excluding.Var1
#> <int> <chr> <int> <dbl>
#> 1 4 A 2 3.
#> 2 3 A 2 3.
#> 3 4 A 3 1.
#> 4 3 A 3 1.
#> 5 1 A 4 3.
#> 6 1 B 2 3.
#> 7 3 B 2 3.
#> 8 4 B 4 3.
#> 9 4 B 4 3.
#> 10 3 B 2 3.
#> 11 2 C 2 4.
#> 12 2 C 2 4.
#> 13 4 C 4 2.
#> 14 2 C 4 2.
#> 15 3 C 3 2.
#> 16 1 D 5 0.
#> 17 2 D 5 0.
Created on 2018-04-12 by the reprex package (v0.2.0).
Here's a solution using purrr - you can wrap this in a mutate statement if you want, but I don't know that it adds much in this particular case.
library(purrr)
df$Count.Excluding.Var1 = map_int(1:nrow(df), function(n) {
df %>% filter(Var2 == Var2[n], Var1 != Var1[n]) %>% distinct() %>% nrow()
})
(Updated with input from comments by Calum You. Thanks!)
A 100% tidyverse solution:
library(tidyverse) # dplyr + purrr
df %>%
group_by(Var2) %>%
mutate(count = map_int(Var1,~n_distinct(SID[.x!=Var1],Var1[.x!=Var1])))
# # A tibble: 15 x 4
# # Groups: Var2 [3]
# SID Var1 Var2 count
# <int> <chr> <int> <int>
# 1 4 A 2 3
# 2 3 A 2 3
# 3 4 A 3 1
# 4 3 A 3 1
# 5 1 A 4 3
# 6 1 B 2 3
# 7 3 B 2 3
# 8 4 B 4 3
# 9 4 B 4 3
# 10 3 B 2 3
# 11 2 C 2 4
# 12 2 C 2 4
# 13 4 C 4 2
# 14 2 C 4 2
# 15 3 C 3 2

How to group_by(everything())

I want to count unique combinations in a dataframe using dplyr
I tried the following:
require(dplyr)
set.seed(314)
dat <- data.frame(a = sample(1:3, 100, replace = T),
b = sample(1:2, 100, replace = T),
c = sample(1:2, 100, replace = T))
dat %>% group_by(a,b,c) %>% summarise(n = n())
But to make this generic (unrelated to the names of the columns) I tried:
dat %>% group_by(everything()) %>% summarise(n = n())
Which results in:
a b c n
<int> <int> <int> <int>
1 1 1 1 6
2 1 1 2 8
3 1 2 1 13
4 1 2 2 8
5 2 1 1 7
6 2 1 2 12
7 2 2 1 14
8 2 2 2 10
9 3 1 1 3
10 3 1 2 4
11 3 2 1 7
12 3 2 2 8
Which gives the error
Error in mutate_impl(.data, dots) : `c(...)` must be a character vector
I fiddled around with different things but cannot get it to work. I know I could use names(dat) but the columns in the dataframe that need to be in the group_by() are depended on previous steps in the dplyr chain.
There is a function called group_by_all() (and in the same sense group_by_at and group_by_if )which does exactly that.
library(dplyr)
dat %>%
group_by_all() %>%
summarise(n = n())
which gives the same result,
# A tibble: 12 x 4
# Groups: a, b [?]
a b c n
<int> <int> <int> <int>
1 1 1 1 6
2 1 1 2 8
3 1 2 1 13
4 1 2 2 8
5 2 1 1 7
6 2 1 2 12
7 2 2 1 14
8 2 2 2 10
9 3 1 1 3
10 3 1 2 4
11 3 2 1 7
12 3 2 2 8
PS
packageVersion('dplyr')
#[1] ‘0.7.2’
We can use .dots
dat %>%
group_by(.dots = names(.)) %>%
summarise(n = n())
# A tibble: 12 x 4
# Groups: a, b [?]
# a b c n
# <int> <int> <int> <int>
#1 1 1 1 6
#2 1 1 2 8
#3 1 2 1 13
#4 1 2 2 8
#5 2 1 1 7
#6 2 1 2 12
#7 2 2 1 14
#8 2 2 2 10
#9 3 1 1 3
#10 3 1 2 4
#11 3 2 1 7
#12 3 2 2 8
Another option would be to use the unquote, sym approach
dat %>%
group_by(!!! rlang::syms(names(.))) %>%
summarise(n = n())
In dplyr version 1.0.0 and later, you would now use across().
library(dplyr)
dat %>%
group_by(across(everything())) %>%
summarise(n = n())
Package version:
> packageVersion("dplyr")
[1] ‘1.0.5’

Resources