How to visualize a multiple linear regression model? - r

Does anyone know why this multiple regression model's visualization fails?
This is not a syntax error or typo. I think I missed something, but don't know what's the missing part.
> Oct_Mar %>% model(lm(ctr ~ view + price_view + cart + price_cart +
> purchase + price_purchase)) %>% forecast(new_data(Oct_Mar, 30) %>%
> autoplot(Oct_Mar)
Error throws as below
#MULTIPLE LINEAR REGRESSION MODEL
##############################################################
library(stats)
library(tidyverse)
#Da es sich bei den Daten des ausgewählten Datenset um Panel Data handelt nutze ich das Multiple Regression Model lm_Oct_Mar <- lm(ctr ~ view + price_view + cart + price_cart + purchase + price_purchase, data=Oct_Mar) summary(lm_Oct_Mar)
Fit.consMR <- lm(ctr ~ view + price_view + cart + price_cart + purchase + price_purchase, data=Oct_Mar)
#ctr=1.844e-02 + -7.330e-09*view + 1.010e-07*price_view + 1.639e-088*cart + -2.222e-07*price_cart + 3.302e-07*purchase + -4.157e-07*price_purchase
```
structure(list(date = c("2019.10.01", "2019.10.02", "2019.10.03",
"2019.10.04", "2019.10.05", "2019.10.06", "2019.10.07", "2019.10.08",
"2019.10.09", "2019.10.10", "2019.10.11", "2019.10.12", "2019.10.13",
"2019.10.14", "2019.10.15", "2019.10.16", "2019.10.17", "2019.10.18",
"2019.10.19", "2019.10.20", "2019.10.21", "2019.10.22", "2019.10.23",
"2019.10.24", "2019.10.25", "2019.10.26", "2019.10.27", "2019.10.28",
"2019.10.29", "2019.10.30", "2019.10.31", "2019.11.01", "2019.11.02",
"2019.11.03", "2019.11.04", "2019.11.05", "2019.11.06", "2019.11.07",
"2019.11.08", "2019.11.09", "2019.11.10", "2019.11.11", "2019.11.12",
"2019.11.13", "2019.11.14", "2019.11.15", "2019.11.16", "2019.11.17",
"2019.11.18", "2019.11.19", "2019.11.20", "2019.11.21", "2019.11.22",
"2019.11.23", "2019.11.24", "2019.11.25", "2019.11.26", "2019.11.27",
"2019.11.28", "2019.11.29", "2019.11.30", "2019.12.01", "2019.12.02",
"2019.12.03", "2019.12.04", "2019.12.05", "2019.12.06", "2019.12.07",
"2019.12.08", "2019.12.09", "2019.12.10", "2019.12.11", "2019.12.12",
"2019.12.13", "2019.12.14", "2019.12.15", "2019.12.16", "2019.12.17",
"2019.12.18", "2019.12.19", "2019.12.20", "2019.12.21", "2019.12.22",
"2019.12.23", "2019.12.24", "2019.12.25", "2019.12.26", "2019.12.27",
"2019.12.28", "2019.12.29", "2019.12.30", "2019.12.31", "2020.01.01",
"2020.01.02", "2020.01.03", "2020.01.04", "2020.01.05", "2020.01.06",
"2020.01.07", "2020.01.08", "2020.01.09", "2020.01.10", "2020.01.11",
"2020.01.12", "2020.01.13", "2020.01.14", "2020.01.15", "2020.01.16",
"2020.01.17", "2020.01.18", "2020.01.19", "2020.01.20", "2020.01.21",
"2020.01.22", "2020.01.23", "2020.01.24", "2020.01.25", "2020.01.26",
"2020.01.27", "2020.01.28", "2020.01.29", "2020.01.30", "2020.01.31",
"2020.02.01", "2020.02.02", "2020.02.03", "2020.02.04", "2020.02.05",
"2020.02.06", "2020.02.07", "2020.02.08", "2020.02.09", "2020.02.10",
"2020.02.11", "2020.02.12", "2020.02.13", "2020.02.14", "2020.02.15",
"2020.02.16", "2020.02.17", "2020.02.18", "2020.02.19", "2020.02.20",
"2020.02.21", "2020.02.22", "2020.02.23", "2020.02.24", "2020.02.25",
"2020.02.26", "2020.02.27", "2020.02.28", "2020.02.29", "2020.03.01",
"2020.03.02", "2020.03.03", "2020.03.04", "2020.03.05", "2020.03.06",
"2020.03.07", "2020.03.08", "2020.03.09", "2020.03.10", "2020.03.11",
"2020.03.12", "2020.03.13", "2020.03.14", "2020.03.15", "2020.03.16",
"2020.03.17", "2020.03.18", "2020.03.19", "2020.03.20", "2020.03.21",
"2020.03.22", "2020.03.23", "2020.03.24", "2020.03.25", "2020.03.26",
"2020.03.27", "2020.03.28", "2020.03.29", "2020.03.30", "2020.03.31"
), price_view = c(35.79, 180.16, 437.57, 10.3, 74.26, 79.8, 89.84,
121.24, 461.95, 142.06, 241.71, 52, 43.24, 41.16, 167.05, 764.06,
91.64, 189.82, 38.59, 152.64, 86.23, 321.33, 411.83, 256.88,
352.39, 76.32, 360.11, 123.53, 43.41, 149.38, 14.16, 489.07,
1661.74, 1253.07, 25.71, 154.42, 990.89, 1645.93, 144.12, 84.43,
240.25, 148.18, 41.13, 262.56, 168.78, 860.85, 239.31, 372.98,
165.64, 134.32, 20.7, 43.73, 765.76, 51.48, 599.49, 893.79, 155.29,
334.37, 46.82, 1814.72, 196.27, 1302.48, 40.16, 1161.68, 381.48,
184.48, 48.91, 221.11, 434.73, 149.27, 77.22, 882.49, 106.05,
669.23, 282.86, 179.67, 12.97, 460.24, 38.59, 278.26, 243.76,
1904.79, 84.93, 32.18, 25.71, 496.54, 29.6, 1466.83, 164.33,
234.76, 19.95, 308.37, 1130.02, 7.47, 79.8, 65.9, 746.45, 1347.78,
1270.82, 69.42, 231.41, 195.6, 715.33, 208.47, 720.46, 414.68,
24.45, 217.82, 434.45, 483.92, 1500.42, 318.15, 339.29, 267.45,
133.85, 9.03, 11.81, 280.57, 916.74, 58.51, 339.78, 33.98, 263.58,
19.31, 239.88, 489.07, 84.92, 344.9, 95.24, 99.1, 142.58, 480.58,
104.74, 14.83, 252, 1039.41, 28.3, 328.97, 341.55, 278.26, 43.73,
91.35, 102.32, 131.25, 155.15, 77.74, 14.67, 132.63, 1185.36,
1145.975, 1106.59, 849.42, 117.63, 171.32, 167.31, 252.23, 248.14,
111.15, 257.15, 27.62, 169.86, 101.89, 282.89, 298.57, 86.49,
196.32, 1415.45, 898.35, 334.6, 17.99, 13.62, 566.27, 60.41,
36.34, 62.04, 308.81, 32.95, 127.44, 836.57, 221.34, 360.34,
159.31, 20.57), view = c(1206151, 1152770, 1087372, 1344804,
1270060, 1262993, 1159265, 1323522, 1301376, 1240347, 1445162,
1432321, 1583572, 1376274, 1462409, 1443323, 1337174, 1413405,
1382403, 1443838, 1342668, 1353053, 1318395, 1252747, 1369922,
1288939, 1330209, 1220710, 1187883, 1169955, 1207854, 1402754,
1513400, 1524803, 1743304, 1670637, 1644359, 1748812, 1789808,
1783142, 1845552, 1907417, 1892753, 1920411, 2864410, 5691766,
5986292, 5759703, 1905351, 1627672, 1598554, 1573101, 1471242,
1474138, 1500022, 1496128, 1557252, 1547199, 1560191, 1727852,
1644405, 1706901, 1629904, 1547658, 1468085, 1540157, 1652208,
1725106, 1724452, 1627222, 1651328, 1605421, 1650612, 1634861,
1760750, 2167056, 2875847, 2780816, 2665285, 2528244, 2387520,
2340327, 2471739, 2372930, 2326654, 2322753, 2240514, 2058141,
2089081, 2474226, 2294820, 1603749, 1427733, 1700904, 1765457,
1754424, 1738774, 1696188, 1701769, 1585870, 1556542, 1557542,
1618230, 1645866, 1627433, 1612956, 1555416, 1773179, 1826768,
2021676, 2104199, 1801073, 1733142, 1593991, 1645225, 1557626,
1637470, 1721003, 1545472, 1594688, 1565742, 1651606, 1999670,
2217825, 1985751, 1680034, 1608904, 1620473, 1628906, 1726835,
1589058, 1714745, 1751044, 1896265, 2429526, 2268487, 1935249,
1916034, 2239698, 1916650, 1981570, 1948648, 1987134, 1749514,
1822349, 1830307, 1748590, 1734610, 1798308, 1399256, 1000204,
1257475, 1770064, 2416707, 2477258, 2487470, 2457500, 2210539,
2377633, 2026050, 2301337, 2218894, 2012789, 1700619, 1481115,
1562027, 1560348, 1338829, 1244973, 1142989, 1260747, 1316975,
1387394, 1319559, 1440470, 1451015, 1439649, 1390411, 1336076,
1369834, 1255626, 1244163, 1283731), price_cart = c(29.51, 1415.48,
99.86, 358.57, 617.51, 1052.79, 1747.79, 190.56, 128.28, 252.38,
250.91, 720.48, 33.42, 643, 191.77, 460.11, 408.5, 789.9, 577.94,
49.36, 380.7, 19.56, 994.86, 756.71, 223.66, 437.33, 1684.28,
366.16, 968.34, 1683.07, 550.77, 503.09, 29.09, 179.67, 210.62,
22.66, 131.66, 68.96, 360.06, 494.22, 1023.62, 1569.92, 28.29,
694.97, 127.05, 37.85, 282.89, 178.9, 913.28, 1022.42, 424.7,
573.7, 1029.34, 30.12, 20.82, 17.99, 107.53, 41.19, 85.82, 1002.55,
140.98, 167.03, 231.67, 25.71, 205.64, 30.81, 51.22, 65.9, 7.08,
308.63, 227.79, 16.22, 7.89, 62.52, 48.88, 586.63, 602.07, 1312.26,
128.32, 179.9, 849.42, 100.9, 1284.2, 12.84, 128.42, 59.18, 176.99,
38.02, 48.88, 694.54, 262.3, 1402.84, 1453.18, 3.84, 453.01,
76.93, 7.04, 865.93, 865.4, 40.75, 1423.07, 1534.66, 679.27,
11.25, 102.63, 436.3, 853.93, 694.97, 850.47, 477.49, 1234.97,
10.27, 23.94, 643.23, 89.84, 290.34, 320.99, 6.44, 140.28, 188.89,
56.88, 1326.31, 194.34, 140.28, 771.96, 140.03, 20.21, 1464.39,
59.18, 57.92, 1156.81, 50.43, 300.12, 38.1, 832.71, 57.91, 174.5,
100.36, 248.14, 109.34, 100.7, 242.7, 266.67, 592.01, 242.18,
22.66, 566.04, 38.61, 812.06, 490.33, 168.6, 172.03, 49.91, 16.73,
108.04, 347.47, 97.79, 111.15, 514.79, 126.1, 178.87, 870.03,
529.31, 43.5, 2110.48, 771.94, 15.32, 105.25, 7.14, 312.67, 61.75,
165.51, 48.37, 643.49, 303.48, 35.78, 154.42, 209.71, 76.69,
25.46, 1415.45, 123.53, 602.31), cart = c(16658, 17268, 19323,
43826, 35493, 32145, 18052, 18442, 18432, 18997, 21450, 20691,
24833, 44821, 49513, 45272, 40368, 40127, 39455, 40533, 36675,
36945, 36407, 35721, 36800, 34776, 34256, 17838, 17455, 16996,
16798, 18911, 19350, 20211, 21960, 19231, 19670, 19446, 77319,
70093, 71585, 75135, 69669, 71613, 170183, 481862, 405584, 426261,
83117, 72450, 72311, 75530, 70171, 64801, 68099, 71405, 71622,
71324, 71504, 92345, 81760, 84473, 80869, 70192, 66718, 71048,
83618, 84231, 80773, 80675, 81420, 78947, 80162, 82360, 86689,
109721, 183764, 155406, 146906, 137487, 127900, 124577, 127381,
126700, 124797, 127554, 123966, 120940, 127769, 148663, 148608,
119062, 57614, 71342, 95608, 80629, 78782, 79099, 77396, 74671,
72772, 74827, 72221, 73406, 72999, 71182, 70235, 79414, 104791,
103481, 102597, 94354, 90666, 83642, 83223, 73075, 73582, 73849,
70067, 71600, 72179, 130757, 208231, 169156, 137970, 116560,
104701, 102836, 101145, 101605, 90864, 92635, 95114, 100283,
158447, 131720, 118661, 126405, 132399, 98277, 96270, 95284,
96886, 89046, 91384, 89585, 83771, 83241, 84151, 62362.5, 40574,
48944, 81869, 146953, 135144, 132819, 134255, 131648, 141696,
122204, 122752, 120927, 112159, 102239, 95998, 97600, 99032,
79662, 76622, 69585, 73822, 74488, 75621, 69098, 73761, 76429,
75664, 77671, 77090, 77835, 68888, 69091, 73986), price_purchase = c(130.76,
419.6, 251.74, 252.88, 64.02, 272.59, 172.72, 88.81, 28.73, 1003.86,
346.47, 130.48, 29.86, 280.11, 358.57, 385.83, 287.61, 22.95,
58.08, 854.08, 28.28, 62.91, 994.86, 51.22, 9.01, 77.21, 244.15,
366.16, 366.8, 213.25, 35.52, 566.3, 35.78, 1106.82, 64.35, 722.18,
131.66, 166.1, 823.9, 138.23, 334.6, 328.19, 243.51, 488.8, 159.57,
106.8, 54.03, 27, 308.63, 1022.42, 463.31, 144.66, 44.53, 25.48,
126.18, 365.52, 133.92, 97.27, 12.84, 1002.55, 107.41, 132.31,
131.2, 789.57, 230.2, 12.36, 229.86, 1386.91, 154.19, 18.19,
76.96, 882.49, 191.55, 46.08, 24.17, 102.65, 326.62, 924.06,
923.73, 88.29, 41.16, 128.42, 326.88, 137.96, 30.68, 108.88,
181.19, 241.34, 128.32, 137.46, 1279.81, 643.23, 1275.16, 717.245,
159.33, 745.37, 288.27, 177.26, 168.58, 66.85, 331.51, 437.31,
643.23, 9.3, 0.85, 436.3, 105.51, 7.7, 79.44, 1321.37, 160.89,
107.21, 172.25, 514.79, 141.06, 900.64, 153.22, 924.4, 176.34,
94.98, 162.6, 1326.25, 39.9, 38.15, 2162.22, 180.95, 153.41,
720.48, 720.48, 15.42, 140.28, 514.02, 720.47, 174.7, 197.69,
411.08, 741.07, 230.12, 501.89, 109.34, 643.26, 23.17, 242.48,
1317.36, 69.76, 178.11, 153.55, 32.18, 812.06, 482.7, 153.34,
172.03, 128.68, 939.54, 108.04, 165.89, 56.63, 43.76, 171.17,
98.59, 21.95, 280.28, 181.47, 730.01, 159.31, 60.75, 31.15, 1412.39,
7.14, 942.84, 321.06, 165.51, 284.95, 169.42, 303.48, 224.3,
416.43, 385.85, 492.08, 334.6, 1415.45, 123.53, 308.55), purchase = c(19307,
19469, 19255, 27041, 23494, 22171, 21378, 23072, 22748, 21993,
26224, 25373, 29561, 28405, 26372, 31394, 28318, 25850, 24657,
25098, 25167, 25385, 24731, 23999, 23929, 22653, 23403, 21112,
20374, 20817, 20099, 22458, 21864, 22145, 26889, 24875, 25319,
24863, 25714, 22768, 22878, 24931, 22725, 22548, 22124, 45185.5,
68247, 185195, 28537, 24967, 24947, 25266, 24187, 22243, 23163,
24827, 24226, 24443, 24305, 32107, 28178, 28345, 28548, 24358,
24473, 25469, 27505, 27012, 25766, 26802, 27059, 25906, 26044,
26712, 26559, 35077, 63796, 51899, 49578, 48212, 46405, 44255,
44719, 46602, 44917, 44949, 44154, 43081, 45287, 49597, 50729,
38233, 3574, 13975.5, 24377, 28938, 28427, 28875, 27722, 27510,
26492, 27481, 26059, 25869, 27525, 26322, 27121, 29614, 35086,
32884, 32548, 32619, 31698, 30089, 30398, 27579, 26662, 26880,
27052, 26841, 27403, 27612, 33750, 32536, 32308, 28645, 27652,
28276, 28533, 28426, 25379, 26027, 46480, 60013, 102117, 83216,
76048, 72365, 87586, 63260, 36377, 31438, 31258, 29324, 28946,
29017, 27884, 28063, 27809, 27649.5, 27490, 26316, 31358, 55087,
46356, 45228, 44406, 43521, 45501, 40281, 41091, 41681, 39266,
36268, 34754, 35341, 35943, 28852, 27810, 25186, 25501, 26232,
25775, 23698, 25314, 25960, 26259, 27487, 26966, 25817, 21294,
22704, 23997), ctr = c(0.0157890561813006, 0.0166396305077271,
0.0173986509381537, 0.0194731497951218, 0.0179954394804347, 0.01711863909483,
0.0181582360570687, 0.0171927115779559, 0.0172358403646591, 0.0174638541971058,
0.0178806664612045, 0.017462347179514, 0.0183790774089859, 0.0199881077619723,
0.0174426987635606, 0.021089685240109, 0.0205569049800296, 0.0177842661874661,
0.0173413941476575, 0.0169081718788632, 0.0182456430344012, 0.0182626162052032,
0.0182543279386951, 0.0186259961442581, 0.0170104683085926, 0.0171132003490177,
0.0171517774365777, 0.0170457664943143, 0.016903142521019, 0.0175382134561578,
0.0164120092891695, 0.0157969704536582, 0.014264557168488, 0.0143332034531726,
0.0152322825367764, 0.0147200846456646, 0.0152154800186776, 0.0140607309566817,
0.0137719608789332, 0.0122855439272407, 0.0119334194687182, 0.0125752060979989,
0.01158007808718, 0.0113191407332442, 0.00729059877222415, 0.00731911608538772,
0.0106771470535411, 0.029937936916542, 0.0143512493034839, 0.0146854166936255,
0.0149305898441825, 0.015325442746133, 0.015691446743994, 0.0144534643673336,
0.0147711815606066, 0.0158382630541111, 0.0148728508159624, 0.015102040564144,
0.0148955533969277, 0.0176392994824187, 0.0163240478169816, 0.0158230497930639,
0.0166871934499785, 0.0150557839107457, 0.0159453688844757, 0.0158074236363467,
0.0158454822084702, 0.0149292254566175, 0.0142730130593139, 0.0156929838274791,
0.0156162350209032, 0.0153802494466767, 0.0150476029799385, 0.015555365325721,
0.0143761174252573, 0.0154064275947974, 0.0208510166815324, 0.0176754346231314,
0.0176296702464377, 0.01808584587117, 0.0184482114318881, 0.0179540460804964,
0.0172054387638893, 0.0186435592467685, 0.0183226179107802, 0.0183442319676677,
0.0186738733252132, 0.0197702609494553, 0.0204285359857455, 0.0189093019186096,
0.0207614056972417, 0.0221922195760301, 0.00240617175649865,
0.00788575626634226, 0.01309841408011, 0.0157695717780358, 0.0156402333683254,
0.0162649757475833, 0.0155814665868539, 0.0165668899473124, 0.0162596037350689,
0.0168350415867981, 0.0154154128099543, 0.0150464847912372, 0.0161870630522126,
0.0156293605393382, 0.0166831626222356, 0.0159851624182969, 0.0181646017543342,
0.0154736802975027, 0.0147489845006063, 0.0172093148404027, 0.0173801189598905,
0.0179353887292393, 0.017586875624838, 0.0169123585500959, 0.0155822266067893,
0.0149761651657073, 0.0167448758587691, 0.0161082597966258, 0.0167303551270177,
0.0154917937591837, 0.015286011465188, 0.0136306070303869, 0.0152129210946259,
0.0159440585908669, 0.0161367409642245, 0.0164079686231546, 0.016492577386447,
0.0155465861608803, 0.0151072490270382, 0.0144004027929932, 0.0251766100192941,
0.0300583807652007, 0.0394582941939502, 0.0346703430162482, 0.0370259651104479,
0.0354306787130485, 0.0369234479028471, 0.0313956783546004, 0.0175071227813499,
0.0153811379243536, 0.0149988963637585, 0.0159494386911496, 0.0151254119566314,
0.0151138709885764, 0.0152175253675449, 0.015437458845637, 0.0147726989007463,
0.02059282, 0.0264129334017437, 0.0201436139554002, 0.0169325780144314,
0.0214876387664511, 0.0177445890793224, 0.0172606914733451, 0.017133563936406,
0.0185813515317095, 0.0180607614170281, 0.0187505760492009, 0.0169511102933927,
0.0178137558385877, 0.0184785698285323, 0.0201169476464591, 0.0220364679005246,
0.0212945438945016, 0.021660499704709, 0.0203399246100257, 0.021042755155702,
0.0207706911083365, 0.0191080416224264, 0.0188521002714409, 0.0176177277744931,
0.0170654092407268, 0.0167173964870618, 0.0169957130997929, 0.0173290930652611,
0.018723068602435, 0.0190819762151085, 0.0178334964691514, 0.0160768402598991,
0.0172883539665594, 0.0176745227466401)), row.names = c(NA, -183L
), class = "data.frame")

Related

Rolling window in R

I have part of this code which is the initial step of a rolling iteration
for (u in 1:5605){
for (j in 1:498){
work.on.col = j
work.dt = data[u:(u+365),work.on.col] # u:(u+365-1) considers the rolling window
}
}
So basically, this makes a rolling window from u == 1 to u == 5605 for each j. However, this is a step by step (or in this case: a day by day) rolling algorithm. What I want to change it to, is to do so
By 30 days: instead or rolling day by day, it should roll every 30 days (by this I meant here that the rolling window will REMOVE 30 days, then add 30 days to the window, thus rolling the 365 day-long window). OR
By identifying the month. For example, first iteration will start with daily data from January 2000 to January 2001. And the next iteration will start with February 2000 to February 2001, and so on (this approach is more preferable).
Data
> dput(data)
structure(list(Dates = structure(c(820454400, 820540800, 820627200,
820713600, 820800000, 821059200, 821145600, 821232000, 821318400,
821404800, 821664000, 821750400, 821836800, 821923200, 822009600,
822268800, 822355200, 822441600, 822528000, 822614400, 822873600,
822960000, 823046400, 823132800, 823219200, 823478400, 823564800,
823651200, 823737600, 823824000, 824083200, 824169600, 824256000,
824342400, 824428800, 824688000, 824774400, 824860800, 824947200,
825033600, 825292800, 825379200, 825465600, 825552000, 825638400,
825897600, 825984000, 826070400, 826156800, 826243200, 826502400,
826588800, 826675200, 826761600, 826848000, 827107200, 827193600,
827280000, 827366400, 827452800, 827712000, 827798400, 827884800,
827971200, 828057600, 828316800, 828403200, 828489600, 828576000,
828662400, 828921600, 829008000, 829094400, 829180800, 829267200,
829526400, 829612800, 829699200, 829785600, 829872000, 830131200,
830217600, 830304000, 830390400, 830476800, 830736000, 830822400,
830908800, 830995200, 831081600, 831340800, 831427200, 831513600,
831600000, 831686400, 831945600, 832032000, 832118400, 832204800,
832291200, 832550400, 832636800, 832723200, 832809600, 832896000,
833155200, 833241600, 833328000, 833414400, 833500800, 833760000,
833846400, 833932800, 834019200, 834105600, 834364800, 834451200,
834537600, 834624000, 834710400, 834969600, 835056000, 835142400,
835228800, 835315200, 835574400, 835660800, 835747200, 835833600,
835920000, 836179200, 836265600, 836352000, 836438400, 836524800,
836784000, 836870400, 836956800, 837043200, 837129600, 837388800,
837475200, 837561600, 837648000, 837734400, 837993600, 838080000,
838166400, 838252800, 838339200, 838598400, 838684800, 838771200,
838857600, 838944000, 839203200, 839289600, 839376000, 839462400,
839548800, 839808000, 839894400, 839980800, 840067200, 840153600,
840412800, 840499200, 840585600, 840672000, 840758400, 841017600,
841104000, 841190400, 841276800, 841363200, 841622400, 841708800,
841795200, 841881600, 841968000, 842227200, 842313600, 842400000,
842486400, 842572800, 842832000, 842918400, 843004800, 843091200,
843177600, 843436800, 843523200, 843609600, 843696000, 843782400,
844041600, 844128000, 844214400, 844300800, 844387200, 844646400,
844732800, 844819200, 844905600, 844992000, 845251200, 845337600,
845424000, 845510400, 845596800, 845856000, 845942400, 846028800,
846115200, 846201600, 846460800, 846547200, 846633600, 846720000,
846806400, 847065600, 847152000, 847238400, 847324800, 847411200,
847670400, 847756800, 847843200, 847929600, 848016000, 848275200,
848361600, 848448000, 848534400, 848620800, 848880000, 848966400,
849052800, 849139200, 849225600, 849484800, 849571200, 849657600,
849744000, 849830400, 850089600, 850176000, 850262400, 850348800,
850435200, 850694400, 850780800, 850867200, 850953600, 851040000,
851299200, 851385600, 851472000, 851558400, 851644800, 851904000,
851990400, 852076800, 852163200, 852249600, 852508800, 852595200,
852681600, 852768000, 852854400, 853113600, 853200000, 853286400,
853372800, 853459200, 853718400, 853804800, 853891200, 853977600,
854064000, 854323200, 854409600, 854496000, 854582400, 854668800,
854928000, 855014400, 855100800, 855187200, 855273600, 855532800,
855619200, 855705600, 855792000, 855878400, 856137600, 856224000,
856310400, 856396800, 856483200, 856742400, 856828800, 856915200,
857001600, 857088000, 857347200, 857433600, 857520000, 857606400,
857692800, 857952000, 858038400, 858124800, 858211200, 858297600,
858556800, 858643200, 858729600, 858816000, 858902400, 859161600,
859248000, 859334400, 859420800, 859507200, 859766400, 859852800,
859939200, 860025600, 860112000, 860371200, 860457600, 860544000,
860630400, 860716800, 860976000, 861062400, 861148800, 861235200,
861321600, 861580800, 861667200, 861753600, 861840000, 861926400,
862185600, 862272000, 862358400, 862444800, 862531200, 862790400,
862876800, 862963200, 863049600, 863136000, 863395200, 863481600,
863568000, 863654400, 863740800, 8.64e+08, 864086400, 864172800,
864259200, 864345600, 864604800, 864691200, 864777600, 864864000,
864950400, 865209600, 865296000, 865382400, 865468800, 865555200,
865814400, 865900800, 865987200, 866073600, 866160000, 866419200,
866505600, 866592000, 866678400, 866764800, 867024000, 867110400,
867196800, 867283200, 867369600, 867628800, 867715200, 867801600,
867888000, 867974400, 868233600, 868320000, 868406400, 868492800,
868579200, 868838400, 868924800, 869011200, 869097600, 869184000,
869443200, 869529600, 869616000, 869702400, 869788800, 870048000,
870134400, 870220800, 870307200, 870393600, 870652800, 870739200,
870825600, 870912000, 870998400, 871257600, 871344000, 871430400,
871516800, 871603200, 871862400, 871948800, 872035200, 872121600,
872208000, 872467200, 872553600, 872640000, 872726400, 872812800,
873072000, 873158400, 873244800, 873331200, 873417600, 873676800,
873763200, 873849600, 873936000, 874022400, 874281600, 874368000,
874454400, 874540800, 874627200, 874886400, 874972800, 875059200,
875145600, 875232000, 875491200, 875577600, 875664000, 875750400,
875836800, 876096000, 876182400, 876268800, 876355200, 876441600,
876700800, 876787200, 876873600, 876960000, 877046400, 877305600,
877392000, 877478400, 877564800, 877651200, 877910400, 877996800,
878083200, 878169600, 878256000, 878515200, 878601600, 878688000,
878774400, 878860800, 879120000, 879206400, 879292800, 879379200,
879465600, 879724800, 879811200, 879897600, 879984000, 880070400,
880329600, 880416000, 880502400, 880588800, 880675200, 880934400,
881020800, 881107200, 881193600, 881280000, 881539200, 881625600,
881712000, 881798400, 881884800, 882144000, 882230400, 882316800,
882403200, 882489600, 882748800, 882835200, 882921600, 883008000,
883094400, 883353600, 883440000, 883526400, 883612800, 883699200,
883958400, 884044800, 884131200, 884217600, 884304000, 884563200,
884649600, 884736000, 884822400, 884908800, 885168000, 885254400,
885340800, 885427200, 885513600, 885772800, 885859200, 885945600,
886032000, 886118400, 886377600, 886464000, 886550400, 886636800,
886723200, 886982400, 887068800, 887155200, 887241600, 887328000,
887587200, 887673600, 887760000, 887846400, 887932800, 888192000,
888278400, 888364800, 888451200, 888537600, 888796800, 888883200,
888969600, 889056000, 889142400, 889401600, 889488000, 889574400,
889660800, 889747200, 890006400, 890092800, 890179200, 890265600,
890352000, 890611200, 890697600, 890784000, 890870400, 890956800,
891216000, 891302400, 891388800, 891475200, 891561600, 891820800,
891907200, 891993600, 892080000, 892166400, 892425600, 892512000,
892598400, 892684800, 892771200, 893030400, 893116800, 893203200,
893289600, 893376000, 893635200, 893721600, 893808000, 893894400,
893980800, 894240000, 894326400, 894412800, 894499200, 894585600,
894844800, 894931200, 895017600, 895104000, 895190400, 895449600,
895536000, 895622400, 895708800, 895795200, 896054400, 896140800,
896227200, 896313600, 896400000, 896659200, 896745600, 896832000,
896918400, 897004800, 897264000, 897350400, 897436800, 897523200,
897609600, 897868800, 897955200, 898041600, 898128000, 898214400,
898473600, 898560000, 898646400, 898732800, 898819200, 899078400,
899164800, 899251200, 899337600, 899424000, 899683200, 899769600,
899856000, 899942400, 900028800, 900288000, 900374400, 900460800,
900547200, 900633600, 900892800, 900979200, 901065600, 901152000,
901238400, 901497600, 901584000, 901670400, 901756800, 901843200,
902102400, 902188800, 902275200, 902361600, 902448000, 902707200,
902793600, 902880000, 902966400, 903052800, 903312000, 903398400,
903484800, 903571200, 903657600, 903916800, 904003200, 904089600,
904176000, 904262400, 904521600, 904608000, 904694400, 904780800,
904867200), class = c("POSIXct", "POSIXt"), tzone = "UTC"), `1` = c(9.3424,
9.3424, 9.3983, 9.5102, 9.3144, 9.4822, 9.3983, 9.0537, 9.1381,
9.1099, 9.0537, 8.9975, 8.7444, 8.8007, 8.8007, 8.7163, 8.8569,
8.9412, 8.9131, 9.0537, 9.0537, 9.4474, 9.5036, 9.6723, 9.6723,
9.7566, 9.5879, 9.7566, 9.841, 9.8129, 9.9535, 9.841, 9.6442,
9.8972, 9.7285, 9.7285, 9.6161, 9.2787, 9.3911, 9.363, 9.2224,
9.1099, 9.2787, 9.3911, 9.4474, 9.841, 9.7285, 9.7004, 9.8691,
9.5598, 9.5036, 9.5317, 9.363, 9.4755, 9.2224, 9.1099, 9.2505,
9.1381, 9.2787, 9.2224, 9.1381, 9.2224, 9.1099, 9.1381, 9.1662,
9.4192, 9.3911, 9.3911, 9.4474, 9.4474, 9.7004, 9.5317, 9.2787,
9.3326, 9.3892, 9.3326, 9.2761, 9.2195, 9.2761, 9.4458, 9.3609,
9.4458, 9.163, 9.2761, 9.1912, 9.3044, 9.1912, 9.1912, 9.0215,
8.9084, 8.965, 8.9367, 8.9367, 8.9933, 9.0781, 9.2478, 9.163,
9.2761, 9.2478, 9.3609, 9.3892, 9.3609, 9.5023, 9.3892, 9.672,
9.672, 9.5872, 9.5306, 9.7003, 9.7568, 9.6437, 9.672, 9.9265,
9.8417, 9.87, 9.8134, 9.7568, 9.672, 9.7568, 9.7003, 9.7286,
9.7851, 9.7851, 9.672, 9.7851, 9.7851, 9.8417, 9.8134, 9.8983,
9.8417, 9.8417, 9.8134, 9.87, 9.87, 9.672, 9.5306, 9.4175, 9.5872,
9.896, 10.0666, 9.896, 9.8676, 9.7538, 10.2657, 10.095, 10.095,
9.9244, 9.9529, 10.0382, 10.1519, 10.0382, 10.0666, 10.0097,
10.1235, 10.2941, 10.351, 10.4363, 10.2941, 10.4079, 10.5785,
10.55, 10.4647, 10.4363, 10.5216, 10.7775, 10.806, 10.806, 10.6922,
10.8344, 10.6922, 10.5785, 10.55, 10.4363, 10.2941, 10.2657,
10.2657, 10.351, 10.4363, 10.5216, 10.5785, 10.6922, 10.6922,
10.6353, 10.7207, 10.8628, 10.9197, 10.8913, 10.806, 11.005,
10.8344, 10.8628, 10.9197, 11.005, 11.0619, 11.2041, 11.2041,
11.2325, 11.2325, 11.2894, 11.46, 11.46, 11.5453, 11.2325, 11.1734,
11.5163, 11.8306, 11.7163, 11.6877, 11.9164, 12.0878, 11.8878,
11.6306, 11.602, 11.6592, 11.4306, 11.3448, 11.5734, 11.4306,
11.5734, 11.4306, 11.4877, 11.6877, 12.0592, 12.0878, 12.2021,
12.1735, 12.0021, 12.0021, 12.2307, 12.2307, 12.1735, 12.2878,
12.3164, 12.5165, 12.7451, 13.0308, 12.8594, 12.7451, 12.7451,
12.7451, 12.6308, 12.4307, 12.1735, 12.0878, 12.0592, 12.3164,
12.1735, 11.9449, 11.6877, 11.7449, 11.5449, 11.602, 11.5734,
11.9735, 12.0592, 12.0021, 12.0592, 12.0592, 12.0878, 12.0878,
11.9449, 11.602, 11.602, 11.5163, 11.7449, 11.6306, 11.8878,
11.7163, 11.8306, 12.0592, 12.0284, 12.258, 12.2293, 12.7173,
12.6599, 12.6599, 12.6599, 12.947, 12.4877, 12.5164, 12.3154,
12.2867, 12.2006, 12.459, 12.4877, 12.459, 12.5738, 12.4303,
12.5451, 12.8035, 12.8322, 12.8609, 13.0905, 13.435, 13.3776,
13.3776, 13.6934, 13.5212, 13.3202, 13.2054, 13.3489, 13.435,
13.2915, 13.2054, 12.9183, 13.0905, 12.8322, 13.4924, 13.2054,
13.5499, 13.8082, 13.5786, 13.5786, 13.435, 13.2915, 13.7508,
13.6647, 13.4924, 13.3489, 13.2628, 13.6647, 13.5499, 13.6073,
13.3202, 13.3202, 12.8896, 12.7748, 12.8322, 12.8322, 13.1193,
12.9183, 12.9757, 12.7173, 13.0044, 12.4062, 12.7524, 13.0409,
13.4448, 13.5025, 13.3871, 13.5602, 13.9353, 13.8199, 13.6756,
13.5891, 13.6468, 13.993, 14.0796, 14.0796, 14.3392, 14.6277,
14.5989, 14.4546, 14.4258, 14.4835, 14.7143, 14.8297, 14.9739,
15.4933, 15.2913, 15.2625, 15.0028, 14.6277, 14.6277, 14.772,
14.772, 14.772, 14.57, 14.5412, 14.5412, 14.4546, 14.5989, 14.5123,
14.4546, 14.772, 15.0028, 14.9162, 15.1471, 15.3202, 15.3779,
15.2336, 15.0894, 14.9451, 15.3779, 15.4067, 14.9739, 15.7097,
15.4789, 15.2048, 15.6375, 15.4067, 15.2192, 15.349, 15.7962,
15.7962, 15.4789, 15.6231, 15.3346, 15.1759, 14.8776, 14.8921,
15.0369, 14.9935, 14.5879, 14.385, 14.3416, 14.6313, 14.8631,
14.7327, 14.7762, 14.6313, 14.8631, 15.0369, 15.1673, 14.8052,
14.6603, 14.7037, 14.6458, 14.8341, 14.8196, 14.8486, 14.8196,
14.5589, 14.7472, 14.0808, 14.472, 14.2981, 14.3706, 14.1533,
14.0663, 13.8201, 13.8635, 13.9649, 13.878, 13.8925, 13.8925,
14.414, 14.5299, 14.5009, 14.3416, 14.0953, 14.0808, 13.849,
13.7911, 14.3706, 14.3271, 14.7037, 14.6023, 14.7762, 14.9355,
15.0224, 14.921, 14.6313, 14.5589, 14.7327, 14.9355, 14.8196,
14.8486, 14.95, 14.9066, 15.0659, 15.2832, 15.1818, 15.0514,
14.9257, 14.9257, 15.0857, 14.7948, 14.8238, 14.8675, 14.7657,
14.8238, 14.7802, 14.3729, 14.3147, 13.5582, 14.2565, 14.1401,
14.0092, 14.271, 14.4893, 14.6638, 14.8384, 14.562, 14.5329,
14.5911, 14.562, 14.6056, 14.7948, 14.9984, 15.0857, 14.9548,
15.1439, 15.2312, 15.3476, 15.1439, 15.3476, 15.333, 15.333,
15.1293, 15.6531, 15.6821, 15.8713, 15.7258, 15.8276, 15.6821,
15.9585, 15.7694, 15.5512, 15.5076, 15.784, 15.9731, 15.6821,
15.1875, 15.0421, 15.3767, 15.1002, 15.013, 15.013, 15.1875,
15.333, 15.5803, 15.2603, 15.2603, 15.6967, 15.784, 15.5221,
15.624, 15.8422, 15.6531, 16.1913, 16.3123, 16.3415, 16.2247,
16.3708, 16.3708, 16.6774, 16.5168, 16.4438, 16.3269, 16.1663,
16.5168, 16.5752, 16.7943, 16.546, 16.6336, 16.473, 16.4438,
16.5022, 16.7651, 16.7505, 17.1886, 17.1009, 17.2616, 17.3054,
17.3054, 17.5537, 17.4952, 17.2616, 17.3492, 17.5098, 17.4806,
17.466, 17.4076, 17.4806, 17.5683, 17.5391, 17.3346, 17.466,
17.7289, 17.6559, 17.9626, 18.1086, 18.24, 18.1962, 18.2108,
18.2254, 18.0502, 18.0064, 18.1962, 18.0356, 17.9334, 17.4222,
17.6121, 17.6267, 17.32, 17.5975, 17.7581, 18.0794, 18.2692,
18.0356, 17.9918, 17.7289, 17.8457, 17.8457, 17.5653, 17.6387,
17.3601, 16.8909, 17.536, 17.1401, 17.0522, 16.9495, 16.9202,
16.8469, 16.7443, 16.4657, 16.5683, 17.1548, 17.0961, 16.9935,
16.8469, 16.5536, 16.7296, 17.0082, 16.9789, 17.1988, 17.2134,
17.0375, 17.492, 17.712, 17.6093, 17.9319, 17.6826, 17.6826,
17.6826, 17.536, 17.4774, 17.5653, 17.4041, 17.1841, 17.1841,
17.0082, 17.1255, 17.6533, 17.448, 17.448, 17.5947, 17.536, 18.0052,
18.0932, 18.2985, 18.7383, 19.1782, 18.8263, 18.8849, 19.1195,
19.5301, 19.5301, 19.8233, 19.8526, 19.1782, 19.4421, 19.706,
19.706, 20.0579, 19.9406, 20.0872, 20.1459, 20.5858, 20.9201,
21.1849, 20.7141, 20.9789, 21.126, 21.0083, 20.4199, 20.9789,
20.4787, 20.5964, 20.5964, 20.0374, 20.155, 20.2727, 19.5666,
19.9491, 19.1252, 19.1841, 19.0664, 19.037, 19.037, 19.2723,
19.4783, 19.5372, 19.2429, 19.8902, 20.1256, 20.2139, 20.2433,
20.4199, 20.361, 20.3316, 20.6847, 19.9491, 19.5077, 18.1248,
18.5956, 18.3308, 18.9193, 18.6545), `3` = c(7.8478, 8.1167,
7.6421, 7.4048, 5.3479, 5.3004, 4.8099, 4.8732, 4.9681, 5.0473,
4.6438, 4.6042, 4.5315, 4.5156, 4.7057, 4.9117, 5.0068, 5.1494,
4.9593, 5.0068, 4.88, 4.7533, 4.3096, 4.3413, 4.5631, 4.6107,
4.6265, 4.5156, 4.9117, 4.9117, 4.8008, 4.7216, 4.6978, 4.5394,
4.4681, 4.4681, 4.6899, 4.7691, 4.6741, 4.6582, 4.4839, 4.3413,
4.2779, 4.2463, 4.1353, 4.1037, 4.1512, 4.0244, 4.1195, 4.072,
4.1829, 4.0878, 4.4205, 4.3096, 4.3572, 4.3255, 4.4047, 4.3255,
4.3413, 3.9769, 3.969, 4.1037, 4.0561, 4.0403, 4.0878, 4.167,
4.2051, 4.2527, 4.1257, 4.1257, 4.2685, 4.3003, 4.1733, 4.1575,
4.4272, 4.4272, 4.4907, 4.3955, 4.5383, 4.4431, 4.8001, 4.8398,
5.0778, 5.4586, 5.3634, 5.3, 5.4586, 5.411, 5.2524, 5.2841, 5.1413,
5.173, 5.0937, 4.9985, 5.1095, 5.2682, 5.3952, 5.411, 5.6967,
5.4586, 5.4745, 5.3317, 5.3158, 5.3158, 5.1095, 5.1095, 4.8081,
4.7287, 4.7763, 4.7128, 4.5859, 4.5542, 4.6652, 4.451, 4.4907,
4.6335, 4.6335, 4.57, 4.7287, 4.4431, 4.3479, 4.3637, 4.57, 4.5859,
4.57, 4.4114, 4.3003, 4.4193, 4.4828, 4.5542, 4.5859, 4.578,
4.4812, 4.4812, 4.4653, 4.4335, 4.4335, 4.3064, 4.1316, 4.1316,
3.8217, 3.8297, 4.0045, 4.4812, 4.1634, 4.1475, 4.068, 3.8614,
4.0998, 4.0362, 3.8773, 3.8614, 3.8614, 3.925, 3.925, 3.9091,
4.211, 4.2269, 4.1634, 4.1634, 4.1475, 4.068, 4.1316, 4.1951,
4.1316, 4.0998, 4.3382, 4.7354, 4.5447, 4.5447, 4.4653, 4.5606,
4.7672, 4.5765, 4.4335, 4.4335, 4.4812, 4.3699, 4.2428, 4.2905,
4.3143, 4.1951, 4.2269, 4.1792, 4.0998, 4.1792, 4.2905, 4.2428,
4.5845, 4.8308, 4.7831, 4.6877, 4.4494, 4.9102, 4.8149, 4.7418,
4.7736, 4.694, 4.5508, 4.4235, 4.3042, 4.519, 4.6145, 4.5667,
4.694, 4.7895, 4.71, 4.71, 4.694, 4.6463, 4.5508, 4.3917, 4.4235,
4.4235, 4.3122, 4.2962, 4.1689, 4.3281, 4.4076, 4.3599, 4.2962,
4.2326, 4.3917, 4.4554, 4.4713, 4.694, 4.9645, 5.0998, 5.2191,
5.4101, 5.2828, 5.2828, 5.1396, 5.0759, 5.0282, 5.0282, 5.0282,
5.0282, 5.0282, 5.0282, 5.5215, 5.3623, 5.3942, 5.3464, 5.1555,
5.235, 5.1396, 5.0918, 4.9964, 4.9964, 4.9645, 5.0918, 5.2032,
5.3146, 5.1873, 5.0123, 4.9645, 4.9645, 4.8532, 4.7259, 4.7736,
4.7577, 4.7577, 4.9168, 4.9805, 5.1555, 5.3623, 5.3783, 5.2669,
4.9964, 5.0123, 4.9709, 4.7479, 4.7718, 4.7638, 4.8275, 4.7319,
4.8435, 4.6523, 4.5885, 4.5407, 4.6523, 4.6045, 4.7638, 4.8275,
4.7957, 4.6523, 4.4292, 4.5089, 4.6523, 4.8116, 4.6602, 4.9311,
5.0187, 4.7797, 4.7797, 5.0665, 5.0506, 5.0187, 4.7001, 4.6523,
4.8275, 4.7319, 4.5248, 4.6523, 4.6841, 4.6682, 4.6523, 4.5089,
4.2938, 4.5089, 4.3416, 4.238, 4.238, 4.238, 4.4292, 4.4451,
4.9231, 5.1621, 5.2577, 5.2258, 5.2896, 5.4489, 5.2481, 5.2481,
5.1205, 5.0886, 5.2003, 5.3598, 5.4874, 5.5353, 5.5672, 5.4874,
5.3518, 5.2641, 5.3917, 5.3598, 5.296, 5.296, 5.1365, 5.0886,
5.0727, 5.1365, 5.1843, 4.8334, 4.9291, 4.9131, 4.9929, 5.3279,
5.615, 5.9341, 5.7905, 5.9181, 5.615, 5.5193, 5.5911, 5.5831,
5.4874, 5.6549, 5.7107, 5.631, 5.5911, 5.8703, 5.9022, 5.9181,
5.9181, 6.2371, 6.0936, 5.8064, 5.6948, 5.7666, 5.1684, 5.28,
5.4156, 5.5034, 5.296, 5.296, 5.3279, 5.296, 5.2641, 5.28, 5.304,
5.1365, 4.5941, 4.5782, 4.5542, 4.5303, 4.5144, 4.4984, 4.5064,
4.4745, 4.4346, 4.6324, 4.7442, 4.7442, 4.8081, 4.9199, 4.7762,
4.6164, 4.6324, 4.8161, 4.7921, 4.7762, 4.7362, 4.7362, 4.7362,
4.8081, 4.7362, 4.7442, 4.9119, 4.8241, 4.7762, 4.6971, 4.7287,
4.7762, 4.8078, 4.9659, 5.0925, 5.045, 4.9106, 5.0925, 5.0213,
5.1715, 5.3613, 5.1241, 5.2506, 5.2111, 5.4957, 5.2506, 5.4562,
5.4088, 5.1636, 4.8157, 5.0529, 4.9818, 4.9818, 5.1399, 5.1953,
5.1794, 5.2822, 5.2269, 5.219, 5.1874, 5.6381, 5.7251, 5.733,
5.7092, 5.646, 5.7883, 6.2944, 6.5949, 6.5474, 6.4447, 6.4288,
6.3102, 6.3482, 6.3798, 6.3086, 6.3561, 6.269, 6.4115, 6.4669,
6.4907, 6.5223, 6.3719, 6.5698, 6.5856, 6.5065, 6.3007, 6.0632,
6.3719, 6.3323, 6.2215, 6.2057, 6.2532, 5.8574, 6.1463, 6.182,
6.0793, 6.032, 6.1741, 6.1188, 6.0714, 6.0478, 6.032, 5.9451,
5.953, 5.7162, 5.7793, 6.1267, 6.1583, 5.3214, 5.4319, 5.3846,
5.424, 5.203, 5.3451, 5.274, 5.274, 5.3056, 5.4082, 5.2582, 5.3214,
5.2582, 5.1793, 5.3688, 5.2582, 5.1319, 4.9345, 4.4529, 4.5792,
4.3819, 4.4213, 4.374, 4.6582, 4.6977, 4.5871, 4.6819, 4.6819,
4.7687, 4.8477, 5.083, 5.2173, 5.2173, 5.1225, 5.1936, 5.3675,
5.2885, 5.3359, 5.2173, 5.1541, 5.0909, 4.917, 4.9644, 4.9644,
4.9644, 5.0118, 4.9407, 4.8695, 4.8379, 4.7272, 4.7272, 4.7984,
4.7589, 4.8695, 4.8537, 4.8458, 4.9644, 4.9881, 5.0592, 5.1383,
5.0988, 5.1067, 5.2173, 5.494, 5.494, 5.4782, 5.5415, 5.5494,
5.5336, 5.5454, 5.2806, 5.4071, 5.5098, 5.5889, 5.4545, 5.5177,
5.5494, 5.5256, 5.6284, 5.5177, 5.66, 5.664, 5.6126, 5.5494,
5.6205, 5.5177, 5.3913, 5.5573, 5.4703, 5.4545, 5.5731, 5.6205,
6.0711, 5.7549, 5.7391, 5.7154, 5.7928, 5.9036, 5.9511, 5.8482,
5.6662, 5.69, 5.7374, 5.7374, 5.9353, 5.9115, 6.1094, 6.1252,
6.1648, 6.331, 6.2123, 6.418, 6.2914, 6.4259, 6.3468, 6.1806,
6.4101, 6.3389, 6.3785, 6.3151, 6.2518, 6.236, 6.3072, 6.4101,
5.9828, 5.8245, 5.7374, 5.7295, 5.7454, 5.69, 5.7612, 5.6583,
5.5792, 5.4921, 5.4921, 5.2389, 5.2784, 5.3022, 5.0569, 4.9777,
5.1914, 5.0648, 5.1518, 5.1756, 5.1281, 5.5079, 5.318, 5.1677,
5.0648, 5.0173, 5.2864, 5.2547, 5.1835, 4.9936, 5.0806, 5.1281,
5.3259, 5.6187, 5.3734, 5.413, 5.3734, 5.269, 5.2452, 5.2452,
5.2056, 5.1659, 5.2769, 5.1739, 5.0946, 5.055, 4.9441, 4.9837,
5.0471, 5.0629, 5.1343, 5.0233, 5.0075, 4.9283, 4.8015, 4.8015,
4.7856, 4.5717, 4.3419, 4.0963, 4.0963, 4.0963, 4.0963, 4.0963,
4.0963, 4.0963, 4.0963, 4.0963, 4.0963, 4.0963, 4.0963, 4.0963,
4.0963, 4.0963, 4.0963, 4.0963, 4.0963, 4.0963, 3.407, 3.4466,
3.3278, 3.5021, 3.1693, 3.1455, 3.098), `5` = c(13.4319, 13.6184,
13.805, 13.8983, 13.8983, 13.805, 13.5252, 13.2453, 12.8722,
12.7789, 12.6857, 13.4319, 13.2453, 13.5252, 13.7117, 13.8983,
13.805, 13.8983, 13.805, 13.8983, 13.9915, 14.1781, 14.2154,
14.3089, 14.2154, 14.2154, 14.4024, 14.3089, 14.5895, 14.496,
14.3089, 14.3089, 14.3089, 14.4024, 14.496, 14.496, 14.2154,
14.2154, 14.4024, 14.4024, 14.496, 14.3089, 14.683, 14.4024,
14.496, 14.5895, 14.4024, 14.4024, 14.4024, 13.9348, 13.7478,
14.0284, 14.0284, 14.0284, 13.8413, 13.7478, 13.5607, 13.9348,
13.9348, 13.9348, 14.1219, 13.8413, 13.9348, 13.8413, 13.7478,
13.5607, 13.9348, 14.1219, 14.4024, 14.4024, 13.9348, 13.6543,
13.4672, 13.5607, 13.8413, 14.0284, 13.9348, 14.1219, 14.3089,
14.496, 14.2154, 14.3089, 14.3089, 14.3089, 14.1219, 14.3089,
14.1219, 14.3463, 14.1588, 14.065, 14.2526, 13.8775, 13.7837,
14.065, 14.1588, 14.1588, 14.065, 14.3463, 14.4401, 14.5339,
14.4401, 14.6276, 14.6276, 14.6276, 15.1902, 15.1902, 14.8152,
14.7214, 14.7214, 14.6276, 14.5339, 14.5339, 14.7214, 14.4401,
14.8152, 14.8152, 14.8152, 14.6276, 14.4401, 14.4401, 14.3463,
14.5339, 14.3463, 14.6276, 14.8152, 14.8152, 14.7214, 14.4401,
14.3463, 14.3463, 14.3463, 14.2526, 14.1588, 14.1588, 13.9713,
13.7837, 13.8775, 14.065, 13.9713, 13.3149, 13.0336, 12.9398,
12.5648, 12.8461, 12.6585, 12.5648, 12.6585, 12.6585, 12.6585,
12.8461, 12.7523, 13.1274, 13.3149, 13.3149, 13.5024, 13.5962,
13.5962, 13.915, 13.727, 13.6329, 13.5389, 13.5389, 13.6329,
13.821, 14.0184, 14.3146, 14.3146, 14.3146, 14.512, 14.3146,
14.4133, 14.512, 14.0184, 14.3146, 14.0184, 14.0184, 14.0184,
13.9197, 14.0184, 14.0184, 14.2159, 14.2159, 14.1172, 14.4133,
14.3146, 14.4133, 14.3146, 14.512, 14.8082, 14.7095, 14.6108,
14.7095, 14.9069, 15.0056, 15.0056, 15.2031, 15.1044, 15.4992,
15.4992, 15.7954, 15.9929, 15.598, 15.598, 16.0916, 16.289, 17.1775,
17.0788, 16.6839, 16.5852, 16.9801, 17.4737, 17.375, 17.1775,
16.5852, 16.6839, 16.3877, 16.8813, 16.9801, 17.1775, 17.2762,
17.2762, 17.8686, 17.4144, 17.3155, 17.2166, 17.2166, 17.3155,
17.3155, 17.3155, 17.7113, 17.6123, 17.9092, 17.6123, 17.5134,
17.4144, 17.5134, 17.1176, 17.4144, 17.4144, 17.4144, 16.9197,
17.0187, 16.8208, 16.6229, 16.6229, 16.8208, 17.2166, 17.3155,
17.2166, 16.9197, 16.6229, 17.4144, 17.4144, 17.7113, 17.7113,
18.1071, 18.1071, 18.1071, 18.206, 18.0081, 17.9092, 17.4144,
17.4144, 17.4144, 17.4144, 17.2166, 17.6123, 17.5134, 17.4144,
17.6123, 17.6123, 18.206, 17.8102, 17.3155, 16.9197, 16.8208,
16.6229, 16.5239, 15.8313, 15.7324, 15.2376, 15.8313, 15.7324,
15.8313, 15.6334, 15.6334, 15.4355, 15.2772, 15.2772, 15.178,
15.178, 15.178, 15.178, 15.0788, 15.0788, 15.0788, 15.0788, 14.8804,
14.7812, 15.0788, 15.3764, 15.2772, 15.0788, 14.8804, 14.682,
14.682, 14.5828, 14.4836, 14.3844, 14.8804, 14.9796, 14.8804,
14.7812, 14.3844, 14.3844, 14.5828, 14.3844, 14.0868, 13.8884,
13.9876, 14.2852, 14.2852, 14.4836, 14.3844, 14.3844, 14.186,
14.0868, 13.7892, 13.9876, 13.69, 13.8884, 13.9876, 14.0868,
14.2852, 13.8884, 13.69, 13.7892, 13.9876, 13.9876, 14.2852,
14.2852, 14.4836, 14.4836, 14.5828, 14.5828, 14.186, 14.2852,
14.5828, 14.3844, 14.2852, 14.5828, 14.7812, 15.0193, 14.8204,
14.522, 14.522, 15.0193, 15.4172, 15.5166, 15.7155, 15.6161,
15.6161, 15.815, 15.7155, 16.0139, 16.0139, 15.9145, 15.815,
15.9145, 15.9145, 15.7155, 15.815, 15.6161, 16.4118, 16.5113,
16.6107, 17.4065, 16.6107, 16.4118, 16.2129, 16.0139, 16.5113,
17.4065, 17.2075, 17.5059, 17.6054, 17.7049, 18.1027, 17.7049,
18.8487, 18.6995, 18.4508, 18.6498, 18.9979, 18.9979, 18.5006,
18.6, 18.5006, 18.6498, 18.7492, 18.6, 18.3017, 18.6498, 18.053,
17.6054, 17.8043, 18.3017, 18.5006, 18.4011, 18.2519, 17.8043,
17.9038, 17.9038, 17.9038, 17.8541, 17.9535, 17.9038, 17.9436,
18.0433, 18.1429, 18.1928, 17.8937, 17.4451, 17.8464, 17.4277,
17.2184, 17.48, 17.7417, 17.5847, 18.3174, 18.4221, 18.2651,
18.3697, 18.1604, 18.1081, 18.1081, 18.4744, 18.4221, 18.3174,
18.1604, 18.5791, 18.8931, 18.9978, 18.9978, 19.6781, 19.3118,
19.7305, 19.3641, 19.6258, 19.9398, 19.6781, 19.8875, 20.1491,
20.2538, 19.9398, 20.0445, 20.0445, 19.9921, 19.9921, 19.9921,
20.1491, 20.2538, 20.0968, 20.0445, 19.9921, 19.9921, 19.9398,
19.5734, 19.7305, 19.5211, 19.5734, 19.7305, 19.9398, 19.7305,
19.4688, 17.794, 19.2071, 18.5267, 18.4221, 18.6314, 19.0501,
18.9454, 19.1966, 18.9344, 18.7246, 18.5672, 18.0952, 18.0952,
18.0952, 18.0427, 18.3574, 18.2001, 18.4623, 18.3574, 18.3574,
18.0952, 17.7805, 17.6231, 17.6231, 17.9378, 18.0427, 17.7805,
17.5707, 17.6231, 17.9378, 17.8329, 17.4658, 17.256, 17.4133,
17.3084, 18.0427, 18.1476, 18.2525, 18.2001, 18.0952, 18.0427,
17.4658, 17.4133, 17.4133, 17.6231, 17.7805, 17.9378, 18.2001,
18.2001, 18.2001, 18.2525, 17.8329, 18.9344, 18.7246, 18.4099,
18.7246, 18.6197, 18.5148, 18.4623, 18.4099, 18.4099, 18.4623,
18.4099, 18.5148, 18.5148, 18.5148, 18.2001, 17.9903, 18.2001,
17.6756, 18.0952, 18.305, 18.4518, 18.3993, 18.557, 18.925, 18.8724,
18.9775, 19.0827, 18.8724, 18.8724, 18.7673, 18.9775, 18.925,
18.925, 18.6096, 18.7147, 18.8724, 18.8724, 18.8724, 19.0301,
19.1878, 19.4507, 19.0827, 19.4507, 19.3981, 19.6084, 19.6609,
19.8187, 19.7661, 19.0301, 18.5044, 18.6096, 18.6621, 18.4518,
18.5044, 18.7147, 18.3993, 18.189, 18.189, 18.189, 18.4518, 18.6096,
18.9775, 18.8198, 18.3467, 18.189, 18.0839, 18.2416, 18.2416,
18.0839, 18.2416, 18.5044, 18.557, 18.6096, 18.2941, 18.5044,
18.1364, 18.1364, 18.189, 17.9787, 18.189, 18.1364, 18.0839,
17.9262, 17.8736, 17.7684, 17.7579, 17.6525, 17.6525, 17.4945,
17.4418, 17.1783, 17.0202, 16.8621, 16.704, 16.704, 16.8621,
16.8094, 16.4406, 16.4406, 16.2825, 15.8609, 16.3352, 15.9136,
16.4406, 16.3352, 16.1771, 15.7029, 17.7052, 16.8621, 16.8094,
16.8094, 17.0729, 16.9148, 16.3879, 16.546, 17.4418, 17.231,
17.231, 16.8094, 16.9675, 17.1783, 16.8621, 16.6514, 16.3879,
16.3352, 16.5987, 16.3879, 16.3879, 16.6514, 16.019, 15.9136,
15.334, 15.334, 15.0178, 15.1759, 15.0178, 14.9124, 14.8598,
14.7017, 14.5963, 14.7017, 14.4382, 14.5436, 13.964, 14.122,
14.4382, 14.7544, 14.4382, 14.3328, 13.9113, 14.1115, 13.9529,
14.0058, 15.01, 15.01, 15.01, 14.7457, 14.3758, 14.2172, 14.5343,
14.4286, 14.8171, 14.6506, 14.4841, 14.3731, 14.0401, 13.4852,
13.8737, 13.3187, 13.9292, 13.8182, 13.4852, 13.3187)), row.names = c(NA,
-700L), class = c("tbl_df", "tbl", "data.frame"))
Below r1 is the mean of the last 365 rows. (Note that that is what the question asked for but there are not 365 days of data in a year since it seems weekends are missing so this is not the mean of the last year.)
r2 is the mean of the last 365 rows every 30 days. Again I doubt that that is what you wanted even though that is what was asked for.
r3 is the mean of the last 12 months. Presumably this is what you actually need.
Each of these is a zoo object. It is probably best to leave them as zoo objects so you can use the rest of that package easily and not convert them to data frames but if you do want to convert then just use fortify.zoo(r1), etc.
library(zoo)
z <- zoo(data[-1], data[[1]])
r1 <- rollapplyr(z, 365, mean, fill = NA)
r2 <- rollapplyr(z, 365, mean, by = 30, fill = NA)
z.ym <- aggregate(z, as.yearmon, sum)
z.n <- aggregate(z, as.yearmon, length)
r3 <- rollsumr(z.ym, 12, fill = NA) / rollsumr(z.n, 12, fill = NA)
How about this (notice I switched the order of the loops)
If you are iterating over a number:
for (j in 1:498){
for (u in seq(0,5605-30,30))
{
work.on.col = j
work.dt = data[u:u+30,work.on.col] #u:u+30 iterates i.e: 0:30, 30:60,...etc. It only keeps a 30-day rolling window.
}
}
If you are iterating over a date (this would only work if you had your rownames as dates):
for (j in 1:498){
for (u in sapply(seq.Date(as.Date(min(data$Dates)), as.Date(max(data$Dates)),
"day")," [[",30))
{
work.on.col = j
work.dt = data[u:u+30,work.on.col]
}
}

How to specify explicitly the month section while plotting a seasonal plot?

I am trying to learn forecast using fpp2 package on bitcoin data. The bitcoin_ts excel just has two columns, one the date column another the closing price for each date.
library(fpp2)
bitcoin_ts <- read_excel("bitcoin_ts.xlsx")
head(bitcoin_ts)
myts <- ts(bitcoin_ts[,2], start = c(2013, 2), frequency = 366)
##autoplot(myts, facets = FALSE)
ggseasonplot(myts)
As beginning of the data is 2013 and from the month of April, which is the second quarter, I specified start as 2013 and 2 and frequency I gave as number of days in a year.
I get a graph as attached the lower scale (season), my requirement is to show months but I guess due to the all the dates being included in the data it is getting superimposed. How can I fix this to achieve only months over there?
I would like to see something similar to this chart (of course the data upon which this chart was plotted had only year and month (ex: Mar-81)
Unable to attach the entire 1655 observations as the this textbox is set to a limit of 30K characters.
However I attaching the link to the dataset as well.
Complete Dataset
Below find the sample of first 500,
> dput(head(bitcoin_ts,500))
structure(list(Date = structure(c(1367107200, 1367193600, 1367280000,
1367366400, 1367452800, 1367539200, 1367625600, 1367712000, 1367798400,
1367884800, 1367971200, 1368057600, 1368144000, 1368230400, 1368316800,
1368403200, 1368489600, 1368576000, 1368662400, 1368748800, 1368835200,
1368921600, 1369008000, 1369094400, 1369180800, 1369267200, 1369353600,
1369440000, 1369526400, 1369612800, 1369699200, 1369785600, 1369872000,
1369958400, 1370044800, 1370131200, 1370217600, 1370304000, 1370390400,
1370476800, 1370563200, 1370649600, 1370736000, 1370822400, 1370908800,
1370995200, 1371081600, 1371168000, 1371254400, 1371340800, 1371427200,
1371513600, 1371600000, 1371686400, 1371772800, 1371859200, 1371945600,
1372032000, 1372118400, 1372204800, 1372291200, 1372377600, 1372464000,
1372550400, 1372636800, 1372723200, 1372809600, 1372896000, 1372982400,
1373068800, 1373155200, 1373241600, 1373328000, 1373414400, 1373500800,
1373587200, 1373673600, 1373760000, 1373846400, 1373932800, 1374019200,
1374105600, 1374192000, 1374278400, 1374364800, 1374451200, 1374537600,
1374624000, 1374710400, 1374796800, 1374883200, 1374969600, 1375056000,
1375142400, 1375228800, 1375315200, 1375401600, 1375488000, 1375574400,
1375660800, 1375747200, 1375833600, 1375920000, 1376006400, 1376092800,
1376179200, 1376265600, 1376352000, 1376438400, 1376524800, 1376611200,
1376697600, 1376784000, 1376870400, 1376956800, 1377043200, 1377129600,
1377216000, 1377302400, 1377388800, 1377475200, 1377561600, 1377648000,
1377734400, 1377820800, 1377907200, 1377993600, 1378080000, 1378166400,
1378252800, 1378339200, 1378425600, 1378512000, 1378598400, 1378684800,
1378771200, 1378857600, 1378944000, 1379030400, 1379116800, 1379203200,
1379289600, 1379376000, 1379462400, 1379548800, 1379635200, 1379721600,
1379808000, 1379894400, 1379980800, 1380067200, 1380153600, 1380240000,
1380326400, 1380412800, 1380499200, 1380585600, 1380672000, 1380758400,
1380844800, 1380931200, 1381017600, 1381104000, 1381190400, 1381276800,
1381363200, 1381449600, 1381536000, 1381622400, 1381708800, 1381795200,
1381881600, 1381968000, 1382054400, 1382140800, 1382227200, 1382313600,
1382400000, 1382486400, 1382572800, 1382659200, 1382745600, 1382832000,
1382918400, 1383004800, 1383091200, 1383177600, 1383264000, 1383350400,
1383436800, 1383523200, 1383609600, 1383696000, 1383782400, 1383868800,
1383955200, 1384041600, 1384128000, 1384214400, 1384300800, 1384387200,
1384473600, 1384560000, 1384646400, 1384732800, 1384819200, 1384905600,
1384992000, 1385078400, 1385164800, 1385251200, 1385337600, 1385424000,
1385510400, 1385596800, 1385683200, 1385769600, 1385856000, 1385942400,
1386028800, 1386115200, 1386201600, 1386288000, 1386374400, 1386460800,
1386547200, 1386633600, 1386720000, 1386806400, 1386892800, 1386979200,
1387065600, 1387152000, 1387238400, 1387324800, 1387411200, 1387497600,
1387584000, 1387670400, 1387756800, 1387843200, 1387929600, 1388016000,
1388102400, 1388188800, 1388275200, 1388361600, 1388448000, 1388534400,
1388620800, 1388707200, 1388793600, 1388880000, 1388966400, 1389052800,
1389139200, 1389225600, 1389312000, 1389398400, 1389484800, 1389571200,
1389657600, 1389744000, 1389830400, 1389916800, 1390003200, 1390089600,
1390176000, 1390262400, 1390348800, 1390435200, 1390521600, 1390608000,
1390694400, 1390780800, 1390867200, 1390953600, 1391040000, 1391126400,
1391212800, 1391299200, 1391385600, 1391472000, 1391558400, 1391644800,
1391731200, 1391817600, 1391904000, 1391990400, 1392076800, 1392163200,
1392249600, 1392336000, 1392422400, 1392508800, 1392595200, 1392681600,
1392768000, 1392854400, 1392940800, 1393027200, 1393113600, 1393200000,
1393286400, 1393372800, 1393459200, 1393545600, 1393632000, 1393718400,
1393804800, 1393891200, 1393977600, 1394064000, 1394150400, 1394236800,
1394323200, 1394409600, 1394496000, 1394582400, 1394668800, 1394755200,
1394841600, 1394928000, 1395014400, 1395100800, 1395187200, 1395273600,
1395360000, 1395446400, 1395532800, 1395619200, 1395705600, 1395792000,
1395878400, 1395964800, 1396051200, 1396137600, 1396224000, 1396310400,
1396396800, 1396483200, 1396569600, 1396656000, 1396742400, 1396828800,
1396915200, 1397001600, 1397088000, 1397174400, 1397260800, 1397347200,
1397433600, 1397520000, 1397606400, 1397692800, 1397779200, 1397865600,
1397952000, 1398038400, 1398124800, 1398211200, 1398297600, 1398384000,
1398470400, 1398556800, 1398643200, 1398729600, 1398816000, 1398902400,
1398988800, 1399075200, 1399161600, 1399248000, 1399334400, 1399420800,
1399507200, 1399593600, 1399680000, 1399766400, 1399852800, 1399939200,
1400025600, 1400112000, 1400198400, 1400284800, 1400371200, 1400457600,
1400544000, 1400630400, 1400716800, 1400803200, 1400889600, 1400976000,
1401062400, 1401148800, 1401235200, 1401321600, 1401408000, 1401494400,
1401580800, 1401667200, 1401753600, 1401840000, 1401926400, 1402012800,
1402099200, 1402185600, 1402272000, 1402358400, 1402444800, 1402531200,
1402617600, 1402704000, 1402790400, 1402876800, 1402963200, 1403049600,
1403136000, 1403222400, 1403308800, 1403395200, 1403481600, 1403568000,
1403654400, 1403740800, 1403827200, 1403913600, 1.404e+09, 1404086400,
1404172800, 1404259200, 1404345600, 1404432000, 1404518400, 1404604800,
1404691200, 1404777600, 1404864000, 1404950400, 1405036800, 1405123200,
1405209600, 1405296000, 1405382400, 1405468800, 1405555200, 1405641600,
1405728000, 1405814400, 1405900800, 1405987200, 1406073600, 1406160000,
1406246400, 1406332800, 1406419200, 1406505600, 1406592000, 1406678400,
1406764800, 1406851200, 1406937600, 1407024000, 1407110400, 1407196800,
1407283200, 1407369600, 1407456000, 1407542400, 1407628800, 1407715200,
1407801600, 1407888000, 1407974400, 1408060800, 1408147200, 1408233600,
1408320000, 1408406400, 1408492800, 1408579200, 1408665600, 1408752000,
1408838400, 1408924800, 1409011200, 1409097600, 1409184000, 1409270400,
1409356800, 1409443200, 1409529600, 1409616000, 1409702400, 1409788800,
1409875200, 1409961600, 1410048000, 1410134400, 1410220800), class = c("POSIXct",
"POSIXt"), tzone = "UTC"), Close = c(134.21, 144.54, 139, 116.99,
105.21, 97.75, 112.5, 115.91, 112.3, 111.5, 113.57, 112.67, 117.2,
115.24, 115, 117.98, 111.5, 114.22, 118.76, 123.02, 123.5, 121.99,
122, 122.88, 123.89, 126.7, 133.2, 131.98, 133.48, 129.75, 129,
132.3, 128.8, 129, 129.3, 122.29, 122.22, 121.42, 121.65, 118,
111.5, 108.3, 100, 106.35, 108.9, 108.15, 104, 99.98, 99.99,
99.51, 101.7, 107.4, 108.25, 110.15, 109.5, 108.3, 107.6, 102.74,
103.95, 104, 101.44, 94.65, 94.99, 96.61, 88.05, 90.13, 77.53,
80.53, 68.43, 70.28, 74.56, 76.52, 76.69, 86.76, 88.98, 93.59,
98.13, 94.69, 98.4, 97.45, 98.5, 90.58, 92.17, 89.39, 90.76,
91.61, 95.56, 94.51, 96.9, 96.02, 94.12, 99.76, 101.2, 107.99,
106.09, 104, 104.5, 104, 105.14, 106.22, 106.75, 106.75, 103,
102.8, 103, 105, 106.64, 109, 112.56, 109.99, 108.99, 113.5,
113.5, 119, 121.2, 123.3, 121.15, 118.5, 120.05, 122.11, 120.06,
126.5, 122.62, 122.39, 133.49, 135.35, 138.34, 135.85, 136.77,
126.74, 126.43, 119.15, 124.15, 121.66, 127.11, 125.91, 135.25,
133.13, 134.98, 129.22, 130.37, 131.72, 131.66, 131.47, 129.65,
127.04, 127.43, 129.12, 125.95, 127.25, 128.22, 128.38, 133.78,
134.78, 137.34, 133, 132.18, 114.13, 123.63, 129.01, 128.55,
129, 126.94, 126, 130.69, 130.59, 130.9, 135.19, 138.13, 140.52,
145.24, 142.55, 146.25, 155.96, 172.42, 174.61, 182.21, 193.76,
213.62, 198.23, 186.69, 177.32, 196.44, 198.55, 204.39, 199.97,
204, 206.18, 206.22, 215.05, 229.1, 245.24, 262.5, 296.41, 338.11,
339.11, 326.62, 342.44, 360.33, 407.37, 420.2, 417.95, 440.22,
492.11, 703.56, 584.61, 590.83, 722.43, 771.44, 797.82, 774.25,
799.11, 928.1, 1001.96, 1031.95, 1131.97, 1129.43, 955.85, 1043.33,
1078.28, 1151.17, 1045.11, 829.45, 698.23, 795.87, 893.19, 988.51,
878.48, 873.26, 892.58, 872.6, 876.12, 705.97, 682.12, 522.7,
691.96, 625.32, 605.66, 617.18, 673.41, 665.58, 682.21, 761.98,
735.07, 727.83, 745.05, 756.13, 754.01, 771.4, 802.39, 818.72,
859.51, 933.53, 953.29, 802, 842.72, 846.86, 868.48, 913.95,
863.22, 841.2, 833.27, 860.9, 835.63, 814.64, 840, 870.96, 870.2,
863.91, 845.59, 822.04, 797.07, 853.61, 885.28, 771.39, 812.51,
826, 819.03, 829.92, 832.58, 825.37, 823.83, 827.96, 811.91,
781.55, 712.4, 673.92, 682.9, 681.03, 672.17, 651.72, 605.24,
661.99, 650.92, 616.63, 626.27, 626.6, 623.03, 556.14, 574.16,
605.42, 605.82, 546.32, 538.71, 582.69, 578.77, 549.26, 565.61,
559.79, 667.76, 666.78, 665.51, 663.86, 629.15, 617.45, 636.96,
627.79, 634.11, 632.1, 638.14, 628.8, 636.12, 631.11, 622.37,
614.83, 609.89, 588.77, 571.49, 565.04, 561.27, 583.41, 583.92,
580.83, 471.24, 495.67, 491.17, 460.27, 457, 478.38, 437.14,
444.72, 447.53, 461.91, 460.5, 449.42, 453.09, 442.73, 365.18,
420.95, 421.12, 414.06, 458.79, 515.59, 527.39, 495.96, 479.64,
501.56, 498.17, 495.77, 487.92, 491.3, 500.46, 461.45, 458.6,
436.39, 440.29, 447.21, 447.64, 457.76, 449.38, 437.76, 436.4,
433.48, 428.96, 438.82, 440.17, 449.46, 454.43, 438.89, 441.46,
440.67, 443.97, 447.25, 448.06, 448.9, 446.26, 446.18, 485.72,
491.77, 524.58, 520.22, 525.14, 571.59, 583.42, 571.24, 577.06,
568.18, 615.33, 623.68, 630.23, 660.62, 667.61, 641.61, 659.26,
653.7, 654.97, 656.14, 649.16, 653.15, 633.02, 586.95, 600.16,
577.36, 592.94, 592.19, 610.86, 607.96, 598.07, 594.15, 594.99,
602.27, 593.98, 582.36, 566.34, 581.14, 597.26, 596.55, 602.72,
639.8, 640.81, 650.88, 645.16, 630.69, 631.46, 635.81, 624.09,
624.82, 624.51, 616.76, 632, 633.71, 626.5, 619.32, 621.59, 616.8,
623.09, 628.78, 628.51, 623.9, 622.21, 621.55, 619.41, 601.73,
601.09, 595.81, 593.85, 585.69, 584.73, 567.29, 586.24, 594.92,
589.33, 586.67, 588.78, 585.44, 584.65, 588.87, 592.58, 589.37,
591.06, 576.37, 569.64, 546.66, 505.97, 497.01, 519.71, 491.8,
461.46, 485.25, 511.98, 517.24, 514.04, 498.07, 508.29, 502.5,
511.57, 511.15, 507.81, 508.52, 504.25, 477.76, 474.88, 477.43,
477.59, 489.66, 483.34, 484.83, 482.28, 474.6, 475.26)), .Names = c("Date",
"Close"), row.names = c(NA, -500L), class = c("tbl_df", "tbl",
"data.frame"))

Approximate a shape outline using constrained B-splines

I'm looking for a possibility to generate a constrained spline in order to approximate a shape (in my case, a footprint outline). As raw data, I have a table with several hundred xy-coordinate pairs, which have been collected from the boundary of the footprint. The spline should only approximate the data points (the spline does not need to pass the data points). I want to be able to smooth the spline to certain degrees. Also, I need to be able to constrain the spline: Defining several critical data points which the spline has to pass.
The R package "cobs" (COnstrained B-Splines, https://cran.r-project.org/web/packages/cobs/index.html) comes very close to providing a solution, offering parameters to constrain the spline as wanted. However, this package does not spline through an ordered sequence of data points, which of course is crucial when you want the spline to follow the boundary of a shape. I tried to spline x and y coordinates separately, but after recombining them two distinct shapes appear in the plot, so this does not seem to work (Or I got something wrong?). Is anybody aware of a solution?
Update: working example (dinosaur footprint outline)
data.txt:
structure(list(V1 = c(124.9, 86.44, 97.22, 81.34, 49.09, 57.18,
-77.6, -191.95, -284.67, -383.18, -379.27, -492.85, -547.72,
-600.67, -713.29, -814.36, -868.27, -926.99, -958.76, -1025.18,
-1077.16, -1105.07, -1126.25, -1112.77, -1087.74, -989.56, -911.59,
-859.61, -745.06, -656.5, -682.01, -637.25, -601.71, -539.09,
-394.79, -219.17, -170.17, -201.48, -122.52, -43.56, 127.97,
344.42, 539.09, 686.11, 987.63, 1253.31, 1283.15, 1536.32, 1741.14,
1832.35, 1700.3, 1787.43, 1911.31, 2017.49, 2097.81, 2135.93,
2093.73, 2066.96, 2063.78, 2022.94, 1978.69, 1919.44, 1904.03,
1895.37, 1854.22, 1810.23, 1771.09, 1741.48, 1642.45, 1553.96,
1472.96, 1396.04, 1141.65, 1085.82, 1055.02, 1358.24, 1325.94,
1031.91, 1287.14, 1265.36, 931.15, 872.12, 811.48, 755.65, 738.32,
697.41, 682.49, 647.35, 628.25, 620.09, 629.62, 675.22, 709.25,
718.78, 717.42, 551.09, 535.21, 540.98, 534.73, 546.76, 811.96,
823.03, 822.07, 607.4, 626.18, 637.73, 659.87, 756.13, 753.72,
735.91, 720.99, 676.71, 576.6, 508.26, 339.8, 179.53, 121.16,
45.6, 12.93, -9.87, -12.59, 16, 27.91, 37.78, 49.35, 8.51, 2.72,
-1.02, 59.22, 58.2, 51.73, 54.45, 0.96, 10.59, 138.62, 149.69,
144.87, 142.26, 146.34, 125.24, 124.9, 86.44, 97.22, 81.34, 49.09,
57.18, -77.6, -191.95, -284.67, -383.18, -379.27, -492.85, -547.72,
-600.67, -713.29, -814.36, -868.27, -926.99, -958.76, -1025.18,
-1077.16, -1105.07, -1126.25, -1112.77, -1087.74, -989.56, -911.59,
-859.61, -745.06, -656.5, -682.01, -637.25, -601.71, -539.09,
-394.79, -219.17, -170.17, -201.48, -122.52, -43.56, 127.97,
344.42, 539.09, 686.11, 987.63, 1253.31, 1283.15, 1536.32, 1741.14,
1832.35, 1700.3, 1787.43, 1911.31, 2017.49, 2097.81, 2135.93,
2093.73, 2066.96, 2063.78, 2022.94, 1978.69, 1919.44, 1904.03,
1895.37, 1854.22, 1810.23, 1771.09, 1741.48, 1642.45, 1553.96,
1472.96, 1396.04, 1141.65, 1085.82, 1055.02, 1358.24, 1325.94,
1031.91, 1287.14, 1265.36, 931.15, 872.12, 811.48, 755.65, 738.32,
697.41, 682.49, 647.35, 628.25, 620.09, 629.62, 675.22, 709.25,
718.78, 717.42, 551.09, 535.21, 540.98, 534.73, 546.76, 811.96,
823.03, 822.07, 607.4, 626.18, 637.73, 659.87, 756.13, 753.72,
735.91, 720.99, 676.71, 576.6, 508.26, 339.8, 179.53, 121.16,
45.6, 12.93, -9.87, -12.59, 16, 27.91, 37.78, 49.35, 8.51, 2.72,
-1.02, 59.22, 58.2, 51.73, 54.45, 0.96, 10.59, 138.62, 149.69,
144.87, 142.26, 146.34, 125.24), V2 = c(-446.8, -415.83, -394.43,
-259.19, -104.69, -4.03, 58.59, -80.26, 52.11, -48.33, -142.23,
-176.89, -233.68, -321.28, -416.57, -457.97, -458.93, -429.09,
-422.35, -450.27, -431.98, -379.03, -260.63, -123.94, -2.65,
269.76, 455.55, 548.92, 616.3, 691.38, 756.84, 888.72, 1016.97,
1157.18, 1198.02, 1101.37, 1025.14, 929.84, 852.25, 766.48, 717.47,
733.81, 784.18, 835.91, 1225.63, 1198.68, 925.3, 742.4, 814.13,
732.45, 586.79, 394.84, 212.42, 28.64, -111.58, -337.56, -490.03,
-526.07, -528.82, -547.2, -551.97, -552.3, -585.51, -551.34,
-543.16, -526.1, -494.11, -466.88, -355.93, -274.94, -215.04,
-114.3, -194.21, -103.73, -3.62, 104.2, 230.8, 154.25, 380.55,
416.62, 260.07, 295.75, 295.75, 251.47, 220.67, 225.96, 180.72,
121.52, 4.14, -127.23, -176.24, -332.11, -408.35, -494.11, -573.75,
-582.62, -678.88, -730.38, -788.62, -831.94, -846.38, -895.95,
-934.46, -968.15, -1033.12, -1097.62, -1150.08, -1157.3, -1254.04,
-1340.2, -1441.75, -1500.47, -1550.52, -1605.39, -1681.44, -1709.84,
-1715.22, -1672.34, -1607, -1522.59, -1440.57, -1421.18, -1345.62,
-1247.95, -1190.77, -1181.58, -1071.65, -1037.62, -1010.39, -998.82,
-986.57, -937.9, -887.29, -842.05, -831.46, -774.66, -703.91,
-573.75, -533.59, -448.16, -446.8, -415.83, -394.43, -259.19,
-104.69, -4.03, 58.59, -80.26, 52.11, -48.33, -142.23, -176.89,
-233.68, -321.28, -416.57, -457.97, -458.93, -429.09, -422.35,
-450.27, -431.98, -379.03, -260.63, -123.94, -2.65, 269.76, 455.55,
548.92, 616.3, 691.38, 756.84, 888.72, 1016.97, 1157.18, 1198.02,
1101.37, 1025.14, 929.84, 852.25, 766.48, 717.47, 733.81, 784.18,
835.91, 1225.63, 1198.68, 925.3, 742.4, 814.13, 732.45, 586.79,
394.84, 212.42, 28.64, -111.58, -337.56, -490.03, -526.07, -528.82,
-547.2, -551.97, -552.3, -585.51, -551.34, -543.16, -526.1, -494.11,
-466.88, -355.93, -274.94, -215.04, -114.3, -194.21, -103.73,
-3.62, 104.2, 230.8, 154.25, 380.55, 416.62, 260.07, 295.75,
295.75, 251.47, 220.67, 225.96, 180.72, 121.52, 4.14, -127.23,
-176.24, -332.11, -408.35, -494.11, -573.75, -582.62, -678.88,
-730.38, -788.62, -831.94, -846.38, -895.95, -934.46, -968.15,
-1033.12, -1097.62, -1150.08, -1157.3, -1254.04, -1340.2, -1441.75,
-1500.47, -1550.52, -1605.39, -1681.44, -1709.84, -1715.22, -1672.34,
-1607, -1522.59, -1440.57, -1421.18, -1345.62, -1247.95, -1190.77,
-1181.58, -1071.65, -1037.62, -1010.39, -998.82, -986.57, -937.9,
-887.29, -842.05, -831.46, -774.66, -703.91, -573.75, -533.59,
-448.16)), .Names = c("V1", "V2"), class = "data.frame", row.names = c(NA,
-280L))
require(cobs)
xy <- dget(data.txt)
#Cumchord function (from Claude, 2008): Cumulative chordal distance vector
cumchord<-function(M)
{cumsum(sqrt(apply((M-rbind(M[1,],
M[-(dim(M)[1]),]))^2,1,sum)))}
z <- cumchord(xy)
#Calculating B-spline for x and y values separately
x <- cobs(z,xy[,1],nknots=50)
y <- cobs(z,xy[,2],nknots=50)
#Plot spline
plot(xy)
lines(x$fitted,y$fitted)
Image of resulting plot
Following the comments thread, here are some graphs. I use Momocs since I'm familiar with it and it will shorten examples.
I brief, your problem is that there are two outlines in your outline.
I also include original use of spline by Julien Claude, and two additional examples with bezier curves and elliptic Fourier transforms. All 4 can be used to describe an outline (and reconstruct it) and it's probably worth gathering them here.
The picture gathers the original shape and these 4 methods
Now the code. It's not particularly long but quite repetitive.
# devtools::install_github("vbonhomme/Momocs")
library(Momocs) # version 1.0.3
xy <- structure(list(
V1 = c(124.9, 86.44, 97.22, 81.34, 49.09, 57.18, -77.6, -191.95, -284.67, -383.18, -379.27, -492.85, -547.72, -600.67, -713.29, -814.36, -868.27, -926.99, -958.76, -1025.18, -1077.16, -1105.07, -1126.25, -1112.77, -1087.74, -989.56, -911.59, -859.61, -745.06, -656.5, -682.01, -637.25, -601.71, -539.09, -394.79, -219.17, -170.17, -201.48, -122.52, -43.56, 127.97, 344.42, 539.09, 686.11, 987.63, 1253.31, 1283.15, 1536.32, 1741.14, 1832.35, 1700.3, 1787.43, 1911.31, 2017.49, 2097.81, 2135.93, 2093.73, 2066.96, 2063.78, 2022.94, 1978.69, 1919.44, 1904.03, 1895.37, 1854.22, 1810.23, 1771.09, 1741.48, 1642.45, 1553.96, 1472.96, 1396.04, 1141.65, 1085.82, 1055.02, 1358.24, 1325.94, 1031.91, 1287.14, 1265.36, 931.15, 872.12, 811.48, 755.65, 738.32, 697.41, 682.49, 647.35, 628.25, 620.09, 629.62, 675.22, 709.25, 718.78, 717.42, 551.09, 535.21, 540.98, 534.73, 546.76, 811.96, 823.03, 822.07, 607.4, 626.18, 637.73, 659.87, 756.13, 753.72, 735.91, 720.99, 676.71, 576.6, 508.26, 339.8, 179.53, 121.16, 45.6, 12.93, -9.87, -12.59, 16, 27.91, 37.78, 49.35, 8.51, 2.72, -1.02, 59.22, 58.2, 51.73, 54.45, 0.96, 10.59, 138.62, 149.69, 144.87, 142.26, 146.34, 125.24, 124.9, 86.44, 97.22, 81.34, 49.09, 57.18, -77.6, -191.95, -284.67, -383.18, -379.27, -492.85, -547.72, -600.67, -713.29, -814.36, -868.27, -926.99, -958.76, -1025.18, -1077.16, -1105.07, -1126.25, -1112.77, -1087.74, -989.56, -911.59, -859.61, -745.06, -656.5, -682.01, -637.25, -601.71, -539.09, -394.79, -219.17, -170.17, -201.48, -122.52, -43.56, 127.97, 344.42, 539.09, 686.11, 987.63, 1253.31, 1283.15, 1536.32, 1741.14, 1832.35, 1700.3, 1787.43, 1911.31, 2017.49, 2097.81, 2135.93, 2093.73, 2066.96, 2063.78, 2022.94, 1978.69, 1919.44, 1904.03, 1895.37, 1854.22, 1810.23, 1771.09, 1741.48, 1642.45, 1553.96, 1472.96, 1396.04, 1141.65, 1085.82, 1055.02, 1358.24, 1325.94, 1031.91, 1287.14, 1265.36, 931.15, 872.12, 811.48, 755.65, 738.32, 697.41, 682.49, 647.35, 628.25, 620.09, 629.62, 675.22, 709.25, 718.78, 717.42, 551.09, 535.21, 540.98, 534.73, 546.76, 811.96, 823.03, 822.07, 607.4, 626.18, 637.73, 659.87, 756.13, 753.72, 735.91, 720.99, 676.71, 576.6, 508.26, 339.8, 179.53, 121.16, 45.6, 12.93, -9.87, -12.59, 16, 27.91, 37.78, 49.35, 8.51, 2.72, -1.02, 59.22, 58.2, 51.73, 54.45, 0.96, 10.59, 138.62, 149.69, 144.87, 142.26, 146.34, 125.24),
V2 = c(-446.8, -415.83, -394.43, -259.19, -104.69, -4.03, 58.59, -80.26, 52.11, -48.33, -142.23, -176.89, -233.68, -321.28, -416.57, -457.97, -458.93, -429.09, -422.35, -450.27, -431.98, -379.03, -260.63, -123.94, -2.65, 269.76, 455.55, 548.92, 616.3, 691.38, 756.84, 888.72, 1016.97, 1157.18, 1198.02, 1101.37, 1025.14, 929.84, 852.25, 766.48, 717.47, 733.81, 784.18, 835.91, 1225.63, 1198.68, 925.3, 742.4, 814.13, 732.45, 586.79, 394.84, 212.42, 28.64, -111.58, -337.56, -490.03, -526.07, -528.82, -547.2, -551.97, -552.3, -585.51, -551.34, -543.16, -526.1, -494.11, -466.88, -355.93, -274.94, -215.04, -114.3, -194.21, -103.73, -3.62, 104.2, 230.8, 154.25, 380.55, 416.62, 260.07, 295.75, 295.75, 251.47, 220.67, 225.96, 180.72, 121.52, 4.14, -127.23, -176.24, -332.11, -408.35, -494.11, -573.75, -582.62, -678.88, -730.38, -788.62, -831.94, -846.38, -895.95, -934.46, -968.15, -1033.12, -1097.62, -1150.08, -1157.3, -1254.04, -1340.2, -1441.75, -1500.47, -1550.52, -1605.39, -1681.44, -1709.84, -1715.22, -1672.34, -1607, -1522.59, -1440.57, -1421.18, -1345.62, -1247.95, -1190.77, -1181.58, -1071.65, -1037.62, -1010.39, -998.82, -986.57, -937.9, -887.29, -842.05, -831.46, -774.66, -703.91, -573.75, -533.59, -448.16, -446.8, -415.83, -394.43, -259.19, -104.69, -4.03, 58.59, -80.26, 52.11, -48.33, -142.23, -176.89, -233.68, -321.28, -416.57, -457.97, -458.93, -429.09, -422.35, -450.27, -431.98, -379.03, -260.63, -123.94, -2.65, 269.76, 455.55, 548.92, 616.3, 691.38, 756.84, 888.72, 1016.97, 1157.18, 1198.02, 1101.37, 1025.14, 929.84, 852.25, 766.48, 717.47, 733.81, 784.18, 835.91, 1225.63, 1198.68, 925.3, 742.4, 814.13, 732.45, 586.79, 394.84, 212.42, 28.64, -111.58, -337.56, -490.03, -526.07, -528.82, -547.2, -551.97, -552.3, -585.51, -551.34, -543.16, -526.1, -494.11, -466.88, -355.93, -274.94, -215.04, -114.3, -194.21, -103.73, -3.62, 104.2, 230.8, 154.25, 380.55, 416.62, 260.07, 295.75, 295.75, 251.47, 220.67, 225.96, 180.72, 121.52, 4.14, -127.23, -176.24, -332.11, -408.35, -494.11, -573.75, -582.62, -678.88, -730.38, -788.62, -831.94, -846.38, -895.95, -934.46, -968.15, -1033.12, -1097.62, -1150.08, -1157.3, -1254.04, -1340.2, -1441.75, -1500.47, -1550.52, -1605.39, -1681.44, -1709.84, -1715.22, -1672.34, -1607, -1522.59, -1440.57, -1421.18, -1345.62, -1247.95, -1190.77, -1181.58, -1071.65, -1037.62, -1010.39, -998.82, -986.57, -937.9, -887.29, -842.05, -831.46, -774.66, -703.91, -573.75, -533.59, -448.16)), .Names = c("V1", "V2"), class = "data.frame", row.names = c(NA, -280L))
### First thing first: double outline ---------------------
coo_plot(xy)
ldk_labels(xy) # blurry since superimposed
coo_plot(xy[1:140, ], lwd=3) # first shape
coo_draw(xy[-(1:140), ], border="white") # second shape
# so from here, we will use the first 140th points from xy and name it 'shp' to avoid confusion
# if you're bored with dinos footprints, you can use beer bottles with shp <- bot[9] for a guinness
shp <- xy[1:140, ]
### 1.Natural splines ---------------------
shp_cumchord <- coo_perimcum(shp) # cumchord equivalent
shp_spline <- cbind(spline(shp_cumchord, shp[, 1], method="natural", n=120)$y,
spline(shp_cumchord, shp[, 2], method="natural", n=120)$y)
coo_plot(shp, main="natural spline", zoom=1.2)
coo_draw(shp_spline, border="blue", lwd=2)
### 2. B-splines with cobs ---------------------
library(cobs)
shp_bspline <- cbind(cobs(shp_cumchord, shp[, 1], nknots=50)$fitted,
cobs(shp_cumchord, shp[, 2], nknots=50)$fitted)
coo_plot(shp, main = "bspline", zoom=1.2)
coo_draw(shp_bspline, border="blue")
### 3. Bezier curves ---------------------
# built in function so it's shorter
shp_bezier <- shp %>% bezier() %>% bezier_i()
coo_plot(shp, main = "bezier", zoom=1.2)
coo_draw(shp_bezier, border="blue")
### 4. elliptic Fourier transforms ---------------------
# another built in function
shp_eft <- shp %>% efourier() %>% efourier_i()
coo_plot(shp, main = "bspline", zoom=1.2)
coo_draw(shp_eft, border="blue")
### 5. A panel of original shape and 4 methods ---------
Out(list(original=shp,
nat_spline=shp_spline, bspline=shp_bspline,
bezier=shp_bezier, eft=shp_eft)) %>%
panel(names=TRUE, dim=c(1, 5))

R forecast function not picking up seasonality

I am having trouble picking up the seasonality the seems to be implied in the data. I think (though its just a guess that its using additive and not multiplicative seasonality). I am using the forecast function and thought it would automatically pick what I need based on a lecture from Dr. Hyndman. The following snipet of code plots the chart and I would have expected the forecast to be higher then it is. Am I missing a model parameter or something? Any help would be appreciated.
sw<-c(2280, 1754, 1667, 1359, 1285, 1379, 2166, 1053, 1076, 1149, 1277, 1577, 1639, 1719, 1592, 2306, 3075, 2897, 1875, 1966, 2927, 3528, 2948, 2890, 3947, 3913, 3885, 4148, 5293, 5752, 6001, 7719, 5512, 6782, 6320, 6425, 6406, 7237, 8655, 9269, 12447, 13470, 13469, 13949, 17753, 17653, 14531, 14496, 13643, 12652, 12665, 10629, 8962, 8198, 6833, 5027, 4407, 4449, 4399, 5896, 6589, 3786, 4386, 4847, 5597, 5407, 4800, 7803, 9255, 10423, 5523, 8121, 6944, 8434, 9847, 9292, 9794, 10195, 10124, 11310, 12245, 12798, 14611, 15402, 13532, 16154, 15101, 14755, 17139, 16475, 19935, 19980, 25173, 28568, 27839, 28991, 27073, 29615, 25849, 27910, 27067, 21303, 20544, 15188, 13706, 9277, 10815, 7228, 4608, 4409, 9866, 8471, 8223, 6445, 6641, 6833, 11421, 8945, 8127, 10380, 12005, 13272, 9431, 12144, 14934, 14052, 11712, 14888, 15824, 17275, 18067, 19839, 21192, 22763, 22976, 23721, 22681, 20131, 19965, 20539, 19517, 22022, 23076, 30574, 40247, 43111, 39577, 40724, 44982, 44388, 46372, 43153, 36821, 32258, 31256, 27153, 23180, 18252, 16381, 13220, 12500, 10727, 9636, 8892, 8644, 9482, 9170, 10937, 12299, 15781, 11477, 16524, 16752, 18072, 14776, 13388, 18056, 19815, 21263, 22046, 26415, 24247, 25403, 30058, 26331, 32533, 31891, 35973, 27558, 24554, 25692, 25955, 24284, 24930, 28354, 34840, 40055, 42099, 42768, 48279, 50086, 56466, 42244, 51451, 44583, 39091, 33391, 29452, 25533)
swts <- ts(sw, frequency=52, start=c(2006,30))
swfc <- forecast(swts,h=52)
plot(swfc)
Did you data have multiple seasonal periods? If so you could check the tbats function.
Anyway, your seasonal period is greater than 12, so forecast is using a stl decomposition to adjust your seasonal data. Maybe you wanna check ?stlf for more info on what parameters you can change, or try a BoxCox transformation:
lambda <- BoxCox.lambda(sw)
swfc <- forecast(swts,h=52, lambda = lambda, robust = TRUE)
plot(swfc)

How to remove NA values in vector in R [duplicate]

This question already has answers here:
Remove NA values from a vector
(8 answers)
Closed 8 years ago.
I have a vector which stores over 1000 values. The first 50 values are NAs, how can I get rid of it?
c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 1.5741, 1.583, 1.605, 1.633, 1.6465, 1.6475, 1.6329,
1.6413, 1.685, 1.692, 1.7087, 1.7055, 1.6985, 1.6807, 1.6745,
1.673, 1.6625, 1.6805, 1.689, 1.667, 1.684, 1.6675, 1.6867, 1.6688,
1.6643, 1.6685, 1.7025, 1.737, 1.7663, 1.742, 1.7535, 1.749,
1.7494, 1.75, 1.711, 1.7145, 1.7205, 1.751, 1.7295, 1.7205, 1.7325,
1.731, 1.7235, 1.712, 1.6967, 1.6872, 1.696, 1.7354, 1.729, 1.712,
1.7208, 1.7115, 1.7035, 1.7032, 1.6947, 1.715, 1.7181, 1.742,
1.7471, 1.7438, 1.7493, 1.7525, 1.773, 1.7695, 1.7735, 1.7895,
1.7905, 1.7945, 1.798, 1.8138, 1.791, 1.7915, 1.802, 1.7812,
1.7925, 1.7873, 1.7952, 1.808, 1.8265, 1.8369, 1.83, 1.8347,
1.826, 1.8079, 1.8165, 1.8104, 1.8333, 1.7864, 1.7878, 1.801,
1.79, 1.7745, 1.7493, 1.7625, 1.7575, 1.739, 1.7615, 1.739, 1.7521,
1.752, 1.7445, 1.7585, 1.7375, 1.7188, 1.709, 1.7092, 1.7154,
1.7273, 1.724, 1.7323, 1.7365, 1.7495, 1.7643, 1.8165, 1.811,
1.7395, 1.7365, 1.749, 1.7485, 1.748, 1.738, 1.743, 1.747, 1.7457,
1.7375, 1.738, 1.7391, 1.7155, 1.6909, 1.6953, 1.6984, 1.6795,
1.6885, 1.672, 1.669, 1.6815, 1.6895, 1.6855, 1.6697, 1.6845,
1.683, 1.6865, 1.6715, 1.6628, 1.6687, 1.6674, 1.6638, 1.682,
1.6825, 1.6953, 1.6915, 1.6955, 1.69, 1.7, 1.7105, 1.704, 1.705,
1.6867, 1.6917, 1.6954, 1.71, 1.702, 1.6985, 1.7185, 1.6898,
1.6725, 1.6725, 1.6515, 1.6305, 1.6355, 1.642, 1.631, 1.6425,
1.6375, 1.6355, 1.634, 1.6285, 1.6358, 1.6069, 1.602, 1.5995,
1.595, 1.582, 1.584, 1.5825, 1.6193, 1.6163, 1.6248, 1.6073,
1.615, 1.6125, 1.5865, 1.5718, 1.5714, 1.575, 1.579, 1.5835,
1.586, 1.5774, 1.5755, 1.5715, 1.557, 1.5345, 1.5115, 1.5208,
1.508, 1.5175, 1.5165, 1.517, 1.5268, 1.5444, 1.5195, 1.518,
1.5135, 1.5658, 1.583, 1.5757, 1.5945, 1.6245, 1.6135, 1.609,
1.5923, 1.586, 1.5915, 1.6032, 1.5893, 1.6125, 1.5965, 1.5972,
1.6142, 1.6085, 1.5995, 1.5907, 1.585, 1.5755, 1.563, 1.5768,
1.5917, 1.607, 1.6273, 1.623, 1.6223, 1.6455, 1.6438, 1.6435,
1.653, 1.6518, 1.647, 1.651, 1.6415, 1.6367, 1.6415, 1.6579,
1.672, 1.6737, 1.669, 1.6615, 1.6715, 1.663, 1.668, 1.6665, 1.662,
1.6495, 1.649, 1.6715, 1.6725, 1.6691, 1.6655, 1.6502, 1.6605,
1.6425, 1.6465, 1.645, 1.6545, 1.644, 1.6231, 1.6245, 1.6243,
1.6256, 1.616, 1.637, 1.6572, 1.652, 1.663, 1.669, 1.6685, 1.6693,
1.667, 1.6633, 1.662, 1.6495, 1.6525, 1.6545, 1.6588, 1.6495,
1.6395, 1.6482, 1.6391, 1.629, 1.637, 1.6462, 1.64, 1.6235, 1.6165,
1.6105, 1.6125, 1.5965, 1.5907, 1.6027, 1.6145, 1.6175, 1.6135,
1.6125, 1.639, 1.629, 1.607, 1.612, 1.6051, 1.6049, 1.603, 1.588,
1.5883, 1.591, 1.5944, 1.5793, 1.577, 1.575, 1.5645, 1.5769,
1.5665, 1.5737, 1.5665, 1.5639, 1.5504, 1.5402, 1.536, 1.5158,
1.5246, 1.5215, 1.5102, 1.5183, 1.5117, 1.4945, 1.4945, 1.5135,
1.495, 1.4772, 1.4832, 1.4793, 1.4785, 1.4589, 1.4965, 1.4865,
1.4872, 1.4835, 1.5037, 1.4815, 1.4745, 1.4815, 1.4835, 1.478,
1.4753, 1.475, 1.4775, 1.477, 1.4707, 1.4661, 1.4684, 1.4626,
1.4558, 1.467, 1.463, 1.4568, 1.453, 1.4478, 1.4275, 1.4035,
1.399, 1.4065, 1.4083, 1.4062, 1.4001, 1.3924, 1.3915, 1.4133,
1.4032, 1.4015, 1.3908, 1.41, 1.4095, 1.4482, 1.483, 1.4862,
1.524, 1.4861, 1.5, 1.4815, 1.4938, 1.5, 1.486, 1.484, 1.451,
1.424, 1.417, 1.4235, 1.409, 1.4164, 1.432, 1.4435, 1.4728, 1.493,
1.4685, 1.47, 1.466, 1.4526, 1.4815, 1.4875, 1.5215, 1.5105,
1.5063, 1.5318, 1.537, 1.5345, 1.5374, 1.538, 1.5362, 1.569,
1.5625, 1.569, 1.5795, 1.5945, 1.589, 1.594, 1.5845, 1.5875,
1.567, 1.5885, 1.5995, 1.597, 1.5795, 1.599, 1.6002, 1.6015,
1.5935, 1.5955, 1.6005, 1.5945, 1.576, 1.5705, 1.5818, 1.596,
1.5625, 1.5575, 1.5665, 1.579, 1.5775, 1.569, 1.5675, 1.554,
1.5605, 1.566, 1.567, 1.5875, 1.5945, 1.598, 1.6092, 1.617, 1.6142,
1.6195, 1.637, 1.6265, 1.6345, 1.635, 1.639, 1.6305, 1.6325,
1.6325, 1.6195, 1.6325, 1.6135, 1.6115, 1.6055, 1.615, 1.5935,
1.573, 1.579, 1.586, 1.585, 1.611, 1.6365, 1.643, 1.6465, 1.656,
1.6545, 1.6555, 1.6545, 1.6595, 1.6575, 1.6615, 1.6587, 1.63,
1.628, 1.633, 1.6365, 1.6285, 1.614, 1.6195, 1.6335, 1.6455,
1.646, 1.643, 1.6475, 1.6355, 1.672, 1.6625, 1.668, 1.665, 1.661,
1.6665, 1.662, 1.6615, 1.6645, 1.654, 1.6335, 1.6375, 1.6305,
1.6265, 1.6425, 1.6315, 1.629, 1.618, 1.6085, 1.596, 1.6105,
1.5965, 1.611, 1.617, 1.6065, 1.6035, 1.6035, 1.578, 1.5925,
1.606, 1.6147, 1.5995, 1.595, 1.6035, 1.606, 1.582, 1.567, 1.5805,
1.5855, 1.5815, 1.5845, 1.5815, 1.5715, 1.5775, 1.5795, 1.5825,
1.6055, 1.6084, 1.6135, 1.616, 1.602, 1.6165, 1.624, 1.624, 1.6145,
1.6255, 1.6378, 1.63, 1.6315, 1.607, 1.5868, 1.5895, 1.5927,
1.5948, 1.6004, 1.626, 1.6195, 1.6225, 1.637, 1.629, 1.6235,
1.628, 1.6375, 1.6605, 1.6568, 1.681, 1.6895, 1.6955, 1.6925,
1.7095, 1.7032, 1.6987, 1.692, 1.704, 1.6976, 1.6965, 1.696,
1.698, 1.7091, 1.707, 1.721, 1.7286, 1.7204, 1.7165, 1.7241,
1.7205, 1.7037, 1.7053, 1.6975, 1.7075, 1.72, 1.7245, 1.7243,
1.7185, 1.7385, 1.7402, 1.712, 1.7057, 1.71, 1.712, 1.6975, 1.7,
1.7115, 1.721, 1.7158, 1.7132, 1.6904, 1.6965, 1.6782, 1.6865,
1.6767, 1.686, 1.679, 1.6868, 1.6665, 1.6645, 1.6738, 1.677,
1.658, 1.6445, 1.623, 1.611, 1.6075, 1.6177, 1.5985, 1.5935,
1.612, 1.6085, 1.5935, 1.6047, 1.6092, 1.608, 1.6187, 1.6325,
1.6443, 1.645, 1.6295, 1.6178, 1.6133, 1.6335, 1.6265, 1.623,
1.6255, 1.6221, 1.6215, 1.601, 1.604, 1.5935, 1.604, 1.6145,
1.6137, 1.6285, 1.6377, 1.647, 1.663, 1.676, 1.673, 1.682, 1.6794,
1.6788, 1.6774, 1.694, 1.6965, 1.6937, 1.6957, 1.691, 1.6842,
1.696, 1.6925, 1.691, 1.6908, 1.6865, 1.7023, 1.706, 1.7095,
1.7145, 1.7032, 1.7005, 1.7027, 1.7082, 1.7118, 1.707, 1.7148,
1.7165, 1.7211, 1.7208, 1.7062, 1.7045, 1.704, 1.7055, 1.6985,
1.706, 1.7125, 1.7163, 1.7078, 1.705, 1.7125, 1.7077, 1.701,
1.6935, 1.6965, 1.7019, 1.7008, 1.7175, 1.735, 1.7365, 1.7371,
1.7398, 1.7399, 1.7397, 1.7333, 1.7308, 1.7398, 1.7366, 1.752,
1.7505, 1.7553, 1.7487, 1.744, 1.7358, 1.7474, 1.7504, 1.7528,
1.748, 1.7441, 1.7273, 1.7444, 1.727, 1.7343, 1.7314, 1.736,
1.763, 1.7658, 1.7603, 1.7534, 1.7517, 1.7438, 1.7255, 1.7219,
1.734, 1.718, 1.7275, 1.7269, 1.7279, 1.7306, 1.7055, 1.7069,
1.709, 1.7037, 1.7088, 1.7198, 1.7184, 1.7155, 1.707, 1.6893,
1.6779, 1.6898, 1.6963, 1.691, 1.68, 1.6961, 1.6979, 1.6885,
1.685, 1.6726, 1.668, 1.6728, 1.6675, 1.6788, 1.6695, 1.6952,
1.6985, 1.7071, 1.7151, 1.7181, 1.7134, 1.708, 1.7188, 1.7135,
1.7088, 1.7124, 1.7202, 1.701, 1.694, 1.6882, 1.6947, 1.6794,
1.6801, 1.6727, 1.6697, 1.657, 1.6501, 1.6461, 1.662, 1.6682,
1.6661, 1.6579, 1.6705, 1.6735, 1.6708, 1.6671, 1.674, 1.6683,
1.6596, 1.6551, 1.6463, 1.6456, 1.6478, 1.6447, 1.6438, 1.6444,
1.6466, 1.6435, 1.6428, 1.6515, 1.6665, 1.6692, 1.6695, 1.6698,
1.6721, 1.6672, 1.65, 1.6443, 1.6354, 1.6319, 1.6299, 1.5986,
1.6009, 1.6006, 1.6035, 1.5972, 1.5758, 1.5849, 1.5825, 1.5915,
1.5946, 1.5965, 1.5826, 1.5685, 1.5745, 1.5741, 1.54, 1.5235,
1.5383, 1.5457, 1.5558, 1.5428, 1.5569, 1.5662, 1.576, 1.5955,
1.5849, 1.5865, 1.576, 1.5795, 1.5888, 1.5743, 1.5814, 1.5792,
1.581, 1.5822, 1.5811, 1.582, 1.5745, 1.5872, 1.5557, 1.5533,
1.5552, 1.5603, 1.5456, 1.5396, 1.5309, 1.5377, 1.5411, 1.5462,
1.5615, 1.5831, 1.5805, 1.5783, 1.577, 1.5602, 1.5537, 1.5426,
1.5486, 1.5562, 1.5419, 1.5435, 1.5493, 1.5374, 1.5467, 1.5376,
1.5528, 1.5508, 1.5449, 1.5488, 1.5443, 1.5551, 1.547, 1.5467,
1.5461, 1.5515, 1.5573, 1.5519, 1.5426, 1.5444, 1.5411, 1.55,
1.5466, 1.5421, 1.5423, 1.5201, 1.5036, 1.5003, 1.5009, 1.5016,
1.4954, 1.497, 1.492, 1.4953, 1.4972, 1.5094, 1.5077, 1.4994,
1.4945, 1.5146, 1.5235, 1.5172, 1.5097, 1.53, 1.5348, 1.528,
1.5453, 1.5454, 1.551, 1.548, 1.5539, 1.5594, 1.5536, 1.5537,
1.5582, 1.5589, 1.5643, 1.5612, 1.5703, 1.5722, 1.5778, 1.5741,
1.5725, 1.571, 1.5777, 1.5773, 1.5728, 1.5728, 1.5691, 1.5718,
1.5714, 1.5738, 1.572, 1.5703, 1.5805, 1.5783, 1.5768, 1.5737,
1.5507, 1.55, 1.5539, 1.559, 1.5535, 1.5575, 1.5539, 1.5341,
1.5354, 1.5295, 1.5327, 1.5282, 1.532, 1.53, 1.5303, 1.5087,
1.5095, 1.5127, 1.5183, 1.5147, 1.5119, 1.5099, 1.5148, 1.5228,
1.52, 1.525, 1.5309, 1.5355, 1.5312, 1.5291, 1.5241, 1.5184,
1.5137, 1.5084, 1.4914, 1.4887, 1.4729, 1.4796, 1.4679, 1.4727,
1.4749, 1.458, 1.4644, 1.465, 1.4601, 1.4329, 1.4028, 1.3926,
1.3855, 1.3904, 1.4145, 1.4053, 1.4136, 1.3926, 1.3882, 1.3865,
1.3973, 1.4125, 1.4061, 1.4015, 1.4128, 1.4087, 1.3997, 1.3773,
1.4107, 1.3685, 1.3723, 1.3854, 1.3835, 1.3763, 1.3811, 1.4055,
1.401, 1.4048, 1.3892, 1.39, 1.3715, 1.3677, 1.3542, 1.3704,
1.3766, 1.3699, 1.365, 1.3811, 1.3734, 1.3823, 1.3902, 1.3753,
1.3746, 1.3697, 1.3711, 1.3646, 1.3701, 1.3906, 1.4135, 1.4433,
1.4466, 1.4414, 1.4368, 1.4597, 1.4404, 1.4482, 1.4362, 1.439,
1.4043, 1.3829, 1.3886, 1.3899, 1.413, 1.4233, 1.406, 1.4074,
1.4188, 1.4074, 1.4198, 1.3973, 1.4029, 1.4044, 1.3974, 1.4106,
1.4007, 1.3991, 1.3924, 1.3921, 1.3845, 1.3877, 1.3942, 1.3846,
1.3884, 1.3891, 1.3841, 1.3782, 1.3817, 1.3833, 1.3816, 1.3935,
1.3988, 1.402, 1.4042, 1.3923, 1.391, 1.3963, 1.3883, 1.3887,
1.3767, 1.3865, 1.3837, 1.393, 1.3849, 1.3863, 1.3792, 1.3807,
1.3805, 1.3967, 1.3915, 1.3928, 1.4048, 1.4067, 1.4073, 1.423,
1.4334, 1.4341, 1.4749, 1.4756, 1.4771, 1.4702, 1.4723, 1.4852,
1.4791, 1.4803, 1.4786, 1.4615, 1.4714, 1.4758, 1.4695, 1.4633,
1.4647, 1.4631, 1.479, 1.475, 1.481, 1.4717, 1.4714, 1.4908,
1.4895, 1.4875, 1.4873, 1.4876, 1.4675, 1.44, 1.4175, 1.4278,
1.4413, 1.4268, 1.4212, 1.423, 1.4299, 1.4393, 1.4363, 1.4301,
1.427, 1.4119, 1.4176, 1.4249, 1.4223, 1.4291, 1.4195, 1.4168,
1.4235, 1.4141, 1.3979, 1.3851, 1.387, 1.3936, 1.4017, 1.4006,
1.4053, 1.4083, 1.4164, 1.4191, 1.4155, 1.4134, 1.4167, 1.4166,
1.4161, 1.4123, 1.4195, 1.4145, 1.4024, 1.4095, 1.4048, 1.4125,
1.4079, 1.4085, 1.4136, 1.4165, 1.4358, 1.4338, 1.4368, 1.4453,
1.4451, 1.4381, 1.4363, 1.4432, 1.4416, 1.448, 1.4442, 1.4485,
1.4499, 1.4418, 1.4426, 1.4318, 1.4355, 1.4434, 1.4402, 1.4402,
1.4333, 1.4313, 1.4319, 1.4313, 1.4347, 1.4403, 1.4565, 1.4375,
1.4403, 1.4432, 1.4383, 1.437, 1.4407, 1.4466, 1.4576, 1.4646,
1.4696, 1.479, 1.4755, 1.4773, 1.4803, 1.4763, 1.4912, 1.4859,
1.4899, 1.4879, 1.4933, 1.4872, 1.4693, 1.4718, 1.4773, 1.4762,
1.4774, 1.4725, 1.4782, 1.4692, 1.4713, 1.4617, 1.443, 1.4533,
1.4513, 1.4516, 1.4513, 1.4471, 1.4528, 1.4614, 1.4697, 1.4759,
1.4758, 1.4789, 1.475, 1.4789, 1.4836, 1.4823, 1.4805, 1.4718,
1.4709, 1.476, 1.4742, 1.4762, 1.4775, 1.4763, 1.4753, 1.4777,
1.4758, 1.4875, 1.4781, 1.4764, 1.4832, 1.4818, 1.4792, 1.4805,
1.4826, 1.4778, 1.4918, 1.4997, 1.5013, 1.5037, 1.5104, 1.5096,
1.5073, 1.5121, 1.5057, 1.5164, 1.518, 1.5219, 1.5295, 1.5288,
1.5213, 1.5336, 1.5336, 1.5328, 1.5273, 1.5266, 1.5213, 1.5183,
1.5168, 1.5249, 1.5336, 1.5368, 1.5341, 1.5368, 1.5262, 1.5347,
1.5415, 1.5387, 1.5405, 1.5414, 1.5414, 1.5483, 1.5453, 1.5323,
1.5275, 1.5265, 1.5318, 1.5293, 1.5301, 1.5345, 1.536, 1.5363,
1.5363, 1.5353, 1.5229, 1.5177, 1.5148, 1.5207, 1.5244, 1.5289,
1.5315, 1.5322, 1.5287, 1.5218, 1.5222, 1.5235, 1.527, 1.5252,
1.5235, 1.528, 1.5278, 1.5233, 1.5246, 1.5217, 1.5226, 1.5184,
1.4922, 1.4865, 1.4917, 1.4885, 1.4863, 1.4897, 1.4877, 1.4784,
1.4809, 1.4808, 1.4774, 1.4728, 1.4736, 1.4779, 1.4813, 1.4843,
1.4829, 1.4845, 1.4784, 1.4753, 1.4767, 1.4834, 1.4856, 1.4935,
1.4882, 1.4893, 1.4817, 1.4959, 1.4874, 1.4783, 1.4777, 1.476,
1.4802, 1.4778, 1.4869, 1.4844, 1.4823, 1.4848, 1.4885, 1.4918,
1.508, 1.5098, 1.5122, 1.5124, 1.5095, 1.5143, 1.5084, 1.514,
1.5149, 1.5134, 1.5132, 1.5102, 1.5217, 1.5243, 1.5253, 1.5258,
1.527, 1.5306, 1.5296, 1.5304, 1.5272, 1.5285, 1.5298, 1.5315,
1.5293, 1.5405, 1.5375, 1.5437, 1.543, 1.5362, 1.535, 1.5234,
1.5227, 1.5234, 1.5203, 1.5103, 1.5073, 1.5132, 1.5165, 1.5132,
1.5168, 1.5164, 1.5078, 1.5059, 1.499, 1.4991, 1.5068, 1.5093,
1.5083, 1.5017, 1.5028, 1.4977, 1.499, 1.5023, 1.5192, 1.5276,
1.5261, 1.5316, 1.5371, 1.5424, 1.5665, 1.5627, 1.5547, 1.5404,
1.5566, 1.5539, 1.5412, 1.5439, 1.5466, 1.5534, 1.5454, 1.5544,
1.5601, 1.5539, 1.5536, 1.5553, 1.5564, 1.5552, 1.5567, 1.5411,
1.5418, 1.5575, 1.5649, 1.5628, 1.5714, 1.5757, 1.5841, 1.5895,
1.594, 1.5895, 1.5925, 1.6113, 1.624, 1.6244, 1.6407, 1.639,
1.6268, 1.6376, 1.6511, 1.6436, 1.6394, 1.6377, 1.6429, 1.6415,
1.6484, 1.6501, 1.6722, 1.6565, 1.6721, 1.6832, 1.6871, 1.6862,
1.6995, 1.6914, 1.694, 1.6896, 1.6831, 1.6697, 1.6758, 1.689,
1.6897, 1.6882, 1.6934, 1.7094, 1.7113, 1.7185, 1.7189, 1.7032,
1.7055, 1.7014, 1.7012, 1.6993, 1.6901, 1.6782, 1.6815, 1.6867,
1.6834, 1.6882, 1.6907, 1.6922, 1.6775, 1.6762, 1.6684, 1.6697,
1.6703, 1.6683, 1.6758, 1.711, 1.711, 1.7197, 1.7169, 1.7241,
1.7233, 1.7339, 1.7286, 1.7257, 1.7162, 1.7023, 1.7112, 1.7124,
1.717, 1.7235, 1.7273, 1.7248, 1.7317, 1.7186, 1.7285, 1.732,
1.7231, 1.7194, 1.7075, 1.6934, 1.7004, 1.6972, 1.7006, 1.6983,
1.6941, 1.7072, 1.6949, 1.695, 1.6933, 1.6907, 1.6911, 1.7012,
1.6968, 1.6967, 1.7056, 1.7262, 1.7261, 1.7294, 1.7289, 1.7289,
1.7085, 1.7167, 1.7148, 1.724, 1.7378, 1.7295, 1.7338, 1.727,
1.7247, 1.7321, 1.7224, 1.724, 1.7235, 1.7286, 1.7363, 1.7426,
1.7401, 1.7511, 1.749, 1.7539, 1.7448, 1.7572, 1.7619, 1.7512,
1.7696, 1.7909, 1.8003, 1.7974, 1.7922, 1.7907, 1.7964, 1.8127,
1.8273, 1.8306, 1.8372, 1.8445, 1.8291, 1.8377, 1.8368, 1.8567,
1.8639, 1.879, 1.8745, 1.8733, 1.8531, 1.8544, 1.8624, 1.8316,
1.8461, 1.8183, 1.8223, 1.8364, 1.8568, 1.842, 1.8173, 1.8202,
1.8005, 1.8104, 1.7964, 1.8002, 1.8114, 1.8328, 1.8184, 1.8182,
1.8068, 1.8103, 1.8111, 1.8015, 1.7915, 1.7699, 1.7632, 1.7681,
1.7686, 1.7708, 1.7713, 1.793, 1.7954, 1.7717, 1.7678, 1.7647,
1.7589, 1.7662, 1.7756, 1.7671, 1.7625, 1.7622, 1.7539, 1.754,
1.739, 1.7499, 1.7506, 1.7564, 1.7511, 1.7443, 1.7687, 1.7714,
1.7851, 1.7815, 1.7747, 1.7783, 1.7599, 1.7248, 1.7416, 1.7231,
1.7211, 1.7362, 1.721, 1.7232, 1.7209, 1.7055, 1.7116, 1.7113,
1.7238, 1.7233, 1.7308, 1.7336, 1.7252, 1.7327, 1.7314, 1.748,
1.7353, 1.7437, 1.7593, 1.7642, 1.7639, 1.7774, 1.7746, 1.7684,
1.7704, 1.7828, 1.7884, 1.7946, 1.783, 1.7733, 1.7732, 1.7702,
1.7846, 1.7718, 1.7725, 1.7688, 1.7804, 1.7733, 1.7724, 1.7724,
1.7836, 1.7915, 1.7981, 1.8037, 1.8185, 1.8226, 1.8257, 1.8166,
1.8203, 1.8185, 1.8213, 1.8228, 1.8312, 1.8271, 1.8367, 1.8408,
1.8273, 1.8025, 1.7805, 1.7891, 1.7891, 1.8054, 1.8233, 1.828,
1.8223, 1.819, 1.8082, 1.7888, 1.7934, 1.8138, 1.8087, 1.8205,
1.8097, 1.8243, 1.8186, 1.8248, 1.8196, 1.8243, 1.8218, 1.7988,
1.8019, 1.8117, 1.8131, 1.8148, 1.8122, 1.8089, 1.8187, 1.829,
1.8322, 1.827, 1.8312, 1.8366, 1.8278, 1.8167, 1.8208, 1.8138,
1.826, 1.8273, 1.8343, 1.8282, 1.8295, 1.8266, 1.8233, 1.8279,
1.8446, 1.8494, 1.8497, 1.849, 1.8473, 1.8427, 1.8388, 1.8244,
1.8176, 1.8176, 1.823, 1.8037, 1.797, 1.8076, 1.8075, 1.8024,
1.7904, 1.7917, 1.7987, 1.7953, 1.7896, 1.7951, 1.7938, 1.7945,
1.7793, 1.7815, 1.7728, 1.7648, 1.7638, 1.7688, 1.7765, 1.7747,
1.7778, 1.7779, 1.7814, 1.7892, 1.7845, 1.77, 1.7575, 1.7574,
1.7672, 1.7721, 1.7816, 1.778, 1.7828, 1.7803, 1.7818, 1.7719,
1.7637, 1.7731, 1.7775, 1.7796, 1.7966, 1.8041, 1.8044, 1.8132,
1.798, 1.79, 1.7899, 1.7829, 1.7944, 1.8009, 1.8015, 1.7955,
1.8098, 1.8133, 1.805, 1.8185, 1.8221, 1.8185, 1.808, 1.8122,
1.8179, 1.8292, 1.8183, 1.8036, 1.7988, 1.803, 1.792, 1.7881,
1.7785, 1.7876, 1.7907, 1.7926, 1.7788, 1.7824, 1.7754, 1.7736,
1.7746, 1.7786, 1.7844, 1.7832, 1.7719, 1.7682, 1.7727, 1.7796,
1.7813, 1.7747, 1.7844, 1.7969, 1.7938, 1.7973, 1.8004, 1.7995,
1.8023, 1.7964, 1.7993, 1.8076, 1.8076, 1.7764, 1.7635, 1.7493,
1.7508, 1.7244, 1.7346, 1.725, 1.7291, 1.7242, 1.692, 1.6878,
1.7031, 1.687, 1.6918, 1.681, 1.6915, 1.6826, 1.6849, 1.6873,
1.6788, 1.6711, 1.6806, 1.678, 1.6714, 1.6502, 1.6366, 1.6348,
1.6389, 1.6134, 1.6084, 1.6339, 1.6493, 1.6374, 1.6445, 1.624,
1.6232, 1.6288, 1.6421, 1.6482, 1.639, 1.6353, 1.6449, 1.6583,
1.6572, 1.6505, 1.6562, 1.6507, 1.6588, 1.6693, 1.6581, 1.6623,
1.6875, 1.684, 1.6783, 1.6927, 1.6892, 1.6668, 1.6694, 1.6676,
1.68, 1.6887, 1.7044, 1.7045, 1.7047, 1.7036, 1.7084, 1.6908,
1.678, 1.673, 1.6741, 1.6755, 1.6764, 1.671, 1.6679, 1.6595,
1.6536, 1.6523, 1.6591, 1.6672, 1.6645, 1.6643, 1.6732, 1.6753,
1.6742, 1.6803, 1.679, 1.6722, 1.672, 1.6656, 1.6576, 1.6598,
1.6688, 1.6759, 1.693, 1.6957, 1.6945, 1.6712, 1.6716, 1.6875,
1.6865, 1.6852, 1.6904, 1.6885, 1.6887, 1.6916, 1.6899, 1.7003,
1.713, 1.7222, 1.7302, 1.7225, 1.7238, 1.7324, 1.7329, 1.7387,
1.7308, 1.7276, 1.7312, 1.7342, 1.7406, 1.7494, 1.7412, 1.7429,
1.7627, 1.7729, 1.7812, 1.7856, 1.7698, 1.7817, 1.7889, 1.7899,
1.7915, 1.8061, 1.8026, 1.7972, 1.7964, 1.7854, 1.8057, 1.7872,
1.7871, 1.793, 1.7768, 1.7803, 1.7902, 1.7936, 1.7948, 1.7909,
1.7989, 1.8221, 1.825, 1.8174, 1.8116, 1.809, 1.8131, 1.8242,
1.8175, 1.8117, 1.8053, 1.8149, 1.8031, 1.8126, 1.8091, 1.8232,
1.827, 1.8429, 1.8354, 1.8439, 1.8458, 1.8373, 1.8447, 1.8367,
1.8394, 1.8467, 1.8487, 1.8508, 1.8437, 1.8316, 1.8146, 1.813,
1.8105, 1.8235, 1.8324, 1.8404, 1.8279, 1.8322, 1.834, 1.8352,
1.8408, 1.8529, 1.8499, 1.8435, 1.8667, 1.8701, 1.8705, 1.8755,
1.869, 1.8882, 1.8892, 1.8981, 1.8995, 1.8759, 1.8752, 1.8646,
1.864, 1.8746, 1.8778, 1.8961, 1.8958, 1.8833, 1.8956, 1.8978,
1.8969, 1.8905, 1.8688, 1.8856, 1.892, 1.8966, 1.9088, 1.9138,
1.9118, 1.9082, 1.913, 1.9214, 1.9195, 1.9291, 1.9214, 1.9162,
1.9089, 1.9141, 1.9224, 1.8788, 1.8626, 1.8642, 1.8686, 1.8353,
1.8405, 1.8428, 1.8254, 1.8275, 1.8344, 1.8341, 1.8172, 1.8108,
1.8141, 1.8279, 1.8225, 1.8349, 1.8373, 1.8508, 1.8506, 1.8615,
1.8561, 1.8405, 1.8369, 1.8487, 1.8586, 1.8707, 1.8758, 1.8708,
1.8721, 1.8517, 1.8462, 1.8263, 1.8446, 1.849, 1.849, 1.8452,
1.8517, 1.8678, 1.8828, 1.8752, 1.8815, 1.8804, 1.88, 1.8788,
1.8671, 1.8622, 1.875, 1.8686, 1.8727, 1.8628, 1.8438, 1.8366,
1.8282, 1.828, 1.8311, 1.8268, 1.8223, 1.8404, 1.8383, 1.823,
1.8174, 1.8141, 1.797, 1.803, 1.8116, 1.8149, 1.8095, 1.8293,
1.8319, 1.8472, 1.8577, 1.8577, 1.8609, 1.8641, 1.8641, 1.8662,
1.8726, 1.8786, 1.886, 1.8799, 1.8744, 1.8796, 1.8954, 1.8977,
1.8975, 1.8819, 1.8958, 1.9003, 1.8938, 1.9002, 1.9182, 1.9184,
1.9333, 1.9433, 1.9424, 1.9406, 1.9491, 1.9532, 1.9126, 1.9124,
1.9088, 1.9217, 1.9244, 1.9334, 1.945, 1.9489, 1.9212, 1.9375,
1.9395, 1.9386, 1.9403, 1.9261, 1.9326, 1.9417, 1.9468, 1.9513,
1.9265, 1.8985, 1.8921, 1.8899, 1.9009, 1.9055, 1.8993, 1.904,
1.9042, 1.932, 1.9397, 1.9349, 1.9367, 1.9373, 1.9423, 1.9514,
1.9433, 1.9535, 1.9789, 1.996, 1.9991, 2.0104, 2.0119, 1.9873,
1.9963, 1.9994, 1.9828, 1.9759, 1.9848, 1.9843, 1.9957, 1.9886,
1.9883, 1.9836, 1.9854, 1.9815, 1.9422, 1.9485, 1.9636, 1.9983,
2.0228, 2.0315, 2.0203, 2.0241, 2.0336, 2.0347, 2.0428, 2.0434,
2.0184, 2.0279, 2.0231, 2.0314, 2.0185, 2.0097, 2.0197, 2.0174,
2.0137, 2.0342, 2.0156, 2.0131, 2.0152, 2.0223, 2.0517, 2.0467,
2.044, 2.0451, 2.0488, 2.0254, 2.0394, 2.0403, 2.038, 2.0313,
2.0419, 2.0469, 2.0456, 2.0482, 2.0605, 2.0795, 2.0818, 2.0818,
2.0815, 2.109, 2.1178, 2.1455, 2.1464, 2.1531, 2.1543, 2.1936,
2.1923, 2.1908, 2.1884, 2.1675, 2.1464, 2.1644, 2.1571, 2.1344,
2.1609, 2.1952, 2.1886, 2.1908, 2.1637, 2.1522, 2.1554, 2.1567,
2.1124, 2.1083, 2.0975, 2.109, 2.1007, 2.0716, 2.0708, 2.0397,
2.0435, 2.0514, 2.0568, 2.0505, 2.036, 2.0396, 2.0532, 2.0357,
2.0368, 2.0472, 2.0672, 2.0819, 2.0886, 2.0873, 2.0734, 2.0677,
2.0534, 2.0404, 2.0554, 2.0591, 2.0448, 2.0465, 2.0605, 2.053,
2.0568, 2.0711, 2.0915, 2.0869, 2.0923, 2.098, 2.1162, 2.1157,
2.0976, 2.0962, 2.078, 2.0758, 2.0825, 2.1097, 2.1108, 2.1132,
2.1403, 2.1627, 2.1526, 2.1532, 2.1738, 2.1789, 2.152, 2.1616,
2.1635, 2.1418, 2.1453, 2.1385, 2.1521, 2.1642, 2.1776, 2.188,
2.1665, 2.1614, 2.1751, 2.182, 2.1892, 2.1999, 2.1733, 2.1739,
2.2071, 2.2274, 2.2455, 2.2574, 2.2695, 2.2724, 2.2623, 2.2706,
2.2662, 2.2892, 2.2913, 2.3078, 2.2932, 2.2183, 2.2398, 2.2223,
2.2194, 2.2152, 2.2164, 2.2184, 2.2318, 2.2409, 2.2495, 2.249,
2.2507, 2.2528, 2.2381, 2.2678, 2.2757, 2.3048, 2.3014, 2.3075,
2.3295, 2.3352, 2.3397, 2.3363, 2.3603, 2.3594, 2.3209, 2.3147,
2.3075, 2.2806, 2.274, 2.2648, 2.2711, 2.2724, 2.2841, 2.2772,
2.2651, 2.274, 2.2794, 2.2758, 2.2894, 2.2938, 2.304, 2.313,
2.3194, 2.3226, 2.3289, 2.304, 2.2877, 2.2741, 2.2468, 2.2405,
2.1992, 2.2101, 2.2111, 2.1982, 2.2024, 2.2279, 2.2298, 2.2339,
2.204, 2.1793, 2.1835, 2.195, 2.1569, 2.1398, 2.118, 2.1057,
2.1018, 2.1128, 2.0833)
And even shorter:
v <- na.omit(v)
Try this:
new.v <- v[ !is.na( v ) ]
Either is.na or na.omit are good enough for this situation
x <- c(1,NA,2,NA, 3) # a vector with NA
x[!is.na(x)] # a vector without NA
[1] 1 2 3
as.numeric(na.omit(x))
[1] 1 2 3
Actually as.numeric applied to na.omit is not necessary as you can tell from Dirk's answer :)

Resources