shiny: Order of reactive v reactiveValues - r

I am struggling to wrap my head around when to use reactiveValues and when I can used reactive. For example, I am wanting to create an app where I have a reactive value that is modified by a slider. Take this app:
library(shiny)
# Define UI
ui <- fluidPage(
sliderInput("multiplier", "Multiplier", min = 0, max = 10, value = 1, step = 0.1),
actionButton("update_button", "Add Rows"),
tableOutput("data_frame")
)
# Define server
server <- function(input, output) {
# Create reactiveValues object to store data
rv <- reactiveValues(data = data.frame(x = c(1, 2, 3), y = c(4, 5, 6)))
# Add rows to data frame when button is clicked
observeEvent(input$update_button, {
# Code to add rows to data frame goes here
new_rows <- data.frame(x = c(7, 8, 9), y = c(10, 11, 12))
rv$data <- rbind(rv$data, new_rows)
})
# Multiply values in data frame by the value of the slider
updated_data <- reactive({
rv$data * input$multiplier
})
# Display data frame
output$data_frame <- renderTable({
updated_data()
})
}
# Run the app
shinyApp(ui, server)
This works well but I want to understand reactiveValues. For example can anyone explain why if I make the reactive object first to do some multiplication I get an error. Can reactiveValues only take existing data?
library(shiny)
# Define UI
ui <- fluidPage(
sliderInput("multiplier", "Multiplier", min = 0, max = 10, value = 1, step = 0.1),
actionButton("update_button", "Add Rows"),
tableOutput("data_frame")
)
# Define server
server <- function(input, output) {
my_data <- reactive({
df <- data.frame(x = c(1, 2, 3), y = c(4, 5, 6))
df$x <- df$x * input$multiplier
df
})
# Create reactiveValues object to store data
val <- reactiveValues(rv = NULL)
val$rv = my_data()
# Add rows to data frame when button is clicked
observeEvent(input$update_button, {
# Code to add rows to data frame goes here
new_rows <- data.frame(x = c(7, 8, 9), y = c(10, 11, 12))
val$rv <- rbind(val$rv, new_rows)
})
# Display data frame
output$data_frame <- renderTable({
val()
})
}
# Run the app
shinyApp(ui, server)

Related

R Shiny Reactive Plot from List of Lists

I'm building a basic R Shiny app, and have a list that contains individual lists, each storing a dataframe and a value. I've included sample data to demonstrate my list of lists. Within my app I am trying to have one select option (a dropdown menu that says "List 1", List 2", etc) and then have the main panel in the app display a boxplot of the dataframe (x and y) and a text output of the value stored in the list that was selected.
I'm having trouble with the ability to make the outputs (both plot and text) reactive to the input and display data from the selected list.
I've put my code of what I have so far below.
## Example Data
list_a <- list(df = data.frame(x = rnorm(n = 10, mean = 5, sd = 2),
y = rnorm(n = 10, mean = 7, sd = 3)),
value = "a")
list_b <- list(df = data.frame(x = rnorm(n = 10, mean = 20, sd = 5),
y = rnorm(n = 10, mean = 13, sd = 7)),
value = "b")
list_c <- list(df = data.frame(x = rnorm(n = 10, mean = 12, sd = 4),
y = rnorm(n = 10, mean = 10, sd = 4)),
value = "c")
mylist <- list(list_a, list_b, list_c)
## Packages
library(tidyverse)
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("Shiny App"),
## Panel with selectInput dropdown and output options
pageWithSidebar(
headerPanel('Data'),
sidebarPanel(
selectInput('data', 'Dataset',
choices = c("1" = list_a, "2" = list_b, "3" = list_c)),
),
mainPanel(
plotOutput('plot1'),
textOutput('text1')
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
## Boxplot with 'DF' from selected list
output$plot1 <- renderPlot({
reactivedata <- boxplot(input$data)
boxplot(reactivedata$df)
})
## Text output from 'value' stored in list
output$text1 <- renderText({
reactivetext <- print(input$data)
print(reactivetext$value)
})
}
# Run the application
shinyApp(ui = ui, server = server)
Main issue with your code that you used your raw lists for the choices argument. Additionally I added a reactive to pick the right list according to the user's input:
set.seed(123)
library(tidyverse)
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("Shiny App"),
## Panel with selectInput dropdown and output options
pageWithSidebar(
headerPanel("Data"),
sidebarPanel(
selectInput("data", "Dataset",
choices = c("list_a" = 1, "list_b" = 2, "list_c" = 3)
),
),
mainPanel(
plotOutput("plot1"),
textOutput("text1")
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
reactivedata <- reactive({
mylist[[as.integer(input$data)]]
})
## Boxplot with 'DF' from selected list
output$plot1 <- renderPlot({
boxplot(reactivedata()$df)
})
## Text output from 'value' stored in list
output$text1 <- renderText({
print(reactivedata()$value)
})
}
# Run the application
shinyApp(ui = ui, server = server)
#>
#> Listening on http://127.0.0.1:4502
#> [1] "a"

Shiny dataframe column selection and plotting

I am trying to create a Shiny interactive web app but I have a rendering problem linked to a plot. My goal is to upload a csv file, have the possibility to select the column to plot (on y axis) and have the possibility to select the data range on which plot data. Here there is my code:
library(dplyr)
library(shiny)
library(networkD3)
library(igraph)
library(ggplot2)
db = as.data.frame(read.csv("./util_df.csv"))
EmotionalDB = as.data.frame(read.csv("./MainDB.csv"))
my_list = as.list(names(EmotionalDB))
my_list = my_list[c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11)]
ui <- fluidPage(
column(12, wellPanel(
dateRangeInput('dateRangeEmotions',
label = 'Filter emotions by date',
start = as.Date('2019-05-20') ,
end = as.Date('2019-05-26')
)
)),
selectInput("data1",
label = "Choose an Emotion",
choices = my_list
),
plotOutput("Emotions")
)
server <- function(input, output, session) {
output$Emotions <- renderPlot({
x <- EmotionalDB$Date
y <- EmotionalDB$Anger
plot(main="Emotions", x, y, type="l", xlim=c(input$dateRangeEmotions[1],input$dateRangeEmotions[2]), xaxt = "n")
axis.Date(side = 1, at = x, format = "%Y-%m-%d")
})
}
shinyApp(ui = ui, server = server)
Unfortunately there is no output in the plot. Here an image:
Here an example of my dataset:
"Date","Anger","Anticipation","Disgust","Fear","Joy","Negative","Positive","Sadness","Surprise","Trust"
"2019-05-20",12521,14652,2687,5164,13085,18309,23214,12882,12091,18623
"2019-05-21",13073,14988,3170,5773,13191,18988,24747,12973,12005,19435
"2019-05-22",15085,18608,3428,6475,16354,22671,30028,15765,15347,23680
"2019-05-23",23586,32597,5092,10084,24827,34827,44475,24468,23021,35440
"2019-05-24",61955,74395,10963,19597,65097,88223,104236,67361,59611,86375
"2019-05-25",19017,23540,4170,8595,19640,29740,34746,21793,18817,27907
"2019-05-26",9379,11909,1849,4535,10046,14791,17525,10757,9306,14095
Can anyone help me?
A couple suggestions to try:
Make sure your Date variable in EmotionalDB is of Date type.
EmotionalDB$Date <- as.Date(EmotionalDB$Date)
Try using reactive to subset your data based on the input selections of emotion and the 2 dates.
server <- function(input, output, session) {
selectedData <- reactive({
subset(EmotionalDB[ , c("Date", input$data1)], Date >= input$dateRangeEmotions[1] & Date <= input$dateRangeEmotions[2])
})
output$Emotions <- renderPlot({
sd <- selectedData()
plot(sd, main="Emotions", type="l", xaxt = "n")
axis.Date(side = 1, at = sd$Date, format = "%Y-%m-%d")
})
}

How to use workspace objects in an R Shiny application

I would like a user to be able to type in the name of a dataframe object and have that object rendered as a formatted data table in a Shiny application.
Here is a toy example. There are two dataframe objects available in the workspace: df1 and df2. When the user types in df1, I would like that dataframe to be rendered. Likewise for df2 or for any other dataframe they have in their workspace.
I suspect I have to do something with environments or scoping or evaluation but I am not sure what.
I have commented in the code where I can hardcode in the built-in mtcars dataset and have that rendered correctly. Now I just want to be able to do the same for any ad-hoc dataframe in a user's workspace.
library(shiny)
set.seed(1234)
x <- sample.int(n = 20)
y <- sample(x = LETTERS, size = 20)
a <- rnorm(n = 20)
b <- sample(x = letters, size = 20)
df1 <- data.frame(x = x, y = y)
df2 <- data.frame(a = a, b = b)
# Define UI ----
ui <- fluidPage(
titlePanel("Using text inputs to select dataframes"),
sidebarLayout(position = "left",
sidebarPanel(width = 5,
textInput("dfInput", h5("Enter name of dataframe"),
value = "")),
mainPanel(width = 6,
h4("Here's your data"),
textOutput("selected_df"),
dataTableOutput("view")
)
)
)
# Define server logic ----
server <- function(input, output, session) {
output$selected_df <- renderText({
paste("You have selected ", input$dfInput)
})
output$view <-
renderDataTable({
input$dfInput # this should render the selected dataframe. If you replace this with mtcars then that dataset is correctly rendered.
})
}
# Run the app ----
shinyApp(ui = ui, server = server)
We are going to get all the dataframes within the global enviriment first and then use get in order to access the object. I changed the textInput to selectInput so you dont need to type anything, potentially making a mistake. Moreover I added the data from datasets package however you should build more test cases to check if the data exists
library(shiny)
set.seed(1234)
x <- sample.int(n = 20)
y <- sample(x = LETTERS, size = 20)
a <- rnorm(n = 20)
b <- sample(x = letters, size = 20)
df1 <- data.frame(x = x, y = y)
df2 <- data.frame(a = a, b = b)
mydataframes <- names(which(unlist(eapply(.GlobalEnv,is.data.frame))))
OpenData <- data()$results[,3]
#Define UI ----
ui <- fluidPage(
titlePanel("Using text inputs to select dataframes"),
sidebarLayout(position = "left",
sidebarPanel(width = 5,
selectInput("dfInput","Select Dataframe",
#choices = mydataframes,
list("Your Datasets" = c(mydataframes),
"R Datasets" = c(OpenData),
selected=NULL))),
mainPanel(width = 6,
h4("Here's your data"),
textOutput("selected_df"),
dataTableOutput("view")
)
)
)
# Define server logic ----
server <- function(input, output, session) {
output$selected_df <- renderText({
paste("You have selected ", input$dfInput)
})
output$view <-
renderDataTable({
as.data.frame(get(input$dfInput)) # this should render the selected dataframe. If you replace this with mtcars then that dataset is correctly rendered.
})
}
# Run the app ----
shinyApp(ui = ui, server = server)

Applying selecting dataset and filtering in R shiny

I've this problem. I'm starting to learn shiny and I can't figure out how to use a filter on a dataset derived from another shiny selector.
In this particular case I would like to have one filter that works for any dataset that is selected at the first step.
I want to filter the dataset according to the column C, in particular I want to visualize only the rows with C > 1.
I'll report the code:
library(shiny)
set.seed(1)
rock <- data.frame(unif = runif(100, -1, 1),
norm = rnorm(100, 0, 2),
pois = rpois(100, 1))
paper <- data.frame(unif = runif(100, -2, 2),
norm = rnorm(100, 0, 4),
pois = rpois(100, 2))
scissor <- data.frame(unif = runif(100, -3, 3),
norm = rnorm(100, 0, 6),
pois = rpois(100, 3))
# Define UI for dataset viewer application
ui <- shinyUI(pageWithSidebar(
# Application title
headerPanel("Shiny Text"),
# Sidebar with controls to select a dataset and specify the number
# of observations to view
sidebarPanel(
selectInput("dataset", "Choose a dataset:",
choices = c("rock", "paper", "scissor")),
sliderInput("range", "Range:",
min = 0, max = 10,
value = c(0.5,5)),
numericInput("obs", "Number of observations to view:", 20)
),
# Show an HTML table with the requested
# number of observations
mainPanel(
tableOutput("view")
)
))
# Define server logic required to summarize and view the selected dataset
server <- shinyServer(function(input, output) {
# Return the requested dataset
datasetInput <- reactive({
switch(input$dataset,
"rock" = rock,
"paper" = paper,
"scissor" = scissor)
})
#Creating a data frame based on inputs
####?????####
# Show the first "n" observations
output$view <- renderTable({
head(datasetInput(), n = input$obs)
})
})
shinyApp(ui = ui, server = server)
My problem is what to put instead of ####?????#### in the server part.
I hope you can help me.
Something like this?
library(shiny)
set.seed(1)
rock <- data.frame(unif = runif(100, -1, 1),
norm = rnorm(100, 0, 2),
pois = rpois(100, 1))
paper <- data.frame(unif = runif(100, -2, 2),
norm = rnorm(100, 0, 4),
pois = rpois(100, 2))
scissor <- data.frame(unif = runif(100, -3, 3),
norm = rnorm(100, 0, 6),
pois = rpois(100, 3))
# Define UI for dataset viewer application
ui <- shinyUI(pageWithSidebar(
# Application title
headerPanel("Shiny Text"),
# Sidebar with controls to select a dataset and specify the number
# of observations to view
sidebarPanel(
selectInput("dataset", "Choose a dataset:",
choices = c("rock", "paper", "scissor")),
sliderInput("range", "Range:",
min = 0, max = 10,
value = c(0.5,5)),
numericInput("obs", "Number of observations to view:", 20)
),
# Show an HTML table with the requested
# number of observations
mainPanel(
tableOutput("view")
)
))
# Define server logic required to summarize and view the selected dataset
server <- shinyServer(function(input, output) {
# Return the requested dataset
datasetInput <- reactive({
switch(input$dataset,
"rock" = rock,
"paper" = paper,
"scissor" = scissor)
})
#Creating a data frame based on inputs
seconddata <- reactive({
d <- datasetInput()
d[d[,3] >= input$range[1] & d[,3] <= input$range[2],]
})
####?????####
# Show the first "n" observations
output$view <- renderTable({
head(seconddata(), n = input$obs)
})
})
shinyApp(ui = ui, server = server)

How do you adjust sliderInput values to reduce the data frame in Shiny?

This a functioning shiny app that I found on Stack Overflow
rm(list = ls())
library(shiny)
# Sample Data
area <- seq(from=10,to=100, by=10);peri <- seq(from=2710.1,to=2800.1, by=10)
shape <- seq(from=0.1,to=1, by=0.1);perm <- seq(from=1,to=100, by=10)
my_data <- as.data.frame(cbind(area,peri,shape,perm))
ui = fluidPage(
sidebarPanel(
sliderInput("range", "Select Range",min = 1, max = 10, value = c(2,
5)),width = 4),
mainPanel(tableOutput("view"))
)
server = function(input, output) {
output$view <- renderTable({
test <- my_data[input$range[1]:input$range[2],]
test}, include.rownames = FALSE)
}
}
runApp(list(ui = ui, server = server))
I would like to shorten the dataframe based on the numeric values of a column
I tried changing the line:
mydata$area <- my_data$area[input$range[1]:input$range[2]]
However I realized that this reduces the rows of that column without adjusting the other rows to match the same number of rows. Any ideas on how to reduce the other rows as well?

Resources