2D Density Plot from 3D Array (x,y,z) in Python - plot

I have an array of data where X & Y are values between -1 & +1. The Z-values are %-ages. I would like to plot X on x-axis & Y on y-axis with Z as the color value of the (x,y) coordinate. My plotting skills are not great, any help would be appreciated. This is what I want it to look like:
Below is a sample of the output array:
dx.columns=['px','vol','rtn']
dx.reset_index(drop=True, inplace=True)
r=dx.to_numpy()
print(r)
[*********************100%***********************] 1 of 1 completed
[[-0.09814232 0.02581271 0.01219875]
[-0.26287157 -0.19181034 0.00432285]
[-0.46411391 -0.21532024 0.0051128 ]
...
[-0.44984718 -0.72257609 0. ]
[ 0.51214749 0.41200849 0. ]
[ 0.62782512 -0.06739872 0. ]]

Related

How to change length of a side of polygon ensure the resulting polygon is similar shape

Polygon
I have a polygon that has only 90 and 45-degree angles, now I want to change the length of any side and adjust the polygon so that results should be a similar polygon.
Like this:
Shape after side change
import numpy as np
import matplotlib.pyplot as plt
# an arbitrary polygon, for example a pentagon:
P = np.array([[0.2, 0.1], [1, -0.2], [3, 1], [2, 0.7], [0.5, 1], [0.2, 0.1]])
P[-1, ] = P[0, ]
# pick a side between, say the one between vertices P[i,] and P[i+1,],
# and assume you want to make it of length a = 3:
i=2
a=3
# pick a point V0 in the plane, where a vertex P[j,] of the scaled polygon should be places:
j=1
v0 = [1,1]
# calculate the scale, which is a / (length of edge P[i,] P[i+1,]):
scale = a / np.linalg.norm(P[i+1, ] - P[i,])
# scale and position the polygon where you want it to be:
P_scaled = scale * P + (v0 - P[j,])
# plot polygon P:
plt.figure()
plt.plot(P[:,0], P[:,1])
for k in range(P.shape[0]):
plt.plot(P[k,0], P[k,1], 'ro')
# plot polygon P_scaled:
plt.plot(P_scaled[:,0], P_scaled[:,1])
for k in range(P_scaled.shape[0]):
plt.plot(P_scaled[k,0], P_scaled[k,1], 'ro')
axx = plt.gca()
axx.set_aspect('equal')
plt.show()

R Plot - Y Axis and plotted values are not the same (values from txt file)

I am somewhat new to R and I am trying to plot values from real data .
x axis is the time and y axis real values but in graph y axis is between 0 and 100, but the real values of y are different.
I need your help.Thank you
y <- c(9.21368, 8.90582, 8.92218, 8.53934, 7.99324, 7.53952, 7.51255, 7.1065, 6.91431,
6.9704, 7.92692, 7.74947, 7.10618, 6.50479, 5.9741, 5.08136, 4.32405, 3.86809,
3.4377, 3.54596, 3.07406, 2.92242, 1.67285, 1.11221, 0.501673)
t <- 1 : length(y)
plot(t, y)
# Length(y) and length(t) must be same.
You can view your y-axis values in the plot, by adding text function
y <- c(9.21368, 8.90582, 8.92218, 8.53934, 7.99324, 7.53952, 7.51255, 7.1065, 6.91431,
6.9704, 7.92692, 7.74947, 7.10618, 6.50479, 5.9741, 5.08136, 4.32405, 3.86809,
3.4377, 3.54596, 3.07406, 2.92242, 1.67285, 1.11221, 0.501673)
t <- 1: length(y)
plot(t,y)
text(t,y,pos=3, cex=0.7)
The y-axis is always like the x axis but in reality is not like that:

3D with value interpolation in R (X, Y, Z, V)

Is there an R package that does X, Y, Z, V interpolation? I see that Akima does X, Y, V but I need one more dimension.
Basically I have X,Y,Z coordinates plus the value (V) that I want to interpolate. This is all GIS data but my GIS does not do voxel interpolation
So if I have a point cloud of XYZ coordinates with a value of V, how can I interpolate what V would be at XYZ coordinate (15,15,-12) ? Some test data would look like this:
X <-rbind(10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50)
Y <- rbind(10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50,10,10,10,10,10,20,20,20,20,20,30,30,30,30,30,40,40,40,40,40,50,50,50,50,50)
Z <- rbind(-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-17,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29,-29)
V <- rbind(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,25,35,75,25,50,0,0,0,0,0,10,12,17,22,27,32,37,25,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,50,125,130,105,110,115,165,180,120,100,80,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
I had the same question and was hoping for an answer in R.
My question was: How do I perform 3D (trilinear) interpolation using regular gridded coordinate/value data (x,y,z,v)? For example, CT images, where each image has pixel centers (x, y) and greyscale value (v) and there are multiple image "slices" (z) along the thing being imaged (e.g., head, torso, leg, ...).
There is a slight problem with the given example data.
# original example data (reformatted)
X <- rep( rep( seq(10, 50, by=10), each=25), 3)
Y <- rep( rep( seq(10, 50, by=10), each=5), 15)
Z <- rep(c(-5, -17, -29), each=125)
V <- rbind(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,25,35,75,25,50,0,0,0,0,0,10,12,17,22,27,32,37,25,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,50,125,130,105,110,115,165,180,120,100,80,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
# the dimensions of the 3D grid described do not match the number of values
(length(unique(X))*length(unique(Y))*length(unique(Z))) == length(V)
## [1] FALSE
## which makes sense since 75 != 375
# visualize this:
library(rgl)
plot3d(x=X, y=Y, z=Z, col=terrain.colors(181)[V])
# examine the example data real quick...
df <- data.frame(x=X,y=Y,z=Z,v=V);
head(df);
table(df$x, df$y, df$z);
# there are 5 V values at each X,Y,Z coordinate... duplicates!
# redefine Z so there are 15 unique values
# making 375 unique coordinate points
# and matching the length of the given value vector, V
df$z <- seq(-5, -29, length.out=15)
head(df)
table(df$x, df$y, df$z);
# there is now 1 V value at each X,Y,Z coordinate
# that was for testing, now actually redefine the Z vector.
Z <- rep(seq(-5,-29, length.out = 15), 25)
# plot it.
library(rgl)
plot3d(x=X, y=Y, z=Z, col=terrain.colors(181)[V])
I couldn't find any 4D interpolation functions in the usual R packages, so I wrote a quick and dirty one. The following implements (without ANY error checking... caveat emptor!) the technique described at: https://en.wikipedia.org/wiki/Trilinear_interpolation
# convenience function #1:
# define a function that takes a vector of lookup values and a value to lookup
# and returns the two lookup values that the value falls between
between = function(vec, value) {
# extract list of unique lookup values
u = unique(vec)
# difference vector
dvec = u - value
vals = c(u[dvec==max(dvec[dvec<0])], u[dvec==min(dvec[dvec>0])])
return(vals)
}
# convenience function #2:
# return the value (v) from a grid data.frame for given point (x, y, z)
get_value = function(df, xi, yi, zi) {
# assumes df is data.frame with column names: x, y, z, v
subset(df, x==xi & y==yi & z==zi)$v
}
# inputs df (x,y,z,v), points to look up (x, y, z)
interp3 = function(dfin, xin, yin, zin) {
# TODO: check if all(xin, yin, zin) equals a grid point, if so just return the point value
# TODO: check if any(xin, yin, zin) equals a grid point, if so then do bilinear or linear interp
cube_x <- between(dfin$x, xin)
cube_y <- between(dfin$y, yin)
cube_z <- between(dfin$z, zin)
# find the two values in each dimension that the lookup value falls within
# and extract the cube of 8 points
tmp <- subset(dfin, x %in% cube_x &
y %in% cube_y &
z %in% cube_z)
stopifnot(nrow(tmp)==8)
# define points in a periodic and cubic lattice
x0 = min(cube_x); x1 = max(cube_x);
y0 = min(cube_y); y1 = max(cube_y);
z0 = min(cube_z); z1 = max(cube_z);
# define differences in each dimension
xd = (xin-x0)/(x1-x0); # 0.5
yd = (yin-y0)/(y1-y0); # 0.5
zd = (zin-z0)/(z1-z0); # 0.9166666
# interpolate along x:
v00 = get_value(tmp, x0, y0, z0)*(1-xd) + get_value(tmp,x1,y0,z0)*xd # 2.5
v01 = get_value(tmp, x0, y0, z1)*(1-xd) + get_value(tmp,x1,y0,z1)*xd # 0
v10 = get_value(tmp, x0, y1, z0)*(1-xd) + get_value(tmp,x1,y1,z0)*xd # 0
v11 = get_value(tmp, x0, y1, z1)*(1-xd) + get_value(tmp,x1,y1,z1)*xd # 65
# interpolate along y:
v0 = v00*(1-yd) + v10*yd # 1.25
v1 = v01*(1-yd) + v11*yd # 32.5
# interpolate along z:
return(v0*(1-zd) + v1*zd) # 29.89583 (~91.7% between v0 and v1)
}
> interp3(df, 15, 15, -12)
[1] 29.89583
Testing that same source's assertion that trilinear is simply linear(bilinear(), bilinear()), we can use the base R linear interpolation function, approx(), and the akima package's bilinear interpolation function, interp(), as follows:
library(akima)
approx(x=c(-11.857143,-13.571429),
y=c(interp(x=df[round(df$z,1)==-11.9,"x"], y=df[round(df$z,1)==-11.9,"y"], z=df[round(df$z,1)==-11.9,"v"], xo=15, yo=15)$z,
interp(x=df[round(df$z,1)==-13.6,"x"], y=df[round(df$z,1)==-13.6,"y"], z=df[round(df$z,1)==-13.6,"v"], xo=15, yo=15)$z),
xout=-12)$y
# [1] 0.2083331
Checked another package to triangulate:
library(oce)
Vmat <- array(data = V, dim = c(length(unique(X)), length(unique(Y)), length(unique(Z))))
approx3d(x=unique(X), y=unique(Y), z=unique(Z), f=Vmat, xout=15, yout=15, zout=-12)
[1] 1.666667
So 'oce', 'akima' and my function all give pretty different answers. This is either a mistake in my code somewhere, or due to differences in the underlying Fortran code in the akima interp(), and whatever is in the oce 'approx3d' function that we'll leave for another day.
Not sure what the correct answer is because the MWE is not exactly "minimum" or simple. But I tested the functions with some really simple grids and it seems to give 'correct' answers. Here's one simple 2x2x2 example:
# really, really simple example:
# answer is always the z-coordinate value
sdf <- expand.grid(x=seq(0,1),y=seq(0,1),z=seq(0,1))
sdf$v <- rep(seq(0,1), each=4)
> interp3(sdf,0.25,0.25,.99)
[1] 0.99
> interp3(sdf,0.25,0.25,.4)
[1] 0.4
Trying akima on the simple example, we get the same answer (phew!):
library(akima)
approx(x=unique(sdf$z),
y=c(interp(x=sdf[sdf$z==0,"x"], y=sdf[sdf$z==0,"y"], z=sdf[sdf$z==0,"v"], xo=.25, yo=.25)$z,
interp(x=sdf[sdf$z==1,"x"], y=sdf[sdf$z==1,"y"], z=sdf[sdf$z==1,"v"], xo=.25, yo=.25)$z),
xout=.4)$y
# [1] 0.4
The new example data in the OP's own, accepted answer was not possible to interpolate with my simple interp3() function above because:
(a) the grid coordinates are not regularly spaced, and
(b) the coordinates to lookup (x1, y1, z1) lie outside of the grid.
# for completeness, here's the attempt:
options(scipen = 999)
XCoor=c(78121.6235,78121.6235,78121.6235,78121.6235,78136.723,78136.723,78136.723,78136.8969,78136.8969,78136.8969,78137.4595,78137.4595,78137.4595,78125.061,78125.061,78125.061,78092.4696,78092.4696,78092.4696,78092.7683,78092.7683,78092.7683,78092.7683,78075.1171,78075.1171,78064.7462,78064.7462,78064.7462,78052.771,78052.771,78052.771,78032.1179,78032.1179,78032.1179)
YCoor=c(5213642.173,523642.173,523642.173,523642.173,523594.495,523594.495,523594.495,523547.475,523547.475,523547.475,523503.462,523503.462,523503.462,523426.33,523426.33,523426.33,523656.953,523656.953,523656.953,523607.157,523607.157,523607.157,523607.157,523514.671,523514.671,523656.81,523656.81,523656.81,523585.232,523585.232,523585.232,523657.091,523657.091,523657.091)
ZCoor=c(-3.0,-5.0,-10.0,-13.0,-3.5,-6.5,-10.5,-3.5,-6.5,-9.5,-3.5,-5.5,-10.5,-3.5,-5.5,-7.5,-3.5,-6.5,-11.5,-3.0,-5.0,-9.0,-12.0,-6.5,-10.5,-2.5,-3.5,-8.0,-3.5,-6.5,-9.5,-2.5,-6.5,-8.5)
V=c(2.4000,30.0,620.0,590.0,61.0,480.0,0.3700,0.0,0.3800,0.1600,0.1600,0.9000,0.4100,0.0,0.0,0.0061,6.0,52.0,0.3400,33.0,235.0,350.0,9300.0,31.0,2100.0,0.0,0.0,10.5000,3.8000,0.9000,310.0,0.2800,8.3000,18.0)
adf = data.frame(x=XCoor, y=YCoor, z=ZCoor, v=V)
# the first y value looks like a typo?
> head(adf)
x y z v
1 78121.62 5213642.2 -3.0 2.4
2 78121.62 523642.2 -5.0 30.0
3 78121.62 523642.2 -10.0 620.0
4 78121.62 523642.2 -13.0 590.0
5 78136.72 523594.5 -3.5 61.0
6 78136.72 523594.5 -6.5 480.0
x1=198130.000
y1=1913590.000
z1=-8
> interp3(adf, x1,y1,z1)
numeric(0)
Warning message:
In min(dvec[dvec > 0]) : no non-missing arguments to min; returning Inf
Whether the test data did or not make sense, I still needed an algorithm. Test data is just that, something to fiddle with and as a test data it was fine.
I wound up programming it in python and the following code takes XYZ V and does a 3D Inverse Distance Weighted (IDW) interpolation where you can set the number of points used in the interpolation. This python recipe only interpolates to one point (x1, y1, z1) but it is easy enough to extend.
import numpy as np
import math
#34 points
XCoor=np.array([78121.6235,78121.6235,78121.6235,78121.6235,78136.723,78136.723,78136.723,78136.8969,78136.8969,78136.8969,78137.4595,78137.4595,78137.4595,78125.061,78125.061,78125.061,78092.4696,78092.4696,78092.4696,78092.7683,78092.7683,78092.7683,78092.7683,78075.1171,78075.1171,78064.7462,78064.7462,78064.7462,78052.771,78052.771,78052.771,78032.1179,78032.1179,78032.1179])
YCoor=np.array([5213642.173,523642.173,523642.173,523642.173,523594.495,523594.495,523594.495,523547.475,523547.475,523547.475,523503.462,523503.462,523503.462,523426.33,523426.33,523426.33,523656.953,523656.953,523656.953,523607.157,523607.157,523607.157,523607.157,523514.671,523514.671,523656.81,523656.81,523656.81,523585.232,523585.232,523585.232,523657.091,523657.091,523657.091])
ZCoor=np.array([-3.0,-5.0,-10.0,-13.0,-3.5,-6.5,-10.5,-3.5,-6.5,-9.5,-3.5,-5.5,-10.5,-3.5,-5.5,-7.5,-3.5,-6.5,-11.5,-3.0,-5.0,-9.0,-12.0,-6.5,-10.5,-2.5,-3.5,-8.0,-3.5,-6.5,-9.5,-2.5,-6.5,-8.5])
V=np.array([2.4000,30.0,620.0,590.0,61.0,480.0,0.3700,0.0,0.3800,0.1600,0.1600,0.9000,0.4100,0.0,0.0,0.0061,6.0,52.0,0.3400,33.0,235.0,350.0,9300.0,31.0,2100.0,0.0,0.0,10.5000,3.8000,0.9000,310.0,0.2800,8.3000,18.0])
def Distance(x1,y1,z1, Npoints):
i=0
d=[]
while i < 33:
d.append(math.sqrt((x1-XCoor[i])*(x1-XCoor[i]) + (y1-YCoor[i])*(y1-YCoor[i]) + (z1-ZCoor[i])*(z1-ZCoor[i]) ))
i = i + 1
distance=np.array(d)
myIndex=distance.argsort()[:Npoints]
weightedNum=0
weightedDen=0
for i in myIndex:
weightedNum=weightedNum + (V[i]/(distance[i]*distance[i]))
weightedDen=weightedDen + (1/(distance[i]*distance[i]))
InterpValue=weightedNum/weightedDen
return InterpValue
x1=198130.000
y1=1913590.000
z1=-8
print(Distance(x1,y1,z1, 12))

R: Different colors in two-dimensional density plot depending on the values of x and y

I am plotting the joint density of two variables x and y using kde2d and persp.
How can I do the following:
1) Depending on the values of x and y, I want to colour the plot differently. I.e. for values x>.5 and y>.5 the color should be blue and for x<=.5 and y<=.5 the color should be red. Currently the whole graph is just blue (see code below).
2) How can I colour the area below the surface (i.e. the probability mass)? I would like to colour it also with blue and red respectively.
library(MASS)
i<-1
x<-NULL
y<-NULL
while (i<=30) {
x1 <- rnorm(1, 0, 1)
x2 <- rnorm(1, 0, 1)
x <- c(x, x1)
y<-c(y,x2)
i<-i+1
}
den3d <- kde2d(x, y)
persp(den3d,xlab="Var1", ylab="Var2", zlab="Density", shade = 0.1, col = "blue", box=TRUE)
Help is appreciated.
This answers the first question:
x <- rnorm(30)
y <- rnorm(30)
library(MASS)
den3d <- kde2d(x, y)
cols <- c("blue", "red")[(outer(na.omit(filter(den3d$x>0.5,c(1,1), sides=1)),
na.omit(filter(den3d$y>0.5,c(1,1), sides=1)),
"+")==4) + 1]
persp(den3d,xlab="Var1", ylab="Var2", zlab="Density",
shade = 0.1, col = cols, box=TRUE, phi=90)
Note that a facet is only coloured red if its x and y values are > 0.5 in the whole facet range.
I don't think you should do what you describe in the second question. Anyway, persp is not designed for that.
Edit: What is going on there?
den3d$x are the x values for plotting. We need to check for each facet if the x values on both ends are > 0.5. We can do this by calculating the sum of these values. This can be done using filter (see help("filter") for documentation):
filter(den3d$x>0.5,c(1,1), sides=1)
#[1] NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2
Logical input values were automatically coerced to 0 and 1 by filter. Resulting values of0 indicate > 0.5 at none of the ends, of 1 indicate > 0.5 at one end and of 2 indicate > 0.5 at both ends. The NA we need to remove.
We then do this for den3d$y as well and calculate the outer sum, which can result in values between 0 and 4. 0 and 4 mean all four borders of a facet are not and are > 0.5, respectively. Values 1 to 3 indicate 1 to 3 borders are > 0.5. We than set all values of 4 (those we want to color "red") to TRUE and the others to FALSE by using ==. Since we need values of 1 for FALSE and 2 for TRUE in order to subset the color vector, we (automatically) coerce the logical values to 0 and 1 and add 1.
That`s it.

Create Spatial Data in R

I have a dataset of species and their rough locations in a 100 x 200 meter area. The location part of the data frame is not in a format that I find to be usable. In this 100 x 200 meter rectangle, there are two hundred 10 x 10 meter squares named A through CV. Within each 10 x 10 square there are four 5 x 5 meter squares named 1, 2, 3, and 4, respectively (1 is south of 2 and west of 3. 4 is east of 2 and north of 3). I want to let R know that A is the square with corners at (0 ,0), (10,0), (0,0), and (0,10), that B is just north of A and has corners (0,10), (0,20), (10,10), and (10,20), and K is just east of A and has corners at (10,0), (10,10), (20,0), and (20,10), and so on for all the 10 x 10 meter squares. Additionally, I want to let R know where each 5 x 5 meter square is in the 100 x 200 meter plot.
So, my data frame looks something like this
10x10 5x5 Tree Diameter
A 1 tree1 4
B 1 tree2 4
C 4 tree3 6
D 3 tree4 2
E 3 tree5 3
F 2 tree6 7
G 1 tree7 12
H 2 tree8 1
I 2 tree9 2
J 3 tree10 8
K 4 tree11 3
L 1 tree12 7
M 2 tree13 5
Eventually, I want to be able to plot the 100 x 200 meter area and have each 10 x 10 meter square show up with the number of trees, or number of species, or total biomass
What is the best way to turn the data I have into spatial data that R can use for graphing and perhaps analysis?
Here's a start.
## set up a vector of all 10x10 position tags
tags10 <- c(LETTERS,
paste0("A",LETTERS),
paste0("B",LETTERS),
paste0("C",LETTERS[1:22]))
A function to convert (e.g.) {"J",3} to the center of the corresponding sub-square.
convpos <- function(pos10,pos5) {
## convert letters to major (x,y) positions
p1 <- as.numeric(factor(pos10,levels=tags10)) ## or use match()
p1.x <- ((p1-1) %% 10) *10+5 ## %% is modulo operator
p1.y <- ((p1-1) %/% 10)*10+5 ## %/% is integer division
## sort out sub-positions
p2.x <- ifelse(pos5 <=2,2.5,7.5) ## {1,2} vs {3,4} values
p2.y <- ifelse(pos5 %%2 ==1 ,2.5,7.5) ## odd {1,3} vs even {2,4} values
c(p1.x+p2.x,p1.y+p2.y)
}
usage:
convpos("J",2)
convpos(mydata$tenbytenpos,mydata$fivebyfivepos)
Important notes:
this is a proof of concept, I can pretty much guarantee I haven't got the correspondence of x and y coordinates quite right. But you should be able to trace through this line-by-line and see what it's doing ...
it should work correctly on vectors (see second usage example above): I switched from switch to ifelse for that reason
your column names (10x10) are likely to get mangled into something like X10.10 when reading data into R: see ?data.frame and ?check.names
Similar to what #Ben Bolker has done, here's a lookup function (though you may need to transpose something to make the labels match what you describe).
tenbyten <- c(LETTERS[1:26],
paste0("A",LETTERS[1:26]),
paste0("B",LETTERS[1:26]),
paste0("C",LETTERS[1:22]))
tenbyten <- matrix(rep(tenbyten, each = 2), ncol = 10)
tenbyten <- t(apply(tenbyten, 1, function(x){rep(x, each = 2)}))
# the 1234 squares
squares <- matrix(c(rep(c(1,2),10),rep(c(4,3),10)), nrow = 20, ncol = 20)
# stick together into a reference grid
my.grid <- matrix(paste(tenbyten, squares, sep = "-"), nrow = 20, ncol = 20)
# a lookup function for the site grid
coordLookup <- function(tbt, fbf, .my.grid = my.grid){
x <- col(.my.grid) * 5 - 2.5
y <- row(.my.grid) * 5 - 2.5
marker <- .my.grid == paste(tbt, fbf, sep = "-")
list(x = x[marker], y = y[marker])
}
coordLookup("BB",2)
$x
[1] 52.5
$y
[1] 37.5
If this isn't what you're looking for, then maybe you'd prefer a SpatialPolygonsDataFrame, which has proper polygon IDs, and you attach data to, etc. In that case just Google around for how to make one from scratch, and manipulate the row() and col() functions to get your polygon corners, similar to what's given in this lookup function, which only returns centroids.
Edit: getting SPDF started:
This is modified from the function example and can hopefully be a good start:
library(sp)
# really you have a 20x20 grid, counting the small ones.
# c(2.5,2.5) specifies the distance in any direction from the cell center
grd <- GridTopology(c(1,1), c(2.5,2.5), c(20,20)))
grd <- as.SpatialPolygons.GridTopology(grd)
# get centroids
coords <- coordinates(polys)
# make SPDF, with an extra column for your grid codes, taken from the above.
# you can add further columns to this data.frame(), using polys#data
polys <- SpatialPolygonsDataFrame(grd,
data=data.frame(x=coords[,1], y=coords[,2], my.ID = as.vector(my.grid),
row.names=getSpPPolygonsIDSlots(grd)))

Resources