how to finetune the stable diffusion super resolution model - stable-diffusion

There are many pipelines of stable dispersion txt2img finetune, but no code of super resolution finetune can be found. I tried to reproduce the super resolution finetune, but the result is always a little worse than the original model.how to finetune the stable diffusion super resolution model?
I tried to reproduce the super resolution finetune, but the result is always a little worse than the original model

Related

Should linear solver be converging when Coloring is beign computed

I had to add some circular dependencies to my model and thus adding NonlinearBlockGS and LinearBlockGS to the Group with the circular dependency. I get messages like this
LN: LNBGSSolver 'LN: LNBGS' on system 'XXX' failed to converge in 10
iterations.
in the phase where it's finding the Coloring of the problem. There is a Dymos trajectory as part of the problem, but the circular dependency is not in the Trajectory group, it's upstream. It however converges very easily when actually solving the problem. The number of FWD solves is the same as it was before-- everything seem to work fine. Should I be worried about anything?
the way our total derivative coloring works is that we replace partial derivatives with random numbers and then solve the linear system. So the linear solver should be converging. Now, whether or not it should converge with LNBGS in 10 iterations... probably not.
Its hard to speak diffinitively when putting random numbers into a matrix to invert it... but generally speaking it should remain invertible (though we can't promise). That does not mean that it will remain easily invertible. How close does the linear residual get during the coloring? it is decreasing, but slowly. Would more iteration let it get there?
If your problem is working well, I don't think you need to freak out about this. If you would like it to converge better, it won't hurt anything and might give you better coloring. You can increase the iprint of that solver to get more information on the convergence history.
Another option, if your system is small enough, is to try using the DirectSolver instead of LNBGS. For most models with less than 10,000 variables in them a DirectSolver will be overall faster than the LNBGS. There is a nice symetry to using LNBGS with NLGBS ... but while the nonlinear solver tends to be a good choice (i.e. fast and stable) for cyclic dependencies the same can't be said for its linear counter part.
So my go-to combination if NLBGS and DirectSolver. You can't always use the DirectSolver. If you have distributed components in your model, or components that use the matrix-free derivative APIs (apply_linear, compute_jacvec_product), then LNBGS is a good option. But if everything is explicit components with compute_partials or implicit components that provide partials in the linearize method then I suggest using the DirectSolver as your first option.
I think you may have discovered a coloring performance issue in OpenMDAO. When we compute coloring, internally we replace the component partials with random arrays matching the declared sparsity. Since we're not trying to find an actual solution when we compute coloring, we probably don't need to iterate more than once in any given system. And we shouldn't be generating convergence warnings when computing the coloring. I don't think you need to be worried in this case. I'll put a story in our bug tracker to look into this.

Saving Data in Dymos Changes Optimisation and Simulation Results

I had a similar issue as expressed in this question. I followed Rob Flack's answer but had issues. If anyone could help me out, I would appreciate it.
I used the code suggested in the answer but had an issue: It changed the simulation results. I added a line in the script for the min_time_climb example that goes like this:
phase.add_timeseries_output('aero.mach', units=None, shape=(1,), output_name = "recorded_mach")
I used the name "recorded_mach" so as to not override anything else Dymos may or may not have been recording. The issue is that the default Altitude (h) vs. time graph actually changed, both the discrete points and simulation curve. I ended up recording 4 variables with similar commands to what I have just shown and that somehow made the simulation track better with the discrete optimisation points on the graph. When I recorded another 4 variables on top of that, it made it track worse. I find this very strange because I don't see why recording the simulation should change its output.
Have you ever come across this? Any insight you could provide into the issue would be greatly appreciated.
Notes:
I have somewhat modified the example in order to fit a different sutuation (Different thrust and fuel burn data, different lift and drag polars, different height and speed goals) before implimenting the code described above. However, it was working fine still.
Without some kind of example to look at, I can only make an educated guess. So please take my answer with a grain of salt.
Some optimization problems have very ill conditioned Jacobians and/or KKT matrices (which you as a user would not normally see, but can be problematic none the less). There are many potential causes for this ill conditioning, but some common ones are very large derivatives (i.e. approaching infinity) or very larger ranges in magnitude between different derivatives. Another common cuase is the introduction of a saddle point, where you have infinite numbers of answers that are all equally good. Sometimes you can fix the problem with scaling, other times you need to re-work the problem formulation.
Ill conditioning has two bad effects on the optimizer. First, it makes it very hard for the numerics inside to comput inverses which are needed to compute step sizes. It will get an answer, but may be highly subject to numerical noise. Second, it may prevent certain approximations (like BFGS) from performing well in the first place.
In these cases, small changes in execution order or extra steps (e.g. case recoding) can cause the optimizer to take a different path. If you're finding that the path ultimately leads one case to work and another to fail, then you might have a marginally stable problem where you got lucky one time and not the other.
Look carefully for anything singular-like in your jacobian. 0 rows/columns? a constraint that happens to be satisfied, but still has a 0 row is a problem that comes up in Dymos cases if you forget to add additional degrees of freedom when you add constraints. Saddle points also arise if you're careful with your objective.

How to make a good mesh in a biologically accurate model with very small domains

I have been trying to make a biologically accurate 2D spatial model of tissue layers, where different physiological processes happen. This includes mainly chemical reactions, diffusion and fluxes over boundaries.
I am making this model in COMSOL Multiphysics, a finite element software package that solves different physics like reaction-diffusion systems, although for my question this might not be really relevant.
In my geometry, I have really small regions between the cells of the tissue layers. These regions serve as openings where diffusion can take place between the cells (junctions). The quality of the mesh is not great here and if I want to improve the quality (mainly by introducing more elements and such), my simulation time increases drastically. The lesser quality mesh also causes convergence to take longer. I added a picture of the geometry to give an idea. I tried different meshes, all with different qualities of the elements and the number of elements ranging from 16000 to 50000.
My background in FEM is really limited and I wanted to know if I can tackle this problem in such a way that it
doesn't negatively affect the biology (keep the tissue domain sizes/problem etc as biologically accurate as possible),
doesn't increase the simulation time drastically,
give a better mesh quality.
So I really want to know what the best way to go is, since I have already thought of some things.
Can I go with the lesser quality mesh (which is not really bad, but not good either), so that I can keep the small regions for optimum biological accuracy and have a relatively small computation time (and hope I won't run into convergence errors).
But maybe there are possibilities that I am missing, for instance: is it possible to make the small domain bigger and then add some kind of factor to the diffusion rates. In other words, if I want to make the domain twice as large, do I factor the diffusion rate with half? Is that even accurate in chemical/physical laws :S.
Hopefully I made the problem a bit clear and thank you greatly in advance for the help.
Cheers,
Mesh of the tissue model
I know this thread was posted some months back but I am unsure if you found a solution.
In order to find the relationship between accuracy and computational time would be that you run a mesh analysis on your model and see how the mesh size directly affects the results you are expecting to obtain (pore pressure, fluid velocity, strain, etc.) This will allow you to determine the most appropriate mesh strategy for your specific problem.
Also, you might need to keep in mind that the diffusion rate of a material will depend on the pore size and the permeability (by means of Darcy's law) so depending on the assumptions you are making for the implementation of your constitutive law and your problem boundary conditions you might simplify/enlarge some of the smaller domains you have in your model so long they are within your previously made assumptions.

A framework for comparing the time performance of Expectation Maximization

I have my own implementation of the Expectation Maximization (EM) algorithm based on this paper, and I would like to compare this with the performance of another implementation. For the tests, I am using k centroids with 1 Gb of txt data and I am just measuring the time it takes to compute the new centroids in 1 iteration. I tried it with an EM implementation in R, but I couldn't, since the result is plotted in a graph and gets stuck when there's a large number of txt data. I was following the examples in here.
Does anybody know of an implementation of EM that can measure its performance or know how to do it with R?
Fair benchmarking of EM is hard. Very hard.
the initialization will usually involve random, and can be very different. For all I know, the R implementation by default uses hierarchical clustering to find the initial clusters. Which comes at O(n^2) memory and most likely at O(n^3) runtime cost. In my benchmarks, R would run out of memory due to this. I assume there is a way to specify initial cluster centers/models. A random-objects initialization will of course be much faster. Probably k-means++ is a good way to choose initial centers in practise.
EM theoretically never terminates. It just at some point does not change much anymore, and thus you can set a threshold to stop. However, the exact definition of the stopping threshold varies.
There exist all kinds of model variations. A method only using fuzzy assignments such as Fuzzy-c-means will of course be much faster than an implementation using multivariate Gaussian Mixture Models with a covaraince matrix. In particular with higher dimensionality.
Covariance matrixes also need O(k * d^2) memory, and the inversion will take O(k * d^3) time, and thus is clearly not appropriate for text data.
Data may or may not be appropriate. If you run EM on a data set that actually has Gaussian clusters, it will usually work much better than on a data set that doesn't provide a good fit at all. When there is no good fit, you will see a high variance in runtime even with the same implementation.
For a starter, try running your own algorithm several times with different initialization, and check your runtime for variance. How large is the variance compared to the total runtime?
You can try benchmarking against the EM implementation in ELKI. But I doubt the implementation will work with sparse data such as text - that data just is not Gaussian, it is not proper to benchmark. Most likely it will not be able to process the data at all because of this. This is expected, and can be explained from theory. Try to find data sets that are dense and that can be expected to have multiple gaussian clusters (sorry, I can't give you many recommendations here. The classic Iris and Old Faithful data sets are too small to be useful for benchmarking.

How to solve out of memory error?

I am doing my project in OCR.For this i am using image size of 64x64 because when i tried 32x32 etc some pixels is lost.I have tried features such as zonal density, Zernike's moments,Projection Histogram,distance profile,Crossing .The main problem is feature vector size is too big .I have take the combination of above features and tried.But whenever i train the neural network ,i have got an error "out of memory". I have tried PCA dimensionality reduction but its not work good.i didn't get efficiency during training.Run the code in my PC and laptop.In both of them i have got same error.my RAM is 2GB.so i think about reducing the size of an image.is there any solution to solve this problem.
I have one more problem whenever i tried to train the neural network using same features result is varied.how to solve this also?
It's not about the size of the image. A 64*64 image is sure not to blow your RAM. There must be bugs in your Neuron Network or other algorithms.
And please paste more details about your implementation. We don't even know what language you are using.

Resources