I am trying to write a for loop that will generate a correlation for a fixed column (LPS0) vs. all other columns in the data set. I don't want to use a correlation matrix because I only care about the correlation of LPS0 vs all other columns, not the correlations of the other columns with themselves. I then want to include an if statement to print only the significant correlations (p.value <= 0.05). I ran into some issues where some of the p.values are returned as NA, so I switched to an if_else loop. However, I am now getting an error. My code is as follows:
for(i in 3:ncol(microbiota_lps_0_morm)) {
morm_0 <- cor.test(microbiota_lps_0_morm$LPS0, microbiota_lps_0_morm[[colnames(microbiota_lps_0_morm)[i]]], method = "spearman")
if_else(morm_0$p.value <= 0.05, print(morm_0), print("Not Sig"), print("NA"))
}
The first value is returned, and then the loop stops with the following error:
Error in if_else():
! true must be length 1 (length of condition), not 8.
Backtrace: 1. dplyr::if_else(morm_0$p.value <= 0.05, print(morm_0), print("Not Sig"), print("NA"))
How can I make the loop print morm only when p.value <- 0.05?
Here's a long piece of code which aytomates the whole thing. it might be overkill but you can just take the matrix and use whatever you need. it makes use of the tidyverse.
df <- select_if(mtcars,is.numeric)
glimpse(df)
# keeping real names
dict <- cbind(original=names(df),new=paste0("v",1:ncol(df)))
# but changing names for better data viz
colnames(df) <- paste0("v",1:ncol(df))
# correlating between variables + p values
pvals <- list()
corss <- list()
for (coln in colnames(df)) {
pvals[[coln]] <- map(df, ~ cor.test(df[,coln], .)$p.value)
corss[[coln]] <- map(df, ~ cor(df[,coln], .))
}
# Keeping both matrices in a list
matrices <- list(
pvalues = matrix(data=unlist(pvals),
ncol=length(names(pvals)),
nrow=length(names(pvals))),
correlations = matrix(data=unlist(corss),
ncol=length(names(corss)),
nrow=length(names(corss)))
)
rownames(matrices[[1]]) <- colnames(df)
rownames(matrices[[2]]) <- colnames(df)
# Creating a combined data frame
long_cors <- expand.grid(Var1=names(df),Var2=names(df)) %>%
mutate(cor=unlist(matrices["correlations"]),
pval=unlist(matrices["pvalues"]),
same=Var1==Var2,
significant=pval<0.05,
dpcate=duplicated(cor)) %>%
# Leaving no duplicants, non-significant or self-correlation results
filter(same ==F,significant==T,dpcate==F) %>%
select(-c(same,dpcate,significant))
# Plotting correlations
long_cors %>%mutate(negative=cor<0) %>%
ggplot(aes(x=Var1,y=Var2,
color=negative,size=abs(cor),fill=Var2,
label=round(cor,2)))+
geom_label(show.legend = F,alpha=0.2)+
scale_color_manual(values = c("black","darkred"))+
# Sizing each correlation by it's magnitude
scale_size_area(seq(1,100,length=length(unique(long_cors$Var1))))+ theme_light()+
theme(axis.text = element_text(face = "bold",size=12))+
labs(title="Correlation between variables",
caption = "p < 0.05")+xlab("")+ylab("")
If you want to correlate a column of a matrix with the remaining columns, you can do so with one function call:
mtx <- matrix(rnorm(800), ncol=8)
cor(mtx[,1], mtx[,-1])
However, you will not get p-values. For getting p-values, I would recommend this approach:
library(tidyverse)
significant <- map_dbl(2:ncol(mtx),
~ cor.test(mtx[,1], mtx[,.], use="p", method="s")$p.value)
Whenever you feel like you need a for loop in R, chances are, you should be using another approach. for is a very un-R construct, and R gives many better ways of handling the same issues. map_* family of functions from tidyverse is but one of them. Another approach, in base R, would be to use apply:
significant <- apply(mtx[,-1], 2,
\(x) cor.test(x, mtx[,1], method="s", use="p")$p.value)
Related
I have several models that I would like to compare their choices of important predictors over the same data set, Lasso being one of them. The data set I am using consists of census data with around a thousand variables that have been renamed to "x1", "x2" and so on for convenience sake (The original names are extremely long). I would like to report the top features then rename these variables with a shorter more concise name.
My attempt to solve this is by extracting the top variables in each iterated model, put it into a list, then finding the mean of the top variables in X amount of loops. However, my issue is I still find variability with the top 10 most used predictors and so I cannot manually alter the variable names as each run on the code chunk yields different results. I suspect this is because I have so many variables in my analysis and due to CV causing the creation of new models every bootstrap.
For the sake of a simple example I used mtcars and will look for the top 3 most common predictors due to only having 10 variables in this data set.
library(glmnet)
data("mtcars") # Base R Dataset
df <- mtcars
topvar <- list()
for (i in 1:100) {
# CV and Splitting
ind <- sample(nrow(df), nrow(df), replace = TRUE)
ind <- unique(ind)
train <- df[ind, ]
xtrain <- model.matrix(mpg~., train)[,-1]
ytrain <- df[ind, 1]
test <- df[-ind, ]
xtest <- model.matrix(mpg~., test)[,-1]
ytest <- df[-ind, 1]
# Create Model per Loop
model <- glmnet(xtrain, ytrain, alpha = 1, lambda = 0.2)
# Store Coeffecients per loop
coef_las <- coef(model, s = 0.2)[-1, ] # Remove intercept
# Store all nonzero Coefficients
topvar[[i]] <- coef_las[which(coef_las != 0)]
}
# Unlist
varimp <- unlist(topvar)
# Count all predictors
novar <- table(names(varimp))
# Find the mean of all variables
meanvar <- tapply(varimp, names(varimp), mean)
# Return top 3 repeated Coefs
repvar <- novar[order(novar, decreasing = TRUE)][1:3]
# Return mean of repeated Coefs
repvar.mean <- meanvar[names(repvar)]
repvar
Now if you were to rerun the code chunk above you would notice that the top 3 variables change and so if I had to rename these variables it would be difficult to do if they are not constant and changing every run. Any suggestions on how I could approach this?
You can use function set.seed() to ensure your sample will return the same sample each time. For example
set.seed(123)
When I add this to above code and then run twice, the following is returned both times:
wt carb hp
98 89 86
So I need to write a function that takes a data-frame as input. The columns are my explanatory variables (except for the last column/right most column which is the response variable). I'm trying to fit a linear model and track each model's adjusted r-square as the criterion used to pick the best model.
The model will use all the columns as the explanatory variables (except for the right-most column which will be the response variable).
The function is supposed to create a tibble with a single column for the model number (I have no idea what this is supposed to mean), subset of of explanatory variables along with response variable, model formula, outcome of fitting linear model, and others as needed.
The function is supposed to output: the model number, the explanatory variables in the model, the value of adjusted r-square, and a graph (I can figure the graph out on my own). I have a image of a table here to help with visualizing what the result should look like.
I figured out that this code will get me the explanatory and response variables:
cols <- colnames(data)
# Get the response variable.
y <- tail(cols, 1)
# Get a list of the explanatory variables.
xs <- head(cols, length(cols) - 1)
I know that I can get a model with something like this (ignore variable names for now):
model <- final_data %>%
group_by(debt) %>%
lm(debt ~ distance, data = .) %>%
glance()
I also know that I'm going to have to somehow map that model to each of the rows in the tibble that I'm trying to create.
What I'm stuck on is figuring out how to put all this together and create the complete function. I wish I could provide more details but I am completely stuck. I've spent about 10 hours working on this today... I asked my professor for help and he just told me to post here.
For reference here is a very early (not working at all) attempt I made:
best_subsets <- function(data) {
cols <- colnames(data)
# Get the response variable.
y <- tail(cols, 1)
# Get a list of the explanatory variables.
xs <- head(cols, length(cols) - 1)
# Create the formula as a string and then later in the lm function
# have it turned into a real formula.
form <- paste(y, "~", xs, sep = " ")
data %>%
lm(as.formula(form), data = .) %>%
glance()
}
I don't fully understand your description but I think I understand your goal. Maybe this can help in some way?:
library(tidyverse)
library(broom)
library(data.table)
lm_func <- function(df){
fit1 <- lm(df[, 1] ~ df[, 2], data = df)
fit2 <- lm(df[, 1] ~ df[, 3], data = df)
fit3 <- lm(df[, 1] ~ df[, 2], df[, 3], data = df)
results <- list(fit1, fit2, fit3)
names(results) <- paste0("explanitory_variables_", 1:3)
r_sq <- lapply(results, function(x){
glance(x)
})
r_sq_df <- rbindlist(r_sq, idcol = "df_name")
r_sq_df
}
lm_func(iris)
This gives you a dataframe of all the important outputs from which you can select adj.r.squared. Would also be possible to automate. As a side note, selecting a model based on R squared seems very strange, dangers of overfitting? a higher R squared does not necessarily mean a better model, consider looking into AIC as well?
Let me know if this helps at all or if I can refine the answer a little more towards your goal.
UPDATE:
lm_func <- function(df) {
lst <- c()
for (i in 2:ncol(df)) {
ind <- i
form_df <- df[, 1:ind]
form <- DF2formula(form_df)
fit <- lm(form, data = df)
lst[[i - 1]] <- glance(fit)
}
lst
names(lst) <- paste0("explanitory_variables_", 1:length(lst))
lst <- rbindlist(lst, idcol = "df_name")
lst
}
lm_func(iris)
This assumes your first column is y and you want a model for every additional column.
OK one more UPDATE:
I think this does everything possible but is probably overkill:
library(combinat)
library(data.table)
library(tidyverse)
library(broom)
#First function takes a dataframe containing only the dependent and independent variables. Specify them by variable name or column position.
#The function then returns a list of dataframes of every possible order of independent variables (y ~ x1 + x2...) (y ~ x2 + x1...).
#So you can run your model on every possible sequence of explanatory variables
formula_func <- function(df, dependent = df["Sepal.Length"], independents = df[c("Sepal.Width", "Petal.Length", "Petal.Width", "Species")]) {
independents_df_list <- permn(independents) #length of output should be the factorial of the number of independent variables
df_list <- lapply(independents_df_list, function(x){ #this just pastes your independent variable as the first column of each df
cbind(dependent, x)
})
df_list
}
permd_df_list <- formula_func(iris) # voila
# This function takes the output from the previous function and runs the lm building in one variable each time (y ~ x1), (y ~ x1 + x2) and so on
# So the result is many lms building in one one independent variable at a time in every possible order
# If that is as confusing to you as it is to me then check final output. You will see what model formula is used per row and in what order each explanatory variable was added
lm_func <- function(form_df_list, df) {
mega_lst <- c()
mega_lst <- lapply(form_df_list, function(x) {
lst <- vector(mode = "list", length = length(2:ncol(x)))
for (i in 2:ncol(x)) {
ind <- i
form_df <- x[, 1:ind]
form <- DF2formula(form_df)
fit <- lm(form, data = x)
lst[[i - 1]] <- glance(fit)
names(lst)[[i-1]] <- deparse(form)
}
lst <- rbindlist(lst, idcol = "Model_formula")
return(lst)
})
return(mega_lst)
}
everything_list <- lm_func(permd_df_list, iris) # VOILA!!!
#Remove duplicates and return single df
everything_list_distinct <- everything_list %>%
rbindlist() %>%
distinct()
## You can now subset and select whichever column you want from the final output
I posted this as a coding exercise so let me know if anyone spots any errors. Just one caveat, this code does NOT represent a statistically sound approach just a coding experiment so be sure to understand the stats first!
Right now, I have a combn from the built in dataset iris. So far, I have been guided into being able to find the coefficient of lm() of the pair of values.
myPairs <- combn(names(iris[1:4]), 2)
formula <- apply(myPairs, MARGIN=2, FUN=paste, collapse="~")
model <- lapply(formula, function(x) lm(formula=x, data=iris)$coefficients[2])
model
However, I would like to go a few steps further and use the coefficient from lm() to be used in further calculations. I would like to do something like this:
Coefficient <- lm(formula=x, data=iris)$coefficients[2]
Spread <- myPairs[1] - coefficient*myPairs[2]
library(tseries)
adf.test(Spread)
The procedure itself is simple enough, but I haven't been able to find a way to do this for each combn in the data set. (As a sidenote, the adf.test would not be applied to such data, but I'm just using the iris dataset for demonstration).
I'm wondering, would it be better to write a loop for such a procedure?
You can do all of this within combn.
If you just wanted to run the regression over all combinations, and extract the second coefficient you could do
fun <- function(x) coef(lm(paste(x, collapse="~"), data=iris))[2]
combn(names(iris[1:4]), 2, fun)
You can then extend the function to calculate the spread
fun <- function(x) {
est <- coef(lm(paste(x, collapse="~"), data=iris))[2]
spread <- iris[,x[1]] - est*iris[,x[2]]
adf.test(spread)
}
out <- combn(names(iris[1:4]), 2, fun, simplify=FALSE)
out[[1]]
# Augmented Dickey-Fuller Test
#data: spread
#Dickey-Fuller = -3.879, Lag order = 5, p-value = 0.01707
#alternative hypothesis: stationary
Compare results to running the first one manually
est <- coef(lm(Sepal.Length ~ Sepal.Width, data=iris))[2]
spread <- iris[,"Sepal.Length"] - est*iris[,"Sepal.Width"]
adf.test(spread)
# Augmented Dickey-Fuller Test
# data: spread
# Dickey-Fuller = -3.879, Lag order = 5, p-value = 0.01707
# alternative hypothesis: stationary
Sounds like you would want to write your own function and call it in your myPairs loop (apply):
yourfun <- function(pair){
fm <- paste(pair, collapse='~')
coef <- lm(formula=fm, data=iris)$coefficients[2]
Spread <- iris[,pair[1]] - coef*iris[,pair[2]]
return(Spread)
}
Then you can call this function:
model <- apply(myPairs, 2, yourfun)
I think this is the cleanest way. But I don't know what exactly you want to do, so I was making up the example for Spread. Note that in my example you get warning messages, since column Species is a factor.
A few tips: I wouldn't name things that you with the same name as built-in functions (model, formula come to mind in your original version).
Also, you can simplify the paste you are doing - see the below.
Finally, a more general statement: don't feel like everything needs to be done in a *apply of some kind. Sometimes brevity and short code is actually harder to understand, and remember, the *apply functions offer at best, marginal speed gains over a simple for loop. (This was not always the case with R, but it is at this point).
# Get pairs
myPairs <- combn(x = names(x = iris[1:4]),m = 2)
# Just directly use paste() here
myFormulas <- paste(myPairs[1,],myPairs[2,],sep = "~")
# Store the models themselves into a list
# This lets you go back to the models later if you need something else
myModels <- lapply(X = myFormulas,FUN = lm,data = iris)
# If you use sapply() and this simple function, you get back a named vector
# This seems like it could be useful to what you want to do
myCoeffs <- sapply(X = myModels,FUN = function (x) {return(x$coefficients[2])})
# Now, you can do this using vectorized operations
iris[myPairs[1,]] - iris[myPairs[2,]] * myCoeffs[myPairs[2,]]
If I am understanding right, I believe the above will work. Note that the names on the output at present will be nonsensical, you would need to replace them with something of your own design (maybe the values of myFormulas).
I'm working on a project where I need to collect the intercept, slope, and R squared of several linear regressions. Since I need to at least 200 samples of different sample sizes I set-up the code below, but it only saves the last iteration of the loop. Any suggestions on how I can record each loop so that I can have all of the coefficients and r-squares that I require.
for (i in 1:5) {
x <- as.data.frame(mydf[sample(1:1000,25,replace=FALSE),])
mylm <- lm(spd66305~spd66561, data=x)
coefs <- rbind(lman(mylm))
total.coefs <- rbind(coefs)
}
total.coefs
The function used in the loop is below if that is needed.
lman <- function(mylm){
r2 <- summary(mylm)$r.squared
r <- sqrt(r2)
intercept <- coef(mylm)[1]
slope <- coef(mylm)[2]
tbl <- c(intercept,slope,r2,r)
}
Thanks for the help.
Before starting your loop, you can write
total.coefs <- data.frame(), to initialise an empty data.frame. Then in your loop you want to update the total.coefs, as follows: total.coefs <- rbind(total.coefs, coefs). Finally replace the last line in lman by:
tbl <- data.frame(intercept=intercept, slope=slope, r2=r2, r=r).
Here's how I'd do it, for example on the mtcars data. Note: It's not advisable to use rbind inside the loop if you're building a data structure. You can call rbind after the looping has been done and things are much less stressful. I prefer to do this type of operation with a list.
Here I wrapped my lapply loop with rbind, and then do.call binds the list elements together recursively. Another thing to note is that I take the samples prior to entering the loop. This makes debugging easier and can be more efficient overall
reps <- replicate(3, sample(nrow(mtcars), 5), simplify = FALSE)
do.call(rbind, lapply(reps, function(x) {
mod <- lm(mpg ~ hp, mtcars[x,])
c(coef(mod), R = summary(mod)$r.squared)
}))
# (Intercept) hp R
# [1,] 33.29360 -0.08467169 0.5246208
# [2,] 29.97636 -0.06043852 0.4770310
# [3,] 28.33462 -0.05113847 0.8514720
The following transposed vapply loop produces the same result, and is often faster when you know the type of result you expect
t(vapply(reps, function(x) {
mod <- lm(mpg ~ hp, mtcars[x,])
c(coef(mod), R = summary(mod)$r.squared)
}, numeric(3)))
Another way to record each loop would be to make the work reproducible and keep your datasets around in case you have extreme values, missing values, new questions about the datasets, or other surprises that need investigated.
This is a similar case using the iris dataset.
# create sample data
data(iris)
iris <- iris[ ,c('Sepal.Length','Petal.Length')]
# your function with data.frame fix on last line
lman <- function(mylm){
r2 <- summary(mylm)$r.squared
r <- sqrt(r2)
intercept <- coef(mylm)[1]
slope <- coef(mylm)[2]
data.frame(intercept,slope,r2,r)
}
# set seed to make reproducible
set.seed(3)
# create all datasets
alldatasets <- lapply(1:200,function(x,df){
df[sample(1:nrow(df),size = 50,replace = F), ]
},df = iris)
# create all models based on alldatasets
allmodels <- lapply(alldatasets,lm,formula = Sepal.Length ~ Petal.Length)
# run custom function on all models
lmanresult <- lapply(allmodels,lman)
# format results
result <- do.call('rbind',lmanresult)
row.names(result) <- NULL
# inspect the 129th sample, model, and result
alldatasets[[129]]
summary(allmodels[[129]])
result[129, ]
Here is my problem, just hard for me...
I want to generate multiple datasets, then apply a function to these datasets and output corresponding output in single or multiple dataset (whatever possible)...
My example, although I need to generate a large number of variables and datasets
seed <- round(runif(10)*1000000)
datagen <- function(x){
set.seed(x)
var <- rep(1:3, c(rep(3, 3)))
yvar <- rnorm(length(var), 50, 10)
matrix <- matrix(sample(1:10, c(10*length(var)), replace = TRUE), ncol = 10)
mydata <- data.frame(var, yvar, matrix)
}
gdt <- lapply (seed, datagen)
# resulting list (I believe is correct term) has 10 dataframes:
# gdt[1] .......to gdt[10]
# my function, this will perform anova in every component data frames and
#output probability coefficients...
anovp <- function(x){
ind <- 3:ncol(x)
out <- lm(gdt[x]$yvar ~ gdt[x][, ind[ind]])
pval <- out$coefficients[,4][2]
pval <- do.call(rbind,pval)
}
plist <- lapply (gdt, anovp)
Error in gdt[x] : invalid subscript type 'list'
This is not working, I tried different options. But could not figure out...finally decided to bother experts, sorry for that...
My questions are:
(1) Is this possible to handle such situation in this way or there are other alternatives to handle such multiple datasets created?
(2) If this is right way, how can I do it?
Thank you for attention and I will appreciate your help...
You have the basic idea right, in that you should create a list of data frames and then use lapply to apply the function to each element of the list. Unfortunately, there are several oddities in your code.
There is no point in randomly generating a seed, then setting it. You only need to use set.seed in order to make random numbers reproducible. Cut the lines
seed <- round(runif(10)*1000000)
and maybe
set.seed(x)
rep(1:3, c(rep(3, 3))) is the same as rep(1:3, each = 3).
Don't call your variables var or matrix, since they will mask the names of those functions. since it's confusing.
3:ncol(x) is dangerous. If x has less than 3 columns it doesn't do what you think it does.
... and now, the problem you actually wanted solving.
The problem is in the line out <- lm(gdt[x]$yvar ~ gdt[x][, ind[ind]]).
lapply passes data frames into anovp, not indicies, so x is a data frame in gdt[x]. Which throws an error.
One more thing. While you are rewriting that line, note that lm takes a data argument, so you don't need to do things like gdt$some_column; you can just reference some_column directly.
EDIT: Further advice.
You appear to always use the formula yvar ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10. Since its the same each time, create it before your call to lapply.
independent_vars <- paste(colnames(gdt[[1]])[-1:-2], collapse = " + ")
model_formula <- formula(paste("yvar", independent_vars, sep = " ~ "))
I probably wouldn't bother with the anovp function. Just do
models <- lapply(gdt, function(data) lm(model_formula, data))
Then include a further call to lapply to play with the coefficients if necessary. The next line replicates your anovp code, but won't work because model$coefficients is a vector (so the dimensions aren't right). Adjust to retrieve the bit you actualy want.
coeffs <- lapply(models, function(model) do.call(rbind, model$coefficients[,4][2]))