Related
I am having some trouble with visualizing cumulative returns in R. For some reason I can't change the axis labels and line type in chart.TimeSeries or chart.CumReturns from the PerformanceAnalytics package. Changes in the line type do appear in the legend.
My code:
ret_compare <- cbind(conventional.scaled.returns.monthly, conditional.scaled.returns.monthly, unscaled.returns.monthly)
cum_ret_compare <- cumprod(ret_compare+1)
chart.TimeSeries(cum_ret_compare, ylab = "Cumulatief rendement", colorset= c(2,3,1),lty = 2, legend.loc = "topleft")
The plot I get:
A screenshot of the data I used (below is the full dput() output):
The data I used (dput(ret_compare)):
structure(c(0.0565939990771869, -0.0347482427707391, -0.0277900457059636,
0.0429234080870222, -0.0718787783241953, -0.016863029966348,
0.059355733239068, 0.037562234119064, -0.0677988560026864, 0.0600705787852096,
-0.0517080807079698, 0.00180517117961099, -0.0209223756892264,
0.0272845085630986, 0.0837601002893609, 0.0359655556488165, 0.0289223567394459,
0.00786503568014307, 0.0613306520140755, -0.0691778150018606,
0.0326380403566631, -0.0133417659847783, 0.0124121161628492,
0.0642708816666793, 0.00507849967404161, 0.0261052878209909,
0.0151493267776062, 0.00676515233437147, 0.00653446817356351,
0.0150714363479285, -0.050143190382553, 0.0345058557122753, 0.0441645265494663,
0.0330199447063566, 0.080567937081057, 0.0316571988327838, 0.000198181362019767,
0.0208690458801075, 0.0504761702266239, -0.00550425517164699,
0.0399051303505815, 0.0599723999392408, 0.0568078556781997, -0.047301231431996,
0.0883885279858534, -0.0511316915459871, 0.00804493275737861,
0.0299441033050929, 0.0334788931639478, 0.0582014365192993, 0.0678197532602445,
0.0159992998095304, 0.0125443303556689, 0.00819301763612046,
0.00991755318616083, -0.120605712811205, -0.0262409920857444,
0.040946793757588, 0.0164392980283827, 0.0306621368418329, -0.0238640140220965,
-0.0156901113780832, 0.0101061236361657, 0.0280945470081029,
-0.0493498768067187, 0.0158476544516308, -0.0130536804845046,
0.00928507222402164, -0.0174652889946849, 0.0415549564151227,
0.00501328628644071, 0.141989003051248, -0.0684962605913843,
0.0476352610219926, 0.0161558138743416, -0.0288967250807524,
-0.0136524963030579, 0.013609536698864, -0.0101217287483828,
-0.0158427614092369, -0.0659110431281645, -0.00361214051470649,
-0.0339148683510243, 0.0549197973662541, 0.00351817414237154,
-0.0836247487330098, -0.0660975163205073, 0.0304100958405675,
-0.0433097428906102, -0.0363928303567407, 0.0106002084863943,
-0.027020033384645, -0.0291214507902441, 0.013711263904689, 0.0191434464401923,
0.0249660315555751, -0.0360122263475078, 0.00687569978857283,
0.0574596331980592, -0.0114262145986058, -0.00694415263166959,
-0.0519113175679171, -0.092809259472171, -0.000240961580031951,
-0.0573097859137003, 0.0476330153045359, 0.0158596707003653,
-0.0261396384934428, -0.0286505239756832, -0.0366692368775817,
-0.0127341035075788, 0.0669385878663209, 0.0465027267386504,
0.00704423441903423, 0.0217546431041822, -0.00582565417712289,
0.0130023382378637, 0.10511251526633, 0.0518522334205838, 0.107127520905078,
0.0178719315683786, 0.0278267973953032, -0.0485503100189258,
-0.0108659147438031, 0.0109666518413147, 0.0154645672337712,
-0.0338505700478167, -0.00436219527802972, 0.05104724595336,
0.0541549024268144, 0.0873384487014046, 0.0628186392725139, -0.0288161017299512,
0.0950492127308722, -0.0491296716777756, -0.0444532289596897,
-0.00216600237045717, 0.0190268040149375, 0.067817072016372,
0.0146918057312835, 0.0295514071747491, -0.0435830986730233,
0.0215714644357461, 0.0494583026657589, 0.0913329109870025, -0.0053448319045083,
0.0601557176652443, 0.0568172510761795, -0.0485426969753849,
0.00175302828494006, 0.00984938190559648, 0.0240502738702311,
-0.00118579262163876, 0.0561485994364315, 0.0685148593157117,
0.04683955790033, -0.0574638736286489, -0.0138207306792366, 0.0355299071029838,
0.0531266681464893, 0.0117742011764304, -0.00525222583312346,
-0.0293812846037232, -0.0131594446545449, 0.0289964530305211,
0.0360588122490606, -0.0445991604911897, -0.0133107604099818,
-0.038145829508777, -0.000486060215306838, 0.00104676175588558,
0.0208886233797061, -0.00263583111403876, -0.12338493810393,
-0.0166803342153315, -0.0297568741980336, -0.112338323364713,
-0.0693713119660443, -0.0180597800314281, 0.0134278508097088,
-0.0330598180720567, -0.0366483220489359, 0.0339417580345724,
0.0509050678267557, 0.0528878066096272, -0.018266616997294, 0.0677991301131817,
0.0413170767588944, 0.0179821345844948, -0.0120530476718976,
0.0506564243990657, 0.0108111883471529, -0.0607609892616301,
-0.0245384465619248, 0.0513624569791613, -0.0375362970369394,
-0.108672749280212, -0.00337217907778453, 0.087093380777213,
-0.0338856992001196, 0.0840213297383585, 0.0404836319184165,
-0.0844650405081253, 0.0619874075245053, 0.0504278836336267,
0.0415781344576631, -0.0167132483670377, 0.076801882730787, -0.0369574751565279,
-0.0206697388445634, -0.0328788588005816, -0.083383558090487,
-0.0323162584368404, 0.051610493839749, -0.0220809995437766,
-0.00870937103673219, 0.0225163266689465, 0.0397241319702022,
-0.0102895797305198, -0.0281284547507554, -0.0991696936611708,
0.0636541757418483, 0.0179711424415336, 0.0333173103972026, 0.0225887202551132,
0.00443860666159801, 0.014806760557537, 0.0310237163003237, 0.144376590041557,
-0.0448055417930532, -0.00513324649717639, 0.0537257308063575,
-0.00999221359281199, -0.0819189957530423, 0.0476018428802933,
-0.0214364641397353, 0.0918599937028983, 0.068148748800128, 0.00803440955796253,
0.0397444044913302, -0.0552739603600437, 0.10420213043066, -0.0215270370205893,
0.0249963705701839, -0.0093007099097957, -0.00944183950206712,
-0.0971704450184838, 0.00264470427302532, -0.0723146624220592,
-0.0604005470589978, 0.0267660599545763, -0.0809302399859423,
-0.0155073183470853, 0.0664580522537737, -0.0536551996227884,
0.0468841220908309, -0.0208428453992652, -0.0416561940283499,
0.0333869121623922, -0.0710574857344434, -0.0493355477841083,
0.0574454161378841, -0.0413939958360005, -0.0361717353766919,
-0.0730611841593626, -0.0306524518642073, 0.0448704347638376,
0.0189138798885842, -0.019112690070504, -0.0607784992411501,
0.0200647095833417, 4.64025545323654e-05, 0.0167228957527705,
-0.0399352463740604, -0.0533583100515406, 0.0922371375755624,
0.0469543874397995, 0.0130431580117298, 0.0904898600303281, 0.0657425429880596,
0.0499463961351239, -0.0261922592092307, 0.065751610214466, -0.00621555863424983,
0.0832799329468406, 0.00866941466260029, -0.017688747365096,
0.0449778523037858, 0.0954877576723518, -0.118831287262529, -0.0142308642932637,
0.0385103238081386, -0.064183870293033, -0.0142310862314927,
0.046099549894892, -0.0550393421312394, 0.00274530215199009,
-0.156434752199699, -0.00708826723870748, -0.0462880814806087,
0.059565753901339, 0.0316103424635057, 0.00219296046281703, 0.0485668880949881,
-0.16121577788262, 0.0851533099681305, -0.0386176257065057, -0.0712227636357597,
0.0312116344677249, 0.0527030336009604, 0.016990538618856, 0.0943310408154399,
-0.0417768266816103, -0.167029346552333, -0.136573394710224,
0.0151856742327374, 0.0150795243191497, 0.0256024944818467, 0.0319573321526792,
0.0423101107019896, -0.060681262543504, -0.0516425733035891,
0.160387164752116, 0.0380848238199503, -0.0206859096083852, 0.0113327971407688,
0.0582468900635822, 0.0619978730333017, 0.077263516690542, -0.0171388878765958,
0.0199810159760507, 0.0158023347139837, -0.103334180665634, 0.0549659271604657,
-0.0893066705987667, 0.101606771360827, 0.0492865186589087, -0.0238877039788714,
-0.0277900457059636, 0.0404617408226444, -0.0718787783241953,
-0.0123575474841724, 0.059355733239068, 0.029908291943469, -0.0677988560026864,
0.0600705787852096, -0.0437493069001588, 0.00180517117961099,
-0.0209223756892264, 0.0272845085630986, 0.0837601002893609,
0.0299074232605328, 0.0240446051441223, 0.00748096094707074,
0.0613306520140755, -0.0691778150018606, 0.0246049232880761,
-0.0133417659847783, 0.0124121161628492, 0.0642708816666793,
0.00507849967404161, 0.0261052878209909, 0.0151493267776062,
0.00676515233437147, 0.00653446817356351, 0.0150714363479285,
-0.050143190382553, 0.0277659888972834, 0.0441645265494663, 0.0330199447063566,
0.080567937081057, 0.0316571988327838, 0.00111260813987357, 0.016406229113636,
0.0504761702266239, -0.00550425517164699, 0.0395917385160307,
0.048456257520995, 0.0430035722547741, -0.047301231431996, 0.087565977773425,
-0.050604038742966, 0.00804493275737861, 0.0299441033050929,
0.0357934879374062, 0.0582014365192993, 0.0698786365111124, 0.0171741022871303,
0.0125443303556689, 0.00819301763612046, 0.00991755318616083,
-0.127008834727823, -0.0262409920857444, 0.040946793757588, 0.0164392980283827,
0.0306621368418329, -0.0238640140220965, -0.0156901113780832,
0.00959306152476125, 0.030309665786747, -0.0520373515064326,
0.0155414686264252, -0.00868280688491285, 0.00882165631942744,
-0.0152414835528486, 0.0354479986139713, 0.00495367631225263,
0.0958858811432524, -0.0684962605913843, 0.0476352610219926,
0.0161558138743416, -0.0288967250807524, -0.0136524963030579,
0.013609536698864, -0.0101217287483828, -0.0129056749640298,
-0.0561043848567603, -0.00361214051470649, -0.0339148683510243,
0.0549197973662541, 0.00352545246358327, -0.0908929634017446,
-0.0766867551408712, 0.0304100958405675, -0.0433097428906102,
-0.0395849516878581, 0.00961086344015882, -0.0281887998980271,
-0.0277864019559111, 0.013711263904689, 0.0191434464401923, 0.0254260098579855,
-0.0360122263475078, 0.00713376835505675, 0.0515609918115263,
-0.0104156632309022, -0.00554941806867115, -0.0366770391324845,
-0.092809259472171, -0.000240961580031951, -0.0573097859137003,
0.0476330153045359, 0.0158596707003653, -0.0261396384934428,
-0.0286505239756832, -0.0366692368775817, -0.0127341035075788,
0.0669385878663209, 0.0465027267386504, 0.00697103541730559,
0.0240759738135028, -0.00499995833368028, 0.0130023382378637,
0.0660819187835711, 0.0381905638254254, 0.081864083562877, 0.0178719315683786,
0.0253466261092197, -0.0349542847267367, -0.0123113683808378,
0.00922796120595493, 0.0154645672337712, -0.0256621847300804,
-0.00257097347471802, 0.0339067339228674, 0.0356102024265696,
0.0571472869544005, 0.0628186392725139, -0.0221911881645702,
0.0950492127308722, -0.0491296716777756, -0.0304308647089176,
-0.00105025749743581, 0.0190268040149375, 0.067817072016372,
0.0118702126988408, 0.02056060572427, -0.0320256986349159, 0.0173034620187353,
0.0348383376789623, 0.0913329109870025, -0.00508049371248243,
0.0601557176652443, 0.0474269701349554, -0.0362187348642155,
0.00175302828494006, 0.00984938190559648, 0.0240502738702311,
-0.000928072811158587, 0.0422905855543541, 0.0685148593157117,
0.031757030973413, -0.0574638736286489, -0.00959417435537924,
0.0325380097149295, 0.0597952080195425, 0.00944188854178352,
-0.00229856160324715, -0.0271236735291358, -0.0137710545829336,
0.0289964530305211, 0.0360588122490606, -0.0427573578511865,
-0.0133107604099818, -0.0413350154935502, -0.000486060215306838,
0.00104676175588558, 0.0208886233797061, -0.00267336295134479,
-0.0885860511912184, -0.0161029691326237, -0.0297568741980336,
-0.112338323364713, -0.0693713119660443, -0.0180597800314281,
0.0134278508097088, -0.0330598180720567, -0.0366483220489359,
0.0339417580345724, 0.0509050678267557, 0.0528878066096272, -0.018266616997294,
0.0677991301131817, 0.0413170767588944, 0.0179821345844948, -0.0121888968895034,
0.0506564243990657, 0.0108111883471529, -0.0607609892616301,
-0.0247113973468298, 0.0513624569791613, -0.0309923310770995,
-0.108672749280212, -0.00337217907778453, 0.087093380777213,
-0.0338856992001196, 0.0840213297383585, 0.0424971554686477,
-0.081464070989248, 0.0619874075245053, 0.0430698737989899, 0.0421349243533173,
-0.0109533653241958, 0.0742378263228765, -0.0369574751565279,
-0.0212240452296111, -0.0328788588005816, -0.083383558090487,
-0.0323162584368404, 0.051610493839749, -0.0220809995437766,
-0.00870937103673219, 0.0225163266689465, 0.0438734449744449,
-0.00892210665440751, -0.0293707722982393, -0.0991696936611708,
0.0636541757418483, 0.0181589135552847, 0.0333173103972026, 0.0210622227911781,
0.00487335405251677, 0.0131356170394468, 0.0273537483318715,
0.144376590041557, -0.02796259796409, -0.00522582776545444, 0.0364354414456791,
-0.00837134854176702, -0.0502137264472271, 0.0476018428802933,
-0.0153208746756319, 0.0513742248497895, 0.0421405589892034,
0.00465956984288418, 0.0215903415755918, -0.0388077343572576,
0.0657724728057736, -0.0132884344984379, 0.0201092644054153,
-0.0051175163129672, -0.00944183950206712, -0.0971704450184838,
0.0016192925508538, -0.0723146624220592, -0.0604005470589978,
0.0258782226065151, -0.0433891880670063, -0.0141086652162496,
0.0625300971761347, -0.0301628728287874, 0.0385126964933498,
-0.0112984784610625, -0.0323098915386699, 0.0365004974846537,
-0.0737970611899815, -0.0493355477841083, 0.0574454161378841,
-0.0306092896219177, -0.0262257339374732, -0.0569910029244357,
-0.0306524518642073, 0.0448704347638376, 0.0185695069363463,
-0.0155548984204991, -0.0467627599243856, 0.0200647095833417,
8.29964155073526e-05, 0.0167228957527705, -0.0335972446871899,
-0.0294344648848727, 0.0518143754361482, 0.0257859588754956,
0.00824571243269778, 0.0904898600303281, 0.0657425429880596,
0.0415235900563797, -0.0261922592092307, 0.065751610214466, -0.00621555863424983,
0.0832799329468406, 0.00866941466260029, -0.017688747365096,
0.0449778523037858, 0.0954877576723518, -0.118831287262529, -0.0153069547305189,
0.0218515179870005, -0.0342686779423506, -0.00850677257427712,
0.0325477383763988, -0.0306141018335595, 0.00243501209588759,
-0.156434752199699, -0.005029743685798, -0.0345290845779366,
0.059565753901339, 0.0252512069665196, 0.00207064965943626, 0.0302923006737879,
-0.16121577788262, 0.0654457174010914, -0.0209269433762712, -0.0712227636357597,
0.0269825779272959, 0.0307477365084228, 0.0141733437604381, 0.0943310408154399,
-0.023119978605681, -0.0967380201240571, -0.147305013179531,
0.0151856742327374, 0.0150795243191497, 0.0256024944818467, 0.0319573321526792,
0.0389645831394516, -0.0516711678172406, -0.057263622404775,
0.17035185335458, 0.0380848238199503, -0.014964951245554, 0.00815821494412972,
0.0582468900635822, 0.0410152743642858, 0.077263516690542, -0.014889383359691,
0.0128841652906317, 0.0126255977120013, -0.103334180665634, 0.0438272536940851,
-0.0576089770159162, 0.0647885069687177, 0.0492865186589087,
-0.0238877039788714, -0.0300054599177805, 0.0404617408226444,
-0.0429596698815269, -0.0123575474841724, 0.0417189496432033,
0.029908291943469, -0.0409145877912638, 0.0416155635440896, -0.0437493069001588,
0.00282867922883168, -0.00940990309615575, 0.0190579142175993,
0.0443042237259872, 0.0299074232605328, 0.0240446051441223, 0.00748096094707074,
0.0443570938433033, -0.0404571419085026, 0.0246049232880761,
-0.0066025249154531, 0.00954964988443341, 0.0298053972087278,
0.00476107372301793, 0.0175757232170388, 0.0101068360663179,
0.00609368513738762, 0.00540196687039063, 0.00917053509817412,
-0.0216215093591073, 0.0277659888972834, 0.0226023268044275,
0.0213902871313327, 0.0443373040422519, 0.0176332357221722, 0.00111260813987357,
0.016406229113636, 0.0298863069339816, -0.006561222645037, 0.0395917385160307,
0.048456257520995, 0.0430035722547741, -0.0585570779808038, 0.087565977773425,
-0.050604038742966, 0.0108699498782903, 0.0350978073788761, 0.0357934879374062,
0.0665716262589837, 0.0698786365111124, 0.0171741022871303, 0.0148956336813075,
0.00971692648248834, 0.0118976448527714, -0.127008834727823,
-0.0643807858901128, 0.0785395421983646, 0.0341359119905573,
0.0424124006976598, -0.0297507849081639, -0.0284978431148246,
0.00959306152476125, 0.030309665786747, -0.0520373515064326,
0.0155414686264252, -0.00868280688491285, 0.00882165631942744,
-0.0152414835528486, 0.0354479986139713, 0.00495367631225263,
0.0958858811432524, -0.0754119883858065, 0.0605889700089284,
0.0230055503982476, -0.0452346298784714, -0.0199167187040488,
0.0202669563997153, -0.0151015261797287, -0.0129056749640298,
-0.0561043848567603, -0.00874332327370753, -0.0450463176390838,
0.0676450859834781, 0.00352545246358327, -0.0908929634017446,
-0.0766867551408712, 0.0683714108587556, -0.0562536535683003,
-0.0395849516878581, 0.00961086344015882, -0.0281887998980271,
-0.0277864019559111, 0.0315316866110831, 0.0278566332045715,
0.0254260098579855, -0.0478119064346871, 0.00713376835505675,
0.0515609918115263, -0.0104156632309022, -0.00554941806867115,
-0.0366770391324845, -0.128540218463314, -0.00333101415653492,
-0.120107648833262, 0.0958295457008402, 0.0354990847462275, -0.0370024578753033,
-0.035961013075631, -0.0473812313231093, -0.0190728925526511,
0.129179809515038, 0.0580707168491923, 0.00697103541730559, 0.0240759738135028,
-0.00499995833368028, 0.00801345581575896, 0.0660819187835711,
0.0381905638254254, 0.081864083562877, 0.0102074178146554, 0.0253466261092197,
-0.0349542847267367, -0.0123113683808378, 0.00922796120595493,
0.0190388963276953, -0.0256621847300804, -0.00257097347471802,
0.0339067339228674, 0.0356102024265696, 0.0571472869544005, 0.037933876312189,
-0.0221911881645702, 0.04867790190674, -0.0284893707600057, -0.0304308647089176,
-0.00105025749743581, 0.0113296046090396, 0.0384517691761184,
0.0118702126988408, 0.02056060572427, -0.0320256986349159, 0.0173034620187353,
0.0348383376789623, 0.055078009042417, -0.00508049371248243,
0.0349324182903621, 0.0474269701349554, -0.0362187348642155,
0.000731944005366358, 0.0126588629475626, 0.0284200411474285,
-0.000928072811158587, 0.0422905855543541, 0.0344914231782354,
0.031757030973413, -0.0204446138767127, -0.00959417435537924,
0.0325380097149295, 0.0597952080195425, 0.00944188854178352,
-0.00229856160324715, -0.0271236735291358, -0.0137710545829336,
0.048844176339206, 0.0455008063339308, -0.0427573578511865, -0.0178282872713298,
-0.0413350154935502, -0.00251312075281451, 0.000392568409978589,
0.038867708087317, -0.00267336295134479, -0.0885860511912184,
-0.0161029691326237, -0.0420241198590325, -0.140933679398404,
-0.213182576299088, -0.092462713370572, 0.0518406558167939, -0.0897576490474823,
-0.0843476608722317, 0.0665382076070802, 0.131582448235168, 0.107795304196951,
-0.0220904436860068, 0.105306956007685, 0.0603934116278224, 0.0236136189048726,
-0.0121888968895034, 0.0658652385210567, 0.0143138180286164,
-0.0670856183281777, -0.0247113973468298, 0.0618092509209986,
-0.0309923310770995, -0.128803242463851, -0.00934578652654638,
0.12464789947184, -0.0389238136806155, 0.105292759441438, 0.0424971554686477,
-0.081464070989248, 0.0801304884170133, 0.0430698737989899, 0.0421349243533173,
-0.0109533653241958, 0.0742378263228765, -0.0412233371318413,
-0.0212240452296111, -0.038721073177811, -0.102593285857173,
-0.0660128643244059, 0.120312560041835, -0.0445404035530143,
-0.0160245207220792, 0.0264519215884826, 0.0438734449744449,
-0.00892210665440751, -0.0293707722982393, -0.131667864804966,
0.0765524648247053, 0.0181589135552847, 0.0410867753199928, 0.0210622227911781,
0.00487335405251677, 0.0131356170394468, 0.0273537483318715,
0.0525736688028997, -0.02796259796409, -0.00522582776545444,
0.0364354414456791, -0.00837134854176702, -0.0502137264472271,
0.0532240511918611, -0.0153208746756319, 0.0513742248497895,
0.0421405589892034, 0.00465956984288418, 0.0215903415755918,
-0.0388077343572576, 0.0657724728057736, -0.0132884344984379,
0.0201092644054153, -0.0051175163129672, -0.00294532574721995,
-0.0342077361930025, 0.0016192925508538, -0.0379594485162568,
-0.0270255520457952, 0.0258782226065151, -0.0433891880670063,
-0.0141086652162496, 0.0625300971761347, -0.0301628728287874,
0.0385126964933498, -0.0112984784610625, -0.0323098915386699,
0.0365004974846537, -0.0737970611899815, -0.0556600639245958,
0.0705786039020948, -0.0306092896219177, -0.0262257339374732,
-0.0569910029244357, -0.0405411931490601, 0.0592431057525111,
0.0185695069363463, -0.0155548984204991, -0.0467627599243856,
0.0477649909637343, 8.29964155073526e-05, 0.00912820625534794,
-0.0335972446871899, -0.0294344648848727, 0.0518143754361482,
0.0257859588754956, 0.00824571243269778, 0.0364118589045417,
0.0311793838385637, 0.0415235900563797, -0.0130142562807395,
0.0340778557667032, -0.00227377328383616, 0.0347900685331286,
0.00384546460879642, -0.00418305832682986, 0.0144009024701055,
0.0443595078891013, -0.0509816485786232, -0.0153069547305189,
0.0218515179870005, -0.0342686779423506, -0.00850677257427712,
0.0325477383763988, -0.0306141018335595, 0.00243501209588759,
-0.0772496207460813, -0.005029743685798, -0.0345290845779366,
0.0670034415430896, 0.0252512069665196, 0.00207064965943626,
0.0302923006737879, -0.0635789495123614, 0.0654457174010914,
-0.0209269433762712, -0.0282304959937522, 0.0269825779272959,
0.0307477365084228, 0.0141733437604381, 0.0384548002293232, -0.023119978605681,
-0.0967380201240571, -0.147305013179531, 0.0566080914066258,
0.0267254767970793, 0.0387793305132154, 0.0441493507889792, 0.0389645831394516,
-0.0516711678172406, -0.057263622404775, 0.17035185335458, 0.0462477698800481,
-0.014964951245554, 0.00815821494412972, 0.0272545550529284,
0.0410152743642858, 0.0388027775914868, -0.014889383359691, 0.0128841652906317,
0.0126255977120013, -0.0535302063156535, 0.0438272536940851,
-0.0576089770159162, 0.0647885069687177), .Dim = c(336L, 3L), .Dimnames = list(
NULL, c("Conventionele.strategie", "Conditionele.strategie",
"Niet.geschaald")), index = structure(c(759974400, 762393600,
765072000, 767577600, 770342400, 772934400, 775440000, 778291200,
780883200, 783561600, 786153600, 788745600, 791510400, 793929600,
796608000, 799027200, 801878400, 804470400, 807148800, 809827200,
812332800, 815097600, 817689600, 820195200, 823046400, 825552000,
828057600, 830822400, 833500800, 835920000, 838771200, 841363200,
844041600, 846720000, 849225600, 851990400, 854668800, 857088000,
859766400, 862358400, 864950400, 867628800, 870307200, 872812800,
875577600, 878256000, 880675200, 883526400, 886118400, 888537600,
891302400, 893894400, 896400000, 899164800, 901843200, 904521600,
907113600, 909705600, 912384000, 915062400, 917568000, 919987200,
922838400, 925430400, 927849600, 930700800, 933292800, 936057600,
938649600, 941155200, 943920000, 946598400, 949276800, 951782400,
954460800, 956880000, 959731200, 962323200, 965001600, 967680000,
970185600, 972950400, 975542400, 978048000, 980899200, 983318400,
985910400, 988588800, 991267200, 993772800, 996537600, 999216000,
1001635200, 1004486400, 1007078400, 1009756800, 1012435200, 1014854400,
1017273600, 1020124800, 1022803200, 1025222400, 1028073600, 1030665600,
1033344000, 1036022400, 1038528000, 1041292800, 1043971200, 1046390400,
1049068800, 1051660800, 1054252800, 1056931200, 1059609600, 1062115200,
1064880000, 1067558400, 1069977600, 1072828800, 1075420800, 1077840000,
1080691200, 1083283200, 1085702400, 1088553600, 1091145600, 1093910400,
1096502400, 1099008000, 1101772800, 1104451200, 1107129600, 1109548800,
1112227200, 1114732800, 1117497600, 1120089600, 1122595200, 1125446400,
1128038400, 1130716800, 1133308800, 1135900800, 1138665600, 1141084800,
1143763200, 1146182400, 1149033600, 1151625600, 1154304000, 1156982400,
1159488000, 1162252800, 1164844800, 1167350400, 1170201600, 1172620800,
1175212800, 1177891200, 1180569600, 1183075200, 1185840000, 1188518400,
1190937600, 1193788800, 1196380800, 1199059200, 1201737600, 1204243200,
1206921600, 1209513600, 1212105600, 1214784000, 1217462400, 1219968000,
1222732800, 1225411200, 1227830400, 1230681600, 1233273600, 1235692800,
1238457600, 1241049600, 1243555200, 1246320000, 1248998400, 1251676800,
1254268800, 1256860800, 1259539200, 1262217600, 1264723200, 1267142400,
1269993600, 1272585600, 1275004800, 1277856000, 1280448000, 1283212800,
1285804800, 1288310400, 1291075200, 1293753600, 1296432000, 1298851200,
1301529600, 1304035200, 1306800000, 1309392000, 1311897600, 1314748800,
1317340800, 1320019200, 1322611200, 1325203200, 1327968000, 1330473600,
1333065600, 1335744000, 1338422400, 1340928000, 1343692800, 1346371200,
1348790400, 1351641600, 1354233600, 1356912000, 1359590400, 1362009600,
1364428800, 1367280000, 1369958400, 1372377600, 1375228800, 1377820800,
1380499200, 1383177600, 1385683200, 1388448000, 1391126400, 1393545600,
1396224000, 1398816000, 1401408000, 1404086400, 1406764800, 1409270400,
1412035200, 1414713600, 1417132800, 1419984000, 1422576000, 1424995200,
1427760000, 1430352000, 1432857600, 1435622400, 1438300800, 1440979200,
1443571200, 1446163200, 1448841600, 1451520000, 1454025600, 1456704000,
1459382400, 1461888000, 1464652800, 1467244800, 1469750400, 1472601600,
1475193600, 1477872000, 1480464000, 1483056000, 1485820800, 1488240000,
1490918400, 1493337600, 1496188800, 1498780800, 1501459200, 1504137600,
1506643200, 1509408000, 1.512e+09, 1514505600, 1517356800, 1519776000,
1522281600, 1525046400, 1527724800, 1530230400, 1532995200, 1535673600,
1538092800, 1540944000, 1543536000, 1546214400, 1548892800, 1551312000,
1553817600, 1556582400, 1559260800, 1561680000, 1564531200, 1567123200,
1569801600, 1572480000, 1574985600, 1577750400, 1580428800, 1582848000,
1585612800, 1588204800, 1590710400, 1593475200, 1596153600, 1598832000,
1601424000, 1604016000, 1606694400, 1609372800, 1611878400, 1614297600,
1617148800, 1619740800, 1622160000, 1625011200, 1627603200, 1630368000,
1632960000, 1635465600, 1638230400, 1640908800), tzone = "UTC", tclass = c("POSIXct",
"POSIXt")), class = c("xts", "zoo"))
Similar to you, I could only affect the legend by changing lty or lwd parameters. The package authors state that
"This function is intended to be used inside other charting functions."
— ?chart.TimeSeries
Indeed, you can select a plot.engine by passing it a function argument: plot.engine = "ggplot2" will return and plot a ggplot graph, "plotly" an interactive plotly-plot and so on. Then again you'll need the corresponding libraries installed and some basic aquaintance with each package (so I wonder why to use chart.TimeSeries as a wrapper anyway).
Edit - two alternatives to plot your data with library(ggplot2)
Fast and simple:
cum_ret_compare %>% autoplot.zoo
with basic dplyr and ggplot operations:
my_plot <-
cum_ret_compare %>%
as.data.frame %>%
mutate(Date = as.Date(time(cum_ret_compare))) %>% ## extract date to column Date
## stack variables instead of side-by-side
## to easier apply variable-wise color further down:
pivot_longer(cols = -Date,
names_to = 'strategy_type',
values_to = 'value'
) %>%
## construct ggplot
ggplot(aes(Date, value)) +
## add lines per strategy_type
geom_line(aes(col = strategy_type),
lty = 1, ## linetype
lwd = .1 ## linewidth
) +
labs(x = 'Date', y = 'cum. return')
## plot it:
my_plot
## make it look impressive ;-)
library(ggthemes)
my_plot + theme_economist()
I have a list in R from a Structural VAR Model I've run. Here is the dataset I've used
structure(c(-2.46773175636719, -7.72826473957142, 11.7280053716074,
-1.90017613519231, 2.46070753200911, -10.9055849254775, 12.5325444143789,
1.3401777880631, 1.11706357603545, -11.9683333308867, 13.8014223673123,
3.00567366940339, 1.93467425287253, -12.4811258520841, 12.5337510851622,
6.17970387794458, -0.311524449552714, -4.43067381564184, 6.00580266302142,
0.733215859597713, -0.0920826461465296, -10.4968848655989, 15.1592141225619,
-0.0142294828419764, 2.81612947228318, -7.95484787976672, 11.3258100085652,
-4.26536944046738, 1.71777230300645, 3.05071906367438, 6.86888493397788,
-2.04121390648186, -5.45632423113958, 4.32701496742318, -1.77039007913358,
-3.38387552001187, -3.6948032720689, 9.71137617961375, 7.70239243534423,
-7.34908250395865, 1.66529724744393, 4.12699586248877, 1.46757481960265,
0.371903496562886, -3.1265641490501, 10.1504446414976, -6.97113134346488,
10.6335568680931, -7.74296970668011, -0.31563625249369, 4.86848083529221,
0.0394209612387897, 4.1060141554107, 4.40828962229318, -3.65631265465627,
-0.804371886780864, 5.300399767623, 3.33547294572138, 2.19966779280814,
-2.96620054964727, 2.01147630916658, 3.00808531323007, -1.78858517036105,
-0.262917554632125, -2.63540419004151, 3.42060573075127, -0.379197105963414,
-2.24861964821645, -1.33132752566709, 1.67672890048411, 2.42834777679839,
-1.28230298674303, 2.33228006495114, -1.79196678955762, -3.25533945043563,
-2.49506277883942, 3.87275419034108, -0.237088301198796, 3.15158720918571,
-8.16796902280537, -5.40342750457601, -0.684253285161596, 2.76776077124627,
3.03762540403962, 1.59655060303945, 2.81108799665279, 2.12619249528281,
1.25976266808472, 1.75072385830202, 3.35523567403357, 3.66056933213099,
2.81157744760496, 2.8694753969682, 1.22389693906415, 1.23949528512668,
0.655297291930701, -0.0811557166513488, 2.49469766016768, 1.04750905161959,
0.553154355370644, 0.0394037933455493, 0.495095459931427, 0.263970407073533,
1.46876270708987, 1.02690822562028, 1.21249150827216, 0.744350196120713,
2.28082505446663, 1.40375659950536, 1.59077468759525, 1.74048892256584,
1.81791859189397, 0.640927792895951, 2.05320969806211, 3.31708856718933,
3.94172305193239, 1.29907384513261, 2.18844272980503, 2.02564945461834,
2.89662683480758, 0.531971587307556, 1.69103059033393, 0.195326999327161,
1.20287931837835, -0.0417495586606087, 1.89055607207678, 1.8793164132429,
1.19212718508228, 1.43097285231573, 2.4079363839828, 1.02287700043888,
1.41700117422383, 1.9324642470476, 1.42192313279805, 1.00916357593048,
1.26198292983659, 0.929701659038162, 1.77329986790085, 1.88793046797189,
0.685737107435092, 0.400744609924519, 0.766302538581343, 1.09780031685389,
1.00049427220021, 0.535284014354875, 3.18688973234602, 1.75770144393539,
1.19538307882463, 0.904511107610428, 3.52708500618766, 0.526934426385495,
0.361429093322574, 0.624469028588326, 1.95600784906818, 0.781933189336748,
1.09121935535335, 1.30962848646536, 1.24173607356797, 0.453213216209214,
0.468243562258674, 0.489076348335971, 0.848706378173603, 0.125371629239357,
0.817153292286932), .Dim = c(82L, 2L), .Dimnames = list(NULL,
c("GDP_NAM", "CPI_NAM")), index = structure(c(962323200,
970272000, 978220800, 985996800, 993859200, 1001808000, 1009756800,
1017532800, 1025395200, 1033344000, 1041292800, 1049068800, 1056931200,
1064880000, 1072828800, 1080691200, 1088553600, 1096502400, 1104451200,
1112227200, 1120089600, 1128038400, 1135987200, 1143763200, 1151625600,
1159574400, 1167523200, 1175299200, 1183161600, 1191110400, 1199059200,
1206921600, 1214784000, 1222732800, 1230681600, 1238457600, 1246320000,
1254268800, 1262217600, 1269993600, 1277856000, 1285804800, 1293753600,
1301529600, 1309392000, 1317340800, 1325289600, 1333152000, 1341014400,
1348963200, 1356912000, 1364688000, 1372550400, 1380499200, 1388448000,
1396224000, 1404086400, 1412035200, 1419984000, 1427760000, 1435622400,
1443571200, 1451520000, 1459382400, 1467244800, 1475193600, 1483142400,
1490918400, 1498780800, 1506729600, 1514678400, 1522454400, 1530316800,
1538265600, 1546214400, 1553990400, 1561852800, 1569801600, 1577750400,
1585612800, 1593475200, 1601424000), tzone = "UTC", tclass = "Date"), class = c("xts",
"zoo"))
and the code I've used to create the model
library(tidyverse)
library(vars)
var.namibia <- namibia %>% VAR(.,p=1,type = 'both',season=NULL)
SVAR.namibia <- BQ(var.namibia)
from this, I want to extract residuals from the variables in my model. I can do it by indexing (see below), but I'm interested in finding a dplyr solution to achieve the same. Any suggestions?
res <- SVAR.namibia$var$varresult$CPI_NAM$residuals
You can use purrr's pluck function.
SVAR.namibia %>%
purrr::pluck('var', 'varresult', 'CPI_NAM', 'residuals')
Any help would be greatly appreciated!!
I'm trying to create a choropleth map in R that shows the counties of texas, color-coded by their population ranges.
My problem is that the range of populations is too large. The highest population is over 4 million, but most of the counties have a population under 50,000. The criteria for the fill is: (0-1mil), (1-2mil), (2-3mil), (3-4mil), (4-5mil) but almost all fall under 0-1mil.
How can I change the legend to account for different ranges of numbers? For example, maybe:
(0-1,000), (1,000-10,000), (10,000-100,000), (100,000-1mil), (1mil-5mil)
Here's the code I wrote to plot the data:
txplot <- ggplot(txczpop, aes(fill=pop2014)) + geom_map(txmap)
tm_shape(txmap) +
tm_fill("pop2014", title="TX County Population", palette = "PRGn") +
tm_borders(alpha=.5) +
tm_style_beaver()
Here's the result:
[![enter image description here][1]][1]
I'm using a census county shapefile and population also retrieved from a census file.
Here's the output of my population data:
txczpop <- structure(list(county_fips = c(48001L, 48003L, 48005L, 48007L,
48009L, 48011L, 48013L, 48015L, 48017L, 48019L, 48021L, 48023L,
48025L, 48027L, 48029L, 48031L, 48033L, 48035L, 48037L, 48039L,
48041L, 48043L, 48045L, 48047L, 48049L, 48051L, 48053L, 48055L,
48057L, 48059L, 48061L, 48063L, 48065L, 48067L, 48069L, 48071L,
48073L, 48075L, 48077L, 48079L, 48081L, 48083L, 48085L, 48087L,
48089L, 48091L, 48093L, 48095L, 48097L, 48099L, 48101L, 48103L,
48105L, 48107L, 48109L, 48111L, 48113L, 48115L, 48117L, 48119L,
48121L, 48123L, 48125L, 48127L, 48129L, 48131L, 48133L, 48135L,
48137L, 48141L, 48139L, 48143L, 48145L, 48147L, 48149L, 48151L,
48153L, 48155L, 48157L, 48159L, 48161L, 48163L, 48165L, 48167L,
48169L, 48171L, 48173L, 48175L, 48177L, 48179L, 48181L, 48183L,
48185L, 48187L, 48189L, 48191L, 48193L, 48195L, 48197L, 48199L,
48201L, 48203L, 48205L, 48207L, 48209L, 48211L, 48213L, 48215L,
48217L, 48219L, 48221L, 48223L, 48225L, 48227L, 48229L, 48231L,
48233L, 48235L, 48237L, 48239L, 48241L, 48243L, 48245L, 48247L,
48249L, 48251L, 48253L, 48255L, 48257L, 48259L, 48261L, 48263L,
48265L, 48267L, 48269L, 48271L, 48273L, 48275L, 48283L, 48277L,
48279L, 48281L, 48285L, 48287L, 48289L, 48291L, 48293L, 48295L,
48297L, 48299L, 48301L, 48303L, 48305L, 48313L, 48315L, 48317L,
48319L, 48321L, 48323L, 48307L, 48309L, 48311L, 48325L, 48327L,
48329L, 48331L, 48333L, 48335L, 48337L, 48339L, 48341L, 48343L,
48345L, 48347L, 48349L, 48351L, 48353L, 48355L, 48357L, 48359L,
48361L, 48363L, 48365L, 48367L, 48369L, 48371L, 48373L, 48375L,
48377L, 48379L, 48381L, 48383L, 48385L, 48387L, 48389L, 48391L,
48393L, 48395L, 48397L, 48399L, 48401L, 48403L, 48405L, 48407L,
48409L, 48411L, 48413L, 48415L, 48417L, 48419L, 48421L, 48423L,
48425L, 48427L, 48429L, 48431L, 48433L, 48435L, 48437L, 48439L,
48441L, 48443L, 48445L, 48447L, 48449L, 48451L, 48453L, 48455L,
48457L, 48459L, 48461L, 48463L, 48465L, 48467L, 48469L, 48471L,
48473L, 48475L, 48477L, 48479L, 48481L, 48483L, 48485L, 48487L,
48489L, 48491L, 48493L, 48495L, 48497L, 48499L, 48501L, 48503L,
48505L, 48507L), county_name = c("Anderson", "Andrews", "Angelina",
"Aransas", "Archer", "Armstrong", "Atascosa", "Austin", "Bailey",
"Bandera", "Bastrop", "Baylor", "Bee", "Bell", "Bexar", "Blanco",
"Borden", "Bosque", "Bowie", "Brazoria", "Brazos", "Brewster",
"Briscoe", "Brooks", "Brown", "Burleson", "Burnet", "Caldwell",
"Calhoun", "Callahan", "Cameron", "Camp", "Carson", "Cass", "Castro",
"Chambers", "Cherokee", "Childress", "Clay", "Cochran", "Coke",
"Coleman", "Collin", "Collingsworth", "Colorado", "Comal", "Comanche",
"Concho", "Cooke", "Coryell", "Cottle", "Crane", "Crockett",
"Crosby", "Culberson", "Dallam", "Dallas", "Dawson", "Deaf Smith",
"Delta", "Denton", "DeWitt", "Dickens", "Dimmit", "Donley", "Duval",
"Eastland", "Ector", "Edwards", "El Paso", "Ellis", "Erath",
"Falls", "Fannin", "Fayette", "Fisher", "Floyd", "Foard", "Fort Bend",
"Franklin", "Freestone", "Frio", "Gaines", "Galveston", "Garza",
"Gillespie", "Glasscock", "Goliad", "Gonzales", "Gray", "Grayson",
"Gregg", "Grimes", "Guadalupe", "Hale", "Hall", "Hamilton", "Hansford",
"Hardeman", "Hardin", "Harris", "Harrison", "Hartley", "Haskell",
"Hays", "Hemphill", "Henderson", "Hidalgo", "Hill", "Hockley",
"Hood", "Hopkins", "Houston", "Howard", "Hudspeth", "Hunt", "Hutchinson",
"Irion", "Jack", "Jackson", "Jasper", "Jeff Davis", "Jefferson",
"Jim Hogg", "Jim Wells", "Johnson", "Jones", "Karnes", "Kaufman",
"Kendall", "Kenedy", "Kent", "Kerr", "Kimble", "King", "Kinney",
"Kleberg", "Knox", "La Salle", "Lamar", "Lamb", "Lampasas", "Lavaca",
"Lee", "Leon", "Liberty", "Limestone", "Lipscomb", "Live Oak",
"Llano", "Loving", "Lubbock", "Lynn", "Madison", "Marion", "Martin",
"Mason", "Matagorda", "Maverick", "McCulloch", "McLennan", "McMullen",
"Medina", "Menard", "Midland", "Milam", "Mills", "Mitchell",
"Montague", "Montgomery", "Moore", "Morris", "Motley", "Nacogdoches",
"Navarro", "Newton", "Nolan", "Nueces", "Ochiltree", "Oldham",
"Orange", "Palo Pinto", "Panola", "Parker", "Parmer", "Pecos",
"Polk", "Potter", "Presidio", "Rains", "Randall", "Reagan", "Real",
"Red River", "Reeves", "Refugio", "Roberts", "Robertson", "Rockwall",
"Runnels", "Rusk", "Sabine", "San Augustine", "San Jacinto",
"San Patricio", "San Saba", "Schleicher", "Scurry", "Shackelford",
"Shelby", "Sherman", "Smith", "Somervell", "Starr", "Stephens",
"Sterling", "Stonewall", "Sutton", "Swisher", "Tarrant", "Taylor",
"Terrell", "Terry", "Throckmorton", "Titus", "Tom Green", "Travis",
"Trinity", "Tyler", "Upshur", "Upton", "Uvalde", "Val Verde",
"Van Zandt", "Victoria", "Walker", "Waller", "Ward", "Washington",
"Webb", "Wharton", "Wheeler", "Wichita", "Wilbarger", "Willacy",
"Williamson", "Wilson", "Winkler", "Wise", "Wood", "Yoakum",
"Young", "Zapata", "Zavala"), pop2014 = c(57627L, 17477L, 87750L,
24972L, 8811L, 1955L, 47774L, 29114L, 6910L, 20892L, 78069L,
3592L, 32863L, 329140L, 1855866L, 10812L, 652L, 17780L, 93275L,
338124L, 209152L, 9173L, 1536L, 7194L, 37653L, 17253L, 44943L,
39810L, 21797L, 13513L, 420392L, 12621L, 6013L, 30261L, 7781L,
38145L, 50902L, 7089L, 10370L, 2935L, 3254L, 8430L, 885241L,
3017L, 20719L, 123694L, 13550L, 4050L, 38761L, 75562L, 1415L,
4950L, 3812L, 5899L, 2266L, 7135L, 2518638L, 13372L, 19195L,
5238L, 753363L, 20684L, 2218L, 11089L, 3543L, 11533L, 18176L,
153904L, 1879L, 833487L, 159317L, 40147L, 16989L, 33752L, 24833L,
3831L, 5949L, 1275L, 685345L, 10600L, 19762L, 18531L, 19425L,
314198L, 6435L, 25520L, 1291L, 7549L, 20462L, 23044L, 123534L,
123204L, 27172L, 147250L, 34720L, 3147L, 8199L, 5509L, 3928L,
55621L, 4441370L, 67336L, 6089L, 5769L, 185025L, 4180L, 79290L,
831073L, 34848L, 23577L, 53921L, 35921L, 22741L, 36651L, 3211L,
88493L, 21773L, 1574L, 8855L, 14739L, 35552L, 2204L, 252235L,
5255L, 41353L, 157456L, 19936L, 14906L, 111236L, 38880L, 400L,
785L, 50562L, 4438L, 262L, 3526L, 32190L, 3858L, 7474L, 49523L,
13574L, 20156L, 19721L, 16742L, 16861L, 78117L, 23524L, 3553L,
12091L, 19510L, 86L, 293974L, 5771L, 13861L, 10149L, 5460L, 4071L,
36519L, 57023L, 8199L, 243441L, 805L, 47894L, 2147L, 155830L,
24256L, 4870L, 9076L, 19416L, 518947L, 22148L, 12743L, 1153L,
65301L, 48195L, 14138L, 15093L, 356221L, 10758L, 2070L, 83433L,
28096L, 23769L, 123164L, 9908L, 15893L, 46079L, 121627L, 6976L,
11032L, 128220L, 3755L, 3371L, 12446L, 14349L, 7302L, 928L, 16500L,
87809L, 10416L, 53923L, 10350L, 8610L, 27099L, 66915L, 5622L,
3162L, 17328L, 3343L, 25515L, 3084L, 218842L, 8694L, 62955L,
9405L, 1339L, 1403L, 3972L, 7581L, 1945360L, 135143L, 927L, 12739L,
1608L, 32506L, 116608L, 1151145L, 14224L, 21418L, 40354L, 3454L,
27117L, 48974L, 52910L, 91081L, 69789L, 46820L, 11625L, 34438L,
266673L, 41168L, 5714L, 132355L, 12973L, 21903L, 489250L, 46402L,
7821L, 61638L, 42852L, 8286L, 18350L, 14319L, 12267L)), .Names = c("county_fips",
"county_name", "pop2014"), row.names = c(5100L, 5101L, 5103L,
5106L, 5107L, 5109L, 5112L, 5114L, 5116L, 5118L, 5120L, 5121L,
5124L, 5126L, 5128L, 5129L, 5131L, 5133L, 5136L, 5137L, 5140L,
5141L, 5143L, 5146L, 5147L, 5150L, 5152L, 5153L, 5156L, 5158L,
5159L, 5161L, 5163L, 5166L, 5168L, 5170L, 5171L, 5174L, 5176L,
5178L, 5179L, 5182L, 5183L, 5185L, 5188L, 5190L, 5192L, 5194L,
5195L, 5198L, 5200L, 5201L, 5203L, 5205L, 5208L, 5209L, 5212L,
5214L, 5215L, 5218L, 5219L, 5221L, 5224L, 5226L, 5228L, 5230L,
5232L, 5233L, 5235L, 5239L, 5237L, 5242L, 5244L, 5245L, 5248L,
5249L, 5251L, 5254L, 5256L, 5257L, 5260L, 5261L, 5264L, 5265L,
5268L, 5270L, 5272L, 5274L, 5276L, 5278L, 5280L, 5281L, 5284L,
5286L, 5288L, 5290L, 5292L, 5293L, 5296L, 5298L, 5300L, 5301L,
5303L, 5306L, 5308L, 5309L, 5312L, 5314L, 5316L, 5317L, 5319L,
5321L, 5323L, 5326L, 5327L, 5330L, 5332L, 5334L, 5335L, 5337L,
5339L, 5341L, 5343L, 5346L, 5348L, 5349L, 5352L, 5354L, 5356L,
5357L, 5360L, 5362L, 5364L, 5365L, 5368L, 5369L, 5372L, 5374L,
5382L, 5376L, 5378L, 5379L, 5383L, 5385L, 5388L, 5390L, 5392L,
5394L, 5396L, 5398L, 5400L, 5401L, 5404L, 5412L, 5413L, 5416L,
5418L, 5419L, 5421L, 5406L, 5407L, 5409L, 5423L, 5425L, 5427L,
5429L, 5432L, 5434L, 5435L, 5438L, 5440L, 5442L, 5443L, 5446L,
5448L, 5449L, 5451L, 5453L, 5456L, 5457L, 5460L, 5461L, 5464L,
5465L, 5468L, 5470L, 5472L, 5474L, 5476L, 5477L, 5480L, 5482L,
5484L, 5486L, 5488L, 5489L, 5491L, 5494L, 5496L, 5498L, 5499L,
5501L, 5504L, 5505L, 5508L, 5510L, 5511L, 5514L, 5516L, 5518L,
5520L, 5522L, 5524L, 5526L, 5527L, 5530L, 5531L, 5533L, 5536L,
5537L, 5540L, 5542L, 5544L, 5546L, 5547L, 5550L, 5552L, 5554L,
5555L, 5558L, 5559L, 5562L, 5563L, 5566L, 5568L, 5569L, 5571L,
5574L, 5575L, 5578L, 5579L, 5582L, 5584L, 5585L, 5587L, 5590L,
5592L, 5594L, 5595L, 5598L, 5600L, 5602L, 5604L, 5606L), class = "data.frame")
I just created a new column in the population dataframe that summarizes the population based on the ranges that I want to use, and then use that as the criteria for the fill:
txczpop$poprange[txczpop$pop2014 >= 0 & txczpop < 1000] <- "0-1,000"
txczpop$poprange[txczpop$pop2014 >= 1000 & txczpop < 10000] <- "1-10,000"
txczpop$poprange[txczpop$pop2014 >= 10000 & txczpop$pop2014 < 100000] <- "10,000-100,000"
txczpop$poprange[txczpop$pop2014 >= 100000 & txczpop$pop2014 < 1000000] <- "100,000 - 1,000,000"
txczpop$poprange[txczpop$pop2014 >= 1000000 & txczpop$pop2014 <= 5000000] <- "1,000,000 - 5,000,000"
I'm trying to replicate with R a chart I made on Excel, which should represent a 95% Confidence Interval (CI) around a time series forecast. The Excel chart looks like this:
So, basically, the original historical time series and from a certain point in time the forecast of what it could be with its respective CI.
They way it's done on Excel is a bit inefficient:
I have four time series which overlap much of the time;
The actual/historical time series (blue line above) simply stops when the forecast begins;
The forecast (dotted red above) is simply hidden below the blue one until the forecast period begins;
Then I have a time series representing the difference between the the upper bound and the lower bound of the CI, which playing around with Excel Stacked Areas charts, becomes the shaded area in the chart above.
Obviously, the computation to generate the forecast and the CIs is much faster and easier to generalize and use with R, and while I could complete the task on R and then simply copy the output on Excel to draw the chart, doing everything in R would be much nicer.
At the end of the question I provided the raw data with dput() as suggested by #MLavoie.
Here the packages I loaded (not sure you need them all here, but they are the ones I usually work with):
require(zoo)
require(xts)
require(lattice)
require(latticeExtra)
My data looks like this for the first 100 rows:
> head(data)
fifth_percentile Median nintyfifth_percentile
2017-06-18 1.146267 1.146267 1.146267
2017-06-19 1.134643 1.134643 1.134643
2017-06-20 1.125664 1.125664 1.125664
2017-06-21 1.129037 1.129037 1.129037
2017-06-22 1.147542 1.147542 1.147542
2017-06-23 1.159989 1.159989 1.159989
Then after the 100 data point, the time series start to diverge and at the end they look like this:
> tail(data)
fifth_percentile Median nintyfifth_percentile
2017-12-30 0.9430930 1.125844 1.341603
2017-12-31 0.9435227 1.127391 1.354928
2018-01-01 0.9417235 1.124625 1.355527
2018-01-02 0.9470077 1.124088 1.361420
2018-01-03 0.9571596 1.127299 1.364005
2018-01-04 0.9515535 1.127978 1.369536
Solution provided by DaveTurek
Thanks to DaveTurek I've found the answer. However, only difference is that for my xts dataframe, apparently, I need first to convert each column to numbers (with as.numeric()). No idea if that stems from me doing something wrong with xts and lattice, or it is the only way to achieve it using DaveTurek suggestion. Will try to investigate it further.
Here is the code to generate the chart:
x = index(data[1:100,2])
y = as.numeric(data[1:100,2])
ex.x = index(data[101:200,2])
ex.y = as.numeric(data[101:200,2])
ex.lo = as.numeric(data[101:200,1])
ex.hi = as.numeric(data[101:200,3])
xyplot(y~x, ylim = c(0.9,1.4),
panel=function(x,y,...) {
panel.lines(x,y,lwd=2,col=4)
panel.polygon(c(ex.x,rev(ex.x)),c(ex.lo,rev(ex.hi)),border=NA,col=5)
panel.lines(ex.x,ex.y,lwd=2,col=2)
})
And here the final result:
Here is the final dataset, from dput(), that I'm trying to plot:
> dput(data)
structure(c(1.14626724930899, 1.13464279067717, 1.12566420479952,
1.12903662366847, 1.14754211999921, 1.15998855701439, 1.15274364578958,
1.16226441955745, 1.16169992687419, 1.16520028734587, 1.16823402018407,
1.19832130049664, 1.18411773220697, 1.18531274215286, 1.16421444455115,
1.17108139956539, 1.18392357740377, 1.20103911352579, 1.17791736605905,
1.18277944964829, 1.20162550199013, 1.19665058179752, 1.19411188122108,
1.19367558590966, 1.19803272562951, 1.20600155861871, 1.22189449901607,
1.22072774140118, 1.22312376195254, 1.25355505518571, 1.25895911759195,
1.2613354420716, 1.24440525381363, 1.24444079462029, 1.24168652168112,
1.24154936710117, 1.23440527301777, 1.22592718438811, 1.21709102449773,
1.21448030929365, 1.23109601090898, 1.24401127451953, 1.23953314346685,
1.21863565024168, 1.20834325548551, 1.20281193695583, 1.20405850724191,
1.19608032796923, 1.22008184095742, 1.21675995421116, 1.20198916403093,
1.20029121301547, 1.18822375424598, 1.19007923345344, 1.19285965857709,
1.1971013197471, 1.1776860331227, 1.18028531916998, 1.18394951589397,
1.16712430930941, 1.17827461393349, 1.18751430033172, 1.21482260909863,
1.2167262724184, 1.21729489152574, 1.21847062594996, 1.21932070698031,
1.19678189566773, 1.17678214957629, 1.17586968485613, 1.16903708967946,
1.16967697995898, 1.14498266161799, 1.12782282645368, 1.11540004479973,
1.12639853863918, 1.11402516325222, 1.10511837662567, 1.10600107687395,
1.10243149863659, 1.10404564773364, 1.12949458422398, 1.11679224666313,
1.11338078540871, 1.10762728498848, 1.12437898939299, 1.11572706259347,
1.1148111967932, 1.12358625045939, 1.11169207274881, 1.13009253108247,
1.13772927166761, 1.12550770863279, 1.13062401691547, 1.12821231512428,
1.13174620070443, 1.13072790983063, 1.1428325334377, 1.12739171867048,
1.1214997813059, 1.11870510839984, 1.096148222775, 1.08805136310032,
1.08701594286129, 1.08047984136855, 1.07939438148434, 1.0684082570972,
1.06497159411023, 1.05820047926833, 1.06322519359802, 1.06234781015662,
1.05431808916504, 1.054405104791, 1.05330182895869, 1.04787681441803,
1.041698698458, 1.03870702538097, 1.03300007904201, 1.02741553353049,
1.03525701392318, 1.0339774223954, 1.0328464056954, 1.03100871401712,
1.03348765946373, 1.03473218333386, 1.02942612874379, 1.02109481188296,
1.02301597272716, 1.01553904377803, 1.0031650628692, 1.00779708136199,
1.01322764666693, 1.01964272925677, 1.02125480865504, 1.02300342204156,
1.02563993245866, 1.02972111884963, 1.02048756192688, 1.00481457379443,
1.00512607721887, 1.01094340128446, 1.01377432300649, 1.01170553705668,
1.00551128145228, 1.00612634442438, 1.00735643866839, 1.0080606590012,
0.985706701720841, 0.982234200010558, 0.975314534071082, 0.973611418201841,
0.968118612511537, 0.973092829667201, 0.975599110408158, 0.967214930243667,
0.968569928969912, 0.963572085616274, 0.964901787179726, 0.957782708788541,
0.951868416101986, 0.956694066411684, 0.956937537219092, 0.956303331651844,
0.947880835881923, 0.956308493824626, 0.948146077843001, 0.945939091828748,
0.945082701640947, 0.937222489932819, 0.937989843132858, 0.948712728941467,
0.939050882255992, 0.946264846068344, 0.944926693194716, 0.946825914432391,
0.939070104432721, 0.950666108330947, 0.949365988007735, 0.943616625744159,
0.946600795357699, 0.941276090147603, 0.939957902451166, 0.941523527816784,
0.946611480333791, 0.959236316317354, 0.96165367272139, 0.957508302724503,
0.954774123925477, 0.960811125123549, 0.956525507301749, 0.948237690612711,
0.951299123137395, 0.945212566792479, 0.94507842203255, 0.942735006048921,
0.943093032220433, 0.943522672031737, 0.941723495992432, 0.947007713852018,
0.95715960245335, 0.951553478810637, 1.14626724930899, 1.13464279067717,
1.12566420479952, 1.12903662366847, 1.14754211999921, 1.15998855701439,
1.15274364578958, 1.16226441955745, 1.16169992687419, 1.16520028734587,
1.16823402018407, 1.19832130049664, 1.18411773220697, 1.18531274215286,
1.16421444455115, 1.17108139956539, 1.18392357740377, 1.20103911352579,
1.17791736605905, 1.18277944964829, 1.20162550199013, 1.19665058179752,
1.19411188122108, 1.19367558590966, 1.19803272562951, 1.20600155861871,
1.22189449901607, 1.22072774140118, 1.22312376195254, 1.25355505518571,
1.25895911759195, 1.2613354420716, 1.24440525381363, 1.24444079462029,
1.24168652168112, 1.24154936710117, 1.23440527301777, 1.22592718438811,
1.21709102449773, 1.21448030929365, 1.23109601090898, 1.24401127451953,
1.23953314346685, 1.21863565024168, 1.20834325548551, 1.20281193695583,
1.20405850724191, 1.19608032796923, 1.22008184095742, 1.21675995421116,
1.20198916403093, 1.20029121301547, 1.18822375424598, 1.19007923345344,
1.19285965857709, 1.1971013197471, 1.1776860331227, 1.18028531916998,
1.18394951589397, 1.16712430930941, 1.17827461393349, 1.18751430033172,
1.21482260909863, 1.2167262724184, 1.21729489152574, 1.21847062594996,
1.21932070698031, 1.19678189566773, 1.17678214957629, 1.17586968485613,
1.16903708967946, 1.16967697995898, 1.14498266161799, 1.12782282645368,
1.11540004479973, 1.12639853863918, 1.11402516325222, 1.10511837662567,
1.10600107687395, 1.10243149863659, 1.10404564773364, 1.12949458422398,
1.11679224666313, 1.11338078540871, 1.10762728498848, 1.12437898939299,
1.11572706259347, 1.1148111967932, 1.12358625045939, 1.11169207274881,
1.13009253108247, 1.13772927166761, 1.12550770863279, 1.13062401691547,
1.12821231512428, 1.13174620070443, 1.13072790983063, 1.1428325334377,
1.12739171867048, 1.1214997813059, 1.11870510839984, 1.11811303551412,
1.11855383782522, 1.11981261957516, 1.12096887905804, 1.12162710713999,
1.12015553029278, 1.12189306008921, 1.1236834173899, 1.12204149206779,
1.12075809542535, 1.12116672935174, 1.12216772364685, 1.11821915571021,
1.12117719223463, 1.11896003906963, 1.11563621625852, 1.1183625095638,
1.12053072892388, 1.1216348268255, 1.12317377733957, 1.11873136428952,
1.12267083202989, 1.12642930089215, 1.13027646770951, 1.13129632891931,
1.12700346009603, 1.12060488827701, 1.12390899402613, 1.13129350591169,
1.12786650327192, 1.1274201121913, 1.13101906643359, 1.12727135093377,
1.12458327192256, 1.12259738972645, 1.12097982776572, 1.12073621452193,
1.12364872830763, 1.12644326299714, 1.12556263098661, 1.12797963752343,
1.12734519199847, 1.1261793072762, 1.12911407446825, 1.12754878937943,
1.12777579027467, 1.12554965831588, 1.12324469267853, 1.12231558194992,
1.12135908710208, 1.11923353817423, 1.12345300992675, 1.12186883237389,
1.12173652640663, 1.12488148969114, 1.12664301925369, 1.12294230775256,
1.12393650688095, 1.13038044949978, 1.12822226676967, 1.12934384230215,
1.1217648908055, 1.12218158739803, 1.12302651609468, 1.12682187689922,
1.13537701046932, 1.13172108462183, 1.1374053505525, 1.13498257452656,
1.12692005654471, 1.13210629725645, 1.12868775509168, 1.13073909215368,
1.13098804355869, 1.13353301668386, 1.13336476594698, 1.13233873705211,
1.12667020676157, 1.12133152301322, 1.12418759586717, 1.12048022460741,
1.12798162212357, 1.13053093896994, 1.12019367019997, 1.12422483586498,
1.11303086301782, 1.11986711815552, 1.12504718249418, 1.11341517044014,
1.12495096618792, 1.12995127061511, 1.13538401552385, 1.13145536081928,
1.1264465959783, 1.12584386458867, 1.1273908895838, 1.12462482614994,
1.1240880626286, 1.12729907535003, 1.12797751377714, 1.14626724930899,
1.13464279067717, 1.12566420479952, 1.12903662366847, 1.14754211999921,
1.15998855701439, 1.15274364578958, 1.16226441955745, 1.16169992687419,
1.16520028734587, 1.16823402018407, 1.19832130049664, 1.18411773220697,
1.18531274215286, 1.16421444455115, 1.17108139956539, 1.18392357740377,
1.20103911352579, 1.17791736605905, 1.18277944964829, 1.20162550199013,
1.19665058179752, 1.19411188122108, 1.19367558590966, 1.19803272562951,
1.20600155861871, 1.22189449901607, 1.22072774140118, 1.22312376195254,
1.25355505518571, 1.25895911759195, 1.2613354420716, 1.24440525381363,
1.24444079462029, 1.24168652168112, 1.24154936710117, 1.23440527301777,
1.22592718438811, 1.21709102449773, 1.21448030929365, 1.23109601090898,
1.24401127451953, 1.23953314346685, 1.21863565024168, 1.20834325548551,
1.20281193695583, 1.20405850724191, 1.19608032796923, 1.22008184095742,
1.21675995421116, 1.20198916403093, 1.20029121301547, 1.18822375424598,
1.19007923345344, 1.19285965857709, 1.1971013197471, 1.1776860331227,
1.18028531916998, 1.18394951589397, 1.16712430930941, 1.17827461393349,
1.18751430033172, 1.21482260909863, 1.2167262724184, 1.21729489152574,
1.21847062594996, 1.21932070698031, 1.19678189566773, 1.17678214957629,
1.17586968485613, 1.16903708967946, 1.16967697995898, 1.14498266161799,
1.12782282645368, 1.11540004479973, 1.12639853863918, 1.11402516325222,
1.10511837662567, 1.10600107687395, 1.10243149863659, 1.10404564773364,
1.12949458422398, 1.11679224666313, 1.11338078540871, 1.10762728498848,
1.12437898939299, 1.11572706259347, 1.1148111967932, 1.12358625045939,
1.11169207274881, 1.13009253108247, 1.13772927166761, 1.12550770863279,
1.13062401691547, 1.12821231512428, 1.13174620070443, 1.13072790983063,
1.1428325334377, 1.12739171867048, 1.1214997813059, 1.11870510839984,
1.14162401974592, 1.15630966411729, 1.15992199767135, 1.16683144867851,
1.16928280999155, 1.17287782220285, 1.18184525262982, 1.17555305757354,
1.18031492211593, 1.18142628277888, 1.18307577052783, 1.18257404220722,
1.19421117710041, 1.19403330560815, 1.19510080390052, 1.2058940348108,
1.19848571699109, 1.20138771250604, 1.20660682710938, 1.20790011589089,
1.20963951875753, 1.21572259411602, 1.21379678812156, 1.220302087399,
1.22062959185172, 1.22743877731977, 1.23135277550334, 1.24075667733246,
1.24169498945046, 1.23529301399753, 1.2399941777708, 1.24823732280171,
1.23861121958778, 1.24816319854615, 1.25252933549084, 1.25133386983018,
1.24512546001264, 1.2617641352045, 1.25486018976211, 1.25424601859098,
1.25820538036104, 1.25968528498312, 1.26939611029084, 1.27883933177157,
1.27926882841012, 1.27951234203094, 1.28997494816278, 1.29391898267335,
1.2971442938215, 1.29733541086814, 1.30376525837809, 1.31025722802128,
1.29718190520268, 1.27919305871102, 1.28685138548374, 1.28594279969497,
1.28695233433419, 1.30277136510213, 1.29178316107299, 1.29586799884087,
1.30076586308517, 1.30881154838964, 1.32171887794143, 1.3197588324899,
1.3121332301804, 1.31744410759858, 1.31402945919721, 1.30926303329755,
1.32019231597949, 1.31449633135152, 1.31730801686101, 1.31834557852015,
1.3175761022299, 1.33430488507454, 1.34091614601639, 1.33606628597812,
1.33180446732765, 1.33630738683041, 1.33449101077219, 1.32521028784732,
1.32241490851887, 1.31488015995544, 1.31913131799656, 1.32901121011698,
1.33177659436063, 1.32577077582349, 1.31960627618725, 1.31307169067904,
1.32148403094167, 1.33104893196281, 1.33491831741272, 1.3386091981919,
1.35730874062825, 1.3460340606746, 1.34160318929376, 1.35492848895938,
1.35552729646417, 1.36141957863605, 1.36400538435282, 1.369536167295),
.indexCLASS = "Date", tclass = "Date", .indexTZ = "UTC", tzone = "UTC",
class = c("xts", "zoo"), index = structure(c(1497744000, 1497830400, 1497916800,
1498003200, 1498089600, 1498176000, 1498262400, 1498348800, 1498435200,
1498521600, 1498608000, 1498694400, 1498780800, 1498867200, 1498953600,
1499040000, 1499126400, 1499212800, 1499299200, 1499385600, 1499472000,
1499558400, 1499644800, 1499731200, 1499817600, 1499904000, 1499990400,
1500076800, 1500163200, 1500249600, 1500336000, 1500422400, 1500508800,
1500595200, 1500681600, 1500768000, 1500854400, 1500940800, 1501027200,
1501113600, 1501200000, 1501286400, 1501372800, 1501459200, 1501545600,
1501632000, 1501718400, 1501804800, 1501891200, 1501977600, 1502064000,
1502150400, 1502236800, 1502323200, 1502409600, 1502496000, 1502582400,
1502668800, 1502755200, 1502841600, 1502928000, 1503014400, 1503100800,
1503187200, 1503273600, 1503360000, 1503446400, 1503532800, 1503619200,
1503705600, 1503792000, 1503878400, 1503964800, 1504051200, 1504137600,
1504224000, 1504310400, 1504396800, 1504483200, 1504569600, 1504656000,
1504742400, 1504828800, 1504915200, 1505001600, 1505088000, 1505174400,
1505260800, 1505347200, 1505433600, 1505520000, 1505606400, 1505692800,
1505779200, 1505865600, 1505952000, 1506038400, 1506124800, 1506211200,
1506297600, 1506384000, 1506470400, 1506556800, 1506643200, 1506729600,
1506816000, 1506902400, 1506988800, 1507075200, 1507161600, 1507248000,
1507334400, 1507420800, 1507507200, 1507593600, 1507680000, 1507766400,
1507852800, 1507939200, 1508025600, 1508112000, 1508198400, 1508284800,
1508371200, 1508457600, 1508544000, 1508630400, 1508716800, 1508803200,
1508889600, 1508976000, 1509062400, 1509148800, 1509235200, 1509321600,
1509408000, 1509494400, 1509580800, 1509667200, 1509753600, 1509840000,
1509926400, 1510012800, 1510099200, 1510185600, 1510272000, 1510358400,
1510444800, 1510531200, 1510617600, 1510704000, 1510790400, 1510876800,
1510963200, 1511049600, 1511136000, 1511222400, 1511308800, 1511395200,
1511481600, 1511568000, 1511654400, 1511740800, 1511827200, 1511913600,
1.512e+09, 1512086400, 1512172800, 1512259200, 1512345600, 1512432000,
1512518400, 1512604800, 1512691200, 1512777600, 1512864000, 1512950400,
1513036800, 1513123200, 1513209600, 1513296000, 1513382400, 1513468800,
1513555200, 1513641600, 1513728000, 1513814400, 1513900800, 1513987200,
1514073600, 1514160000, 1514246400, 1514332800, 1514419200, 1514505600,
1514592000, 1514678400, 1514764800, 1514851200, 1514937600, 1515024000
), tzone = "UTC", tclass = "Date"), .Dim = c(201L, 3L), .Dimnames = list(
NULL, c("fifth_percentile", "Median", "nintyfifth_percentile"
)))
I haven't tried with your data, but if the question is how to shade the forecast area, maybe this simple example will help.
library(lattice)
x = 1:12 # base data
y = x
ex.x = 12:16 # extrapolated data
ex.y = 12:16
ex.lo = 12+0:4*.3 # lower bound
ex.hi = 12+0:4*1.6 # upper bound
xyplot(y~x,xlim=c(0:18),ylim=c(0:20),
panel=function(x,y,...) {
panel.lines(x,y,lwd=2,col=4)
panel.polygon(c(ex.x,rev(ex.x)),c(ex.lo,rev(ex.hi)),border=NA,col=5)
panel.lines(ex.x,ex.y,lwd=2,col=2)
})
You can add the shaded polygon to the lattice plot in a panel function. I used c(ex.x,rev(ex.x)) and c(ex.lo,rev(ex.hi)) to construct the polygon boundary.
Is there an R function or library that will give me the monthly (or any other specified timeframe) time weighted rate of return (twrr) for my portfolio?
I am including a dput dump of sample data below of the date and portfolio ending balance below. Not sure why the dates were dput'ed the way they were, but the first date 12053 is '2003-01-01' and the last date 12195 is '2003-05-23'.
portfolio.df <- structure(
list(
Date = structure(c(12053, 12054, 12055, 12058,
12059, 12060, 12061, 12062, 12065, 12066, 12067, 12068, 12069,
12073, 12074, 12075, 12076, 12079, 12080, 12081, 12082, 12083,
12086, 12087, 12088, 12089, 12090, 12093, 12094, 12095, 12096,
12097, 12101, 12102, 12103, 12104, 12107, 12108, 12109, 12110,
12111, 12114, 12115, 12116, 12117, 12118, 12121, 12122, 12123,
12124, 12125, 12128, 12129, 12130, 12131, 12132, 12135, 12136,
12137, 12138, 12139, 12142, 12143, 12144, 12145, 12146, 12149,
12150, 12151, 12152, 12153, 12156, 12157, 12158, 12159, 12163,
12164, 12165, 12166, 12167, 12170, 12171, 12172, 12173, 12174,
12177, 12178, 12179, 12180, 12181, 12184, 12185, 12186, 12187,
12188, 12191, 12192, 12193, 12194, 12195),
class = "Date"),
Ending_Balance = c(56250000L,
56852500L, 57080000L, 57355000L, 57477500L, 56817500L, 57885000L,
57810000L, 57732500L, 57670000L, 57520000L, 57285000L, 57270000L,
56655000L, 55802500L, 56337500L, 55642500L, 54510000L, 54987500L,
55802500L, 56065000L, 56865000L, 56635000L, 56497500L, 56640000L,
56155000L, 55757500L, 55972500L, 55865000L, 55535000L, 55885000L,
56840000L, 56902500L, 56945000L, 56622500L, 57012500L, 57200000L,
58072500L, 57612500L, 57447500L, 57157500L, 57032500L, 57405000L,
57502500L, 56785000L, 57007500L, 56342500L, 55697500L, 56655000L,
56900000L, 57002500L, 57465000L, 57467500L, 57382500L, 57982500L,
56562500L, 58065000L, 58935000L, 58502500L, 58200000L, 57767500L,
57757500L, 58055000L, 58305000L, 58277500L, 58295000L, 59047500L,
58907500L, 59125000L, 59072500L, 59107500L, 59315000L, 59690000L,
58957500L, 59407500L, 59385000L, 59965000L, 60297500L, 59890000L,
59822500L, 60367500L, 60407500L, 60380000L, 60815000L, 61155000L,
61080000L, 61132500L, 61265000L, 60912500L, 61107500L, 61445000L,
61345000L, 61137500L, 61035000L, 60707500L, 61340000L, 61365000L,
61402500L, 61640000L, 61675000L)),
.Names = c("Date", "Ending_Balance"),
row.names = c(NA, 100L),
class = "data.frame")