I have a dataframe of daily mean temperature observations for a year from two locations (i.e., Site 1 & Site 2). The three temperature variables are:
Air temperature
Water temperature
Difference = Air - Water
I would like to produce a four-panel figure where the top and bottom rows are Site 1 and Site 2 respectively, the left column displays Air and Water and the right column shows Difference. I am specifically not using facet_wrap() or facet_grid() because the y-axes are two different variables (i.e., temperature and temperature difference), and the legends are custom.
I can create the four-panel figure however, I would like the y-axis title for each column not to be repeated. Is there a way to extend each y-axis title across the stacked plots for each column?
Here is the output from the figure code below
The ideal figure would look something more like this
Example Data
library(data.table)
library(dplyr)
library(ggplot2)
library(patchwork)
set.seed(321)
# Create the example air and water temperature time series
df1 <- data.frame(matrix(ncol = 4, nrow = 365*4))
colnames(df1)[1:4] <- c("Location","Variable", "Date", "Temperature")
df1[1:730,1] <- "Site 1"
df1[731:NROW(df1),1] <- "Site 2"
df1[c(1:365,731:1095),2] <- "Air"
df1[c(366:730,1096:NROW(df1)),2] <- "Water"
df1$Date <- rep(seq.Date(as.Date("2021-01-01"),as.Date("2021-12-31"),"1 day"),4)
df1$noise <- rep(runif(365),4)
df1$t <- rep(seq(0,1*pi,,365),4)
for (i in 1:NROW(df1)) {
df1$Temperature[1:365] <- 20*sin(df1$t)+df1$noise*8
df1$Temperature[365:730] <- 17*sin(df1$t)+df1$noise*2
df1$Temperature[731:1095] <- 25*sin(df1$t)+df1$noise*6
df1$Temperature[1096:NROW(df1)] <- 18*sin(df1$t)+df1$noise*1.5
}
# Take the difference between air and water temperature
df1 <- df1[,1:4]
site1 <- df1[df1$Location == 'Site 1',]
site1 <- site1 %>%
tidyr::pivot_wider(names_from = Variable, values_from = Temperature) %>%
mutate(Difference = Air - Water)
site2 <- df1[df1$Location == 'Site 2',]
site2 <- site2 %>%
tidyr::pivot_wider(names_from = Variable, values_from = Temperature) %>%
mutate(Difference = Air - Water)
Code for figure
fig1a <- site1 %>%
ggplot() +
geom_line(aes(x = Date, y = Air), color = "red", size = 1) +
geom_line(aes(x = Date, y = Water), size = 1, alpha = 0.7) +
scale_x_date(date_breaks = "2 month",
date_labels = "%b",
expand = c(0, 0)) +
labs(x = NULL,
y = expression(paste("Temperature ( ", degree, "C)"))) +
annotate("rect", fill = "white", color = "black",
xmin = as.Date("2021-01-15", "%Y-%m-%d"),
xmax = as.Date("2021-03-15", "%Y-%m-%d"),
ymin = 26, ymax = 30) +
annotate("segment", color = "red", size = 1,
x = as.Date("2021-01-20", "%Y-%m-%d"),
xend = as.Date("2021-01-30", "%Y-%m-%d"),
y = 29, yend = 29) +
annotate("segment", color = "black", size = 1,
x = as.Date("2021-01-20", "%Y-%m-%d"),
xend = as.Date("2021-01-30", "%Y-%m-%d"),
y = 27, yend = 27) +
annotate("text", x = as.Date("2021-02-01", "%Y-%m-%d"), y = 29,
label = 'Air',
size = 5, fontface = 1, hjust = 0) +
annotate("text", x = as.Date("2021-02-01", "%Y-%m-%d"), y = 27,
label = "Water",
size = 5, fontface = 1, hjust = 0) +
annotate("text", x = as.Date("2021-11-30", "%Y-%m-%d"), y = 30,
label = "(a",
size = 6, fontface = 1, hjust = 0) +
theme_bw() +
theme(plot.margin = unit(c(0, 1, 0, 1), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "white"),
axis.text.y = element_text(size = 14, color = "black"),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0, 32)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA)))
fig1b <- site2 %>%
ggplot() +
geom_line(aes(x = Date, y = Air), color = "red", size = 1) +
geom_line(aes(x = Date, y = Water), size = 1, alpha = 0.7) +
scale_x_date(date_breaks = "2 month",
date_labels = "%b",
expand = c(0, 0)) +
labs(x = NULL,
y = expression(paste("Temperature ( ", degree, "C)"))) +
annotate("text", x = as.Date("2021-11-30", "%Y-%m-%d"), y = 30,
label = "(b",
size = 6, fontface = 1, hjust = 0) +
theme_bw() +
theme(plot.margin = unit(c(0, 1, 2, 0), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 16, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 16, color = "black"),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0,32)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA))) +
annotate(geom = "text", x = as.Date("2021-06-15", "%Y-%m-%d"), y = -7, label = 2021, size = 6)
fig1c <- site1 %>%
ggplot() +
geom_line(aes(x = Date, y = Difference), size = 1) +
scale_x_date(date_breaks = "2 month",
date_labels = "%b",
expand = c(0, 0)) +
labs(x = NULL,
y = expression(paste(Delta~" Temperature ( ", degree, "C)"))) +
annotate("rect", fill = "white", color = "black",
xmin = as.Date("2021-01-15", "%Y-%m-%d"),
xmax = as.Date("2021-06-01", "%Y-%m-%d"),
ymin = 10.25, ymax = 12.5) +
annotate("text", x = as.Date("2021-01-20", "%Y-%m-%d"), y = 12,
label = 'Pos. = Air > Water',
size = 5, fontface = 1, hjust = 0) +
annotate("text", x = as.Date("2021-01-20", "%Y-%m-%d"), y = 11,
label = "Neg. = Water > Air",
size = 5, fontface = 1, hjust = 0) +
annotate("text", x = as.Date("2021-11-30", "%Y-%m-%d"), y = 12,
label = "(c",
size = 6, fontface = 1, hjust = 0) +
theme_bw() +
theme(plot.margin = unit(c(0, 1, 0, 0), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "white"),
axis.text.y = element_text(size = 14, color = "black"),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(-2, 12)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA)))
fig1d <- site2 %>%
ggplot() +
geom_line(aes(x = Date, y = Difference), size = 1) +
scale_x_date(date_breaks = "2 month",
date_labels = "%b",
expand = c(0, 0)) +
labs(x = NULL,
y = expression(paste(Delta~" Temperature ( ", degree, "C)"))) +
annotate("text", x = as.Date("2021-11-30", "%Y-%m-%d"), y = 12,
label = "(d",
size = 6, fontface = 1, hjust = 0) +
theme_bw() +
theme(plot.margin = unit(c(1, 1, 2, 0), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 16, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 16, color = "black"),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(-2,12)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA))) +
annotate(geom = "text", x = as.Date("2021-06-15", "%Y-%m-%d"), y = -5, label = 2021, size = 6)
# width = 1200 height = 900
fig1a + fig1c + fig1b + fig1d + plot_layout(ncol = 2)
I figured out how to do it, which required using facet_grid. I ended up needing to create two facets that I then stitched together, see below.
# Take the difference between air and water temperature
df1 <- df1[,1:4]
site1 <- df1[df1$Location == 'Site 1',]
site1 <- site1 %>%
tidyr::pivot_wider(names_from = Variable, values_from = Temperature) %>%
mutate(Difference = Air - Water) %>%
tidyr::pivot_longer(cols = c('Water','Air','Difference'),
names_to = 'Variable',
values_to = 'Temperature')
site2 <- df1[df1$Location == 'Site 2',]
site2 <- site2 %>%
tidyr::pivot_wider(names_from = Variable, values_from = Temperature) %>%
mutate(Difference = Air - Water) %>%
tidyr::pivot_longer(cols = c('Water','Air','Difference'),
names_to = 'Variable',
values_to = 'Temperature')
df1 <- rbind(site1,site2)
# This creates the first column of figures
p1 <- df1 %>%
subset(!df1$Variable == 'Difference',) %>%
mutate(var_air_water = ## Here is the new variable
if_else(Variable %in% c("Air", "Water"),
true = "Air & Water",
false = Variable)) %>%
ggplot() +
geom_line(aes(x = Date, y = Temperature, group = Variable, color = Variable)) +
scale_color_manual(values = c("black", "red")) +
scale_x_date(date_breaks = "2 month",
date_labels = "%b",
expand = c(0, 0)) +
scale_y_continuous(breaks = seq(0,30,5)) +
labs(x = NULL,
y = expression(paste("Temperature ( ", degree, "C)"))) +
theme_bw() +
theme(plot.margin = unit(c(0, 1, 2, 0), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 16, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 16, color = "black"),
legend.title = element_blank(),
legend.text = element_text(size = 16),
legend.position = c(0.15,0.95),
legend.background = element_blank(),
strip.text = element_blank(),
strip.background = element_blank(),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0,33)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA))) +
annotate(geom = "text", x = as.Date("2021-06-15", "%Y-%m-%d"), y = -8, label = 2021, size = 6) +
facet_grid(Location~var_air_water)
# This adds the text to the corresponding figures
dat_text1 <- data.frame(
label = c("(a","(b"),
Location = c('Site 1','Site 2'),
x = c(as.Date("2021-12-01", "%Y-%m-%d"),
as.Date("2021-12-01", "%Y-%m-%d")),
y = c(32,32))
p1 <- p1 + geom_text(
data = dat_text1,
mapping = aes(x = x, y = y, label = label,
hjust = 0,
vjust = 1),
size = 5)
# This creates the second column of figures
p2 <- df1 %>%
mutate(var_air_water = ## Here is the new variable
if_else(Variable %in% c("Air", "Water"),
true = "Air & Water",
false = Variable)) %>%
subset(!var_air_water == c('Air & Water'),) %>%
ggplot() +
geom_line(aes(x = Date, y = Temperature, group = Variable, color = Variable)) +
scale_color_manual(values = "black") +
scale_x_date(date_breaks = "2 month",
date_labels = "%b",
expand = c(0, 0)) +
scale_y_continuous(breaks = seq(0,12,2)) +
labs(x = NULL,
y = expression(paste(Delta~" Temperature ( ", degree, "C)"))) +
theme_bw() +
theme(plot.margin = unit(c(0, 1, 2, 0), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 16, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 16, color = "black"),
legend.position = 'none',
strip.background = element_rect(fill = "gray80"),
strip.background.x = element_blank(),
strip.text.x = element_blank(),
strip.text.y = element_text(size = 16)) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0,12)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA))) +
annotate(geom = "text", x = as.Date("2021-06-15", "%Y-%m-%d"), y = -3, label = 2021, size = 6) +
facet_grid(Location~var_air_water)
# Like above, this adds the text to the corresponding figures
dat_text2 <- data.frame(
label = c("Pos. = Air > Water", "Neg. = Water > Air", "(c","(d"),
Location = c('Site 1','Site 1','Site 1','Site 2'),
x = c(as.Date("2021-01-15", "%Y-%m-%d"),
as.Date("2021-01-15", "%Y-%m-%d"),
as.Date("2021-12-01", "%Y-%m-%d"),
as.Date("2021-12-01", "%Y-%m-%d")),
y = c(12,11,12,12))
p2 <- p2 + geom_text(
data = dat_text2,
mapping = aes(x = x, y = y, label = label,
hjust = 0,
vjust = 1,
size = 10),
size = 5)
# width = 1200 height = 900
p1 + p2 + plot_layout(ncol = 2)
Related
I try to replicate the fertility graph from gapminder as good as I can in ggplot:
I have:
fertility <- read.csv("https://raw.githubusercontent.com/MarcoKuehne/marcokuehne.github.io/main/data/Gapminder/tfr-by-gapminder-v12-20171212.csv", sep = ";")
# manipulate
library(tidyverse)
fertility <- fertility %>%
select(!c(geo.name, geo, indicator)) %>%
rownames_to_column %>%
gather(var, value, -rowname) %>%
spread(rowname, value) %>%
rename(year = var, fert = `1`) %>%
slice_head(n = 301)
fertility[,1:2] <- sapply(fertility[,1:2],FUN=as.numeric)
fertility1 <- fertility[1:217,]
fertility2 <- fertility[218:301,]
# visualize
ggplot(data = fertility, aes(x=year, y=fert)) +
geom_point(aes(x=year[1], y=fert[1]), size = 4) +
geom_text(aes(x=year[1], y=fert[1], label = year[1]), vjust = 2.5) +
geom_point(aes(x=year[165], y=fert[165]), size = 4) +
geom_text(aes(x=year[165], y=fert[165], label = year[165]), vjust = -3, hjust = -0.5) +
geom_text(aes(x=year[165], y=fert[165], label = "5 births"), vjust = -1.5, hjust = -0.2) +
#geom_point(aes(x=year[217], y=fert[217]), size = 4) +
geom_text(aes(x=year[217], y=fert[217], label = year[217]), vjust = -3) +
geom_text(aes(x=year[217], y=fert[217], label = "2.5 births"), vjust = -1.5) +
geom_line(data = fertility1, size=1.3, arrow=arrow(length=unit(0.30,"cm"), ends="last", type = "closed")) +
geom_line(data = fertility2, size=1.3,linetype="dashed") +
labs(title = "Average Number Of Babies Per Woman From 1800 to Today",
caption = "Source: Gapminder based on UN-Pop", y="", x="") +
theme_minimal() +
theme(panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank())
I have some troubles with the linewidth of geom_line(). And I am looking for a compromise between geom_line() and geom_smooth() to make the line plot just a little bit more smooth.
But my major concern at the moment is the broken y-axis. When y-axis does not start at zero, I'd like to hightlight this as in the gapminder graph.
Following the suggestion by #Roland you could smooth your lines using a loess curve. However, instead of trying with geom_smooth I would suggest to do the calculation outside of ggplot as we need the smoothed values also for the points and the labels and we also need the same values for "both" lines.
For your axis break a simple approach would be to use two annotate, one to place the segments, one to add the filled "gap" for which I use a ribbon. This requires some fiddling to get the right positions, to fix the limits and to set clip="off". Also note that I added the axis lines via geom_h/vline so that the annotate layers could be placed on top of the axes.
Finally, I slightly adjusted your data wrangling code, use a dataset to place the labels and points and instead of using vjust I shift the labels directly via the y position.
EDIT For the final touch I added some additional styling.
# manipulate
library(tidyverse)
library(showtext)
library(hrbrthemes)
font_add_google("lato", "Lato", regular.wt = 900)
fertility <- fertility %>%
select(!c(geo.name, geo, indicator)) %>%
mutate(
across(-indicator.name, as.character),
across(-indicator.name, ~ readr::parse_number(.x, locale = locale(decimal_mark = ",")))
) %>%
pivot_longer(-indicator.name, names_to = "year", values_to = "fert", names_prefix = "X") %>%
mutate(year = as.numeric(year)) |>
mutate(fert_smooth = predict(loess(fert ~ year, span = .05)))
fertility_to_high <- fertility |>
filter(year %in% c(1800, 1964, 2016)) |>
mutate(
label = if_else(!year == 1800, paste0(year, "<br>**", round(fert, 1), " births**"), as.character(year)),
hjust = if_else(year == 2016, 0, .5)
)
ggplot(data = fertility, aes(x = year, y = fert_smooth)) +
geom_point(data = subset(fertility_to_high, year == 1964), size = 10, shape = 21, fill = NA, color = "black") +
geom_point(data = subset(fertility_to_high, year != 2016), size = 3) +
ggtext::geom_richtext(data = fertility_to_high, aes(y = fert + .15, label = label, hjust = hjust),
vjust = 0, label.colour = NA, family = font_rc, lineheight = 1.2) +
geom_line(linewidth = 1.3, linetype = "dashed") +
geom_line(data = ~ subset(.x, year <= 2016), linewidth = 1.3, arrow = arrow(length = unit(0.30, "cm"), ends = "last", type = "closed")) +
geom_hline(yintercept = 1) +
geom_vline(xintercept = 1785) +
annotate(geom = "ribbon", x = c(1780, 1790) - .55, ymin = c(1.3, 1.5), ymax = c(1.5, 1.7), fill = "white") +
annotate(
geom = "segment",
x = c(1780, 1780) - .5, xend = c(1790, 1790) - .5,
y = c(1.3, 1.5), yend = c(1.5, 1.7), linewidth = 1
) +
scale_y_continuous(breaks = 1:6, labels = c(0, 2:6), expand = c(0, .0, .05, 0)) +
scale_x_continuous(expand = c(0.05, 0, 0, 0)) +
labs(
title = toupper("Average Number Of Babies Per Woman From 1800 to Today"),
caption = "Source: Gapminder based on UN-Pop", y = "", x = ""
) +
coord_cartesian(clip = "off", ylim = c(1, 6), xlim = c(1800, NA)) +
theme_bw(base_family = font_rc, base_size = 12) +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
plot.title = element_text(family = "lato"),
plot.title.position = "plot",
plot.caption = element_text(family = "lato", color = "grey40"),
axis.text.x = element_text(hjust = c(rep(.5, 3), 1))
)
The key is to add:
scale_y_continuous(limits = c(0, 6.2), expand = c(0, 0))
It tells R to limit the y range within 0 and 6.2, and show no gap beyond these two values.
The sample code below may work for you, after running it, you will get:
fertility <- read.csv("https://raw.githubusercontent.com/MarcoKuehne/marcokuehne.github.io/main/data/Gapminder/tfr-by-gapminder-v12-20171212.csv", sep = ";")
# manipulate
library(tidyverse)
fertility <- fertility |>
select(!c(geo.name, geo, indicator)) |>
t() |>
as.data.frame() |>
rownames_to_column() |>
slice(-1) |>
as_tibble() |>
rename(c(year = rowname, fert = V1)) |>
mutate(year = str_remove(year, "X"),
year = as.Date(ISOdate(year, 1, 1)),
fert = str_replace(fert, ",", "."),
fert = as.numeric(fert),
fert_1 = case_when(year <= as.Date("2017-01-01") ~ fert,
TRUE ~ as.numeric(NA)),
fert_2 = case_when(year >= as.Date("2017-01-01") ~ fert,
TRUE ~ as.numeric(NA)),
arr_data = case_when((year > as.Date("2014-01-01") & year < "2018-01-01") ~ fert,
TRUE ~ as.numeric(NA)))
fertility |>
ggplot(aes(x = year,
y = fert)) +
geom_smooth(aes(x = year,
y = fert_1,
group = 1),
span = 0.11,
se = FALSE,
colour = "black",
size = 1.5) +
geom_line(aes(x = year,
y = arr_data),
arrow = arrow(length=unit(0.4,"cm"),
ends="last",
type = "closed"),
size = 3) +
geom_line(aes(x = year,
y = fert_2,
group = 1),
linetype = 2,
size = 1.5) +
geom_point(aes(x = year[1],
y = fert[1]),
size = 5) +
annotate(geom = "text",
x = fertility$year[1],
y = fertility$fert[1],
label = "1800",
size = 4,
vjust = -1.2) +
geom_point(aes(x = fertility$year[166],
y = fertility$fert[166]),
shape = 1,
size = 12,
colour = "grey50") +
annotate(geom = "text",
x = fertility$year[166],
y = fertility$fert[166],
label = "1965",
size = 4,
vjust = -4.2) +
annotate(geom = "text",
x = fertility$year[166],
y = fertility$fert[166],
label = "5 births",
size = 5,
fontface = "bold",
vjust = -2) +
geom_point(aes(x = fertility$year[166],
y = fertility$fert[166]),
shape = 1,
size = 12,
colour = "grey50") +
annotate(geom = "text",
x = fertility$year[166],
y = fertility$fert[166],
label = "1965",
size = 4,
vjust = -4.2) +
annotate(geom = "text",
x = fertility$year[166],
y = fertility$fert[166],
label = "5 births",
size = 5,
fontface = "bold",
vjust = -2) +
annotate(geom = "text",
x = fertility$year[218],
y = fertility$fert[218],
label = "2017",
size = 4,
vjust = -4.2,
hjust = 0) +
annotate(geom = "text",
x = fertility$year[218],
y = fertility$fert[218],
label = "2.5 births",
size = 5,
fontface = "bold",
vjust = -2,
hjust = 0) +
theme_bw() +
scale_x_date(expand = expansion(mult = c(0.02, 0))) +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.border = element_blank(),
axis.text.x = element_text(size = 10),
axis.line.x = element_line(),
axis.line.y = element_line(),
plot.caption = element_text(colour = "grey50"),
plot.title = element_text(size = 16,
hjust = 0.5,
face = "bold"),
plot.margin = margin(r = 18,
t = 5,
l = 5,
b = 2)
) +
labs(
title = "AVERAGE NUMBER OF BABIES PER WOMAN FROM 1800 TO TODAY",
x = element_blank(),
y = element_blank(),
caption = "Source:Gapminder[7] based on UN-Pop[3]"
)
I would like the following time series to display the month abbreviation (e.g., Jan, Feb, etc.) in chronological order with a vertical orientation while also displaying the year horizontally below the months. Please see the ideal figure example below.
Example Data:
library(dplyr)
library(ggplot2)
df1 <- data.frame(matrix(ncol = 3, nrow = 12))
colnames(df1)[1:3] <- c("Date", "Group", "Value")
df1$Date <- rep(seq.Date(as.Date("2020-03-14"),as.Date("2020-08-20"),"1 month"),2)
df1$Group <- sort(rep(c("A","B"),6))
df1$Value <- rnorm(12,50,10)
df1 <- df1 %>%
mutate(Month = month(Date),
Year = year(Date),
date = zoo::as.yearmon(paste(Year, Month), "%Y %m"))
df2 <- data.frame(matrix(ncol = 3, nrow = 12))
colnames(df2)[1:3] <- c("Date", "Group", "Value")
df2$Date <- rep(seq.Date(as.Date("2021-03-14"),as.Date("2021-08-20"),"1 month"),2)
df2$Group <- sort(rep(c("A","B"),6))
df2$Value <- rnorm(12,50,10)
df2 <- df2 %>%
mutate(Month = month(Date),
Year = year(Date),
date = zoo::as.yearmon(paste(Year, Month), "%Y %m"))
df3 <- rbind(df1,df2)
Example Figure: This code produces the figure below with the year associated with each month, both vertically oriented.
cols <- c("A" = "#ca0020", "B" = "#0571b0")
ggplot(data = df3, aes(x = factor(date), y = Value, color = Group, group = paste(Year,Group))) +
geom_line() +
geom_point(size = 3, aes(fill = Group), color = "black", shape = 21) +
scale_fill_manual(values = cols) +
scale_color_manual(values = cols) +
labs(x = "") +
theme_bw() +
theme(panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 14, color = "black"),
legend.title = element_blank(),
legend.direction = "horizontal",
legend.margin = margin(),
legend.background = element_blank(),
legend.position = c(0.1,0.93),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0, 100)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA))) +
annotate('rect',
xmin = 6.35,
xmax = 6.65,
ymin = -10, ymax = 0, fill = 'white') +
annotate('segment',
x = c(6.35, 6.65),
xend = c(6.35, 6.65), y = -10, yend = 0)
Ideal Figure: The ideal figure would display the month vertically and the year horizontally (please see below). I'm pretty sure I can add the year horizontally based off this SO question, I am just having an issue with displaying the month without the year in chronological order.
I have tried using zoo::scale_x_yearmon(format = "%b") in the example figure code above but have not had success with this approach.
Here a solution partially based in Multi-row x-axis labels in ggplot line chart
ggplot(data = df3, aes(x = factor(date), y = Value, color = Group, group = paste(Year,Group))) +
geom_line() +
geom_point(size = 3, aes(fill = Group), color = "black", shape = 21) +
scale_fill_manual(values = cols) +
scale_color_manual(values = cols) +
scale_x_discrete(labels=substr(df3$date,1,3))+
labs(x = "") +
theme_bw() +
theme(plot.margin = unit(c(1, 1, 2, 1), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 14, color = "black"),
legend.title = element_blank(),
legend.direction = "horizontal",
legend.margin = margin(),
legend.background = element_blank(),
legend.position = c(0.1,0.93),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0, 100)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA))) +
annotate(geom = "text", x = 3.5 + 6 * (0:1), y = -30, label = unique(df3$Year), size = 6) +
annotate('rect',
xmin = 6.35,
xmax = 6.65,
ymin = -10, ymax = 0, fill = 'white') +
annotate('segment',
x = c(6.35, 6.65),
xend = c(6.35, 6.65), y = -10, yend = 0)
Alternative:
Using strip.position = "bottom" in facet_wrap
library(tidyverse)
library(lubridate)
df3 %>%
mutate(Month = month(date, label=TRUE, abbr=TRUE),
Year = year(date)) %>%
arrange(Year) %>%
ggplot(aes(x = Month, y = Value, color = Group, group = paste(Year,Group))) +
geom_line() +
geom_point(size = 3, aes(fill = Group), color = "black", shape = 21) +
scale_fill_manual(values = cols) +
scale_color_manual(values = cols) +
labs(x = "") +
coord_cartesian(clip = 'off', ylim = c(0, 100)) +
facet_wrap(~Year, scales = "free_x", strip.position = "bottom") +
theme(strip.background = element_blank(),
strip.placement = "outside") +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
I have multi-row x-axis labels such that the first row is month and the second row is year. However, I run into check_aesthetics() errors when I try to use the multi-row axis labels with facet_wrap().
Example Data:
library(data.table)
library(dplyr)
library(ggplot2)
df1 <- data.frame(matrix(ncol = 3, nrow = 12))
colnames(df1)[1:3] <- c("Date", "Group", "Value")
df1$Date <- rep(seq.Date(as.Date("2020-03-14"),as.Date("2020-08-20"),"1 month"),2)
df1$Group <- sort(rep(c("A","B"),6))
df1$Value <- rnorm(12,50,10)
df1 <- df1 %>%
mutate(Month = month(Date),
Year = year(Date),
date = zoo::as.yearmon(paste(Year, Month), "%Y %m"))
df2 <- data.frame(matrix(ncol = 3, nrow = 12))
colnames(df2)[1:3] <- c("Date", "Group", "Value")
df2$Date <- rep(seq.Date(as.Date("2021-03-14"),as.Date("2021-08-20"),"1 month"),2)
df2$Group <- sort(rep(c("A","B"),6))
df2$Value <- rnorm(12,50,10)
df2 <- df2 %>%
mutate(Month = month(Date),
Year = year(Date),
date = zoo::as.yearmon(paste(Year, Month), "%Y %m"))
df3 <- rbind(df1,df2)
cols <- c("A" = "#ca0020", "B" = "#0571b0")
Figure without facet_wrap() showing the multi-row x-axis
ggplot(data = df3, aes(x = factor(date), y = Value, color = Group, group = paste(Year,Group))) +
geom_line() +
geom_point(size = 3, aes(fill = Group), color = "black", shape = 21) +
scale_fill_manual(values = cols) +
scale_color_manual(values = cols) +
scale_x_discrete(labels=substr(df3$date,1,3))+
labs(x = "") +
theme_bw() +
theme(plot.margin = unit(c(1, 1, 2, 1), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 14, color = "black"),
legend.title = element_blank(),
legend.direction = "horizontal",
legend.margin = margin(),
legend.background = element_blank(),
legend.position = c(0.1,0.93),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0, 100)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA))) +
annotate(geom = "text", x = c(3.5,9.5), y = -15, label = unique(df3$Year), size = 6) +
annotate('rect',
xmin = 6.35,
xmax = 6.65,
ymin = -10, ymax = 0, fill = 'white') +
annotate('segment',
x = c(6.35, 6.65),
xend = c(6.35, 6.65), y = -10, yend = 0)
Now when I try to add the facet_wrap()...
ggplot(data = df3, aes(x = factor(date), y = Value, color = Group, group = paste(Year,Group))) +
geom_line() +
geom_point(size = 3, aes(fill = Group), color = "black", shape = 21) +
scale_fill_manual(values = cols) +
scale_color_manual(values = cols) +
scale_x_discrete(labels=substr(df3$date,1,3))+
labs(x = "") +
theme_bw() +
theme(plot.margin = unit(c(1, 1, 2, 1), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 14, color = "black"),
legend.title = element_blank(),
legend.direction = "horizontal",
legend.margin = margin(),
legend.background = element_blank(),
legend.position = c(0.1,0.93),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0, 100)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA))) +
annotate(geom = "text", x = c(3.5,9.5), y = -15, label = unique(df3$Year), size = 6) +
annotate('rect',
xmin = 6.35,
xmax = 6.65,
ymin = -10, ymax = 0, fill = 'white') +
annotate('segment',
x = c(6.35, 6.65),
xend = c(6.35, 6.65), y = -10, yend = 0) +
facet_wrap(~Group)
...it throws the error Error in `check_aesthetics()`: ! Aesthetics must be either length 1 or the same as the data (4): label.
The error resides within annotate(geom = "text", x = c(3.5,9.5), y = -15, label = unique(df3$Year), size = 6) + but I can't figure out how to fix it. I have tried changing the label = and the x = but no luck. The ideal figure would have two plots, each with multi-row x-axis labels where, similar to the example figure above, the top row is month and the second row is year. Any thoughts on how to achieve this?
If you don't mind moving the year value to the strip you could use ggh4x package.
library(dplyr)
library(ggplot2)
library(lubridate)
library(ggh4x)
ggplot(data = df3, aes(x = factor(date), y = Value, color = Group, group = paste(Year,Group))) +
geom_line() +
geom_point(size = 3, aes(fill = Group), color = "black", shape = 21) +
scale_fill_manual(values = cols) +
scale_color_manual(values = cols) +
scale_x_discrete(labels=substr(df3$date,1,3))+
labs(x = NULL) +
theme_bw() +
theme(plot.margin = unit(c(1, 1, 2, 1), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 14, color = "black"),
legend.title = element_blank(),
legend.direction = "horizontal",
legend.margin = margin(),
legend.background = element_blank(),
legend.position = c(0.1,0.90),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0, 100)) +
facet_nested(~Group + Year, scales = "free_x")
Created on 2022-10-12 with reprex v2.0.2
One kind of hacky way to do this is to just make two text annotations
ggplot(data = df3, aes(x = factor(date), y = Value, color = Group, group = paste(Year,Group))) +
geom_line() +
geom_point(size = 3, aes(fill = Group), color = "black", shape = 21) +
scale_fill_manual(values = cols) +
scale_color_manual(values = cols) +
scale_x_discrete(labels=substr(df3$date,1,3))+
labs(x = "") +
theme_bw() +
theme(plot.margin = unit(c(1, 1, 2, 1), "lines"),
panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "black", angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 14, color = "black"),
legend.title = element_blank(),
legend.direction = "horizontal",
legend.margin = margin(),
legend.background = element_blank(),
legend.position = c(0.1,0.93),
panel.border = element_blank()) +
guides(fill = guide_legend(nrow = 2)) +
coord_cartesian(clip = 'off', ylim = c(0, 100)) +
annotation_custom(grid::rectGrob(gp = grid::gpar(fill = NA))) +
annotate(geom = "text", x = c(3.5), y = -15, label = 2020, size = 6) +
annotate(geom = "text", x = c(9.5), y = -15, label = 2021, size = 6) +
annotate('rect',
xmin = 6.35,
xmax = 6.65,
ymin = -10, ymax = 0, fill = 'white') +
annotate('segment',
x = c(6.35, 6.65),
xend = c(6.35, 6.65), y = -10, yend = 0) +
facet_wrap(~Group)
I have my code with that created two different graphs. I want to combine the graphs into one graph with "Elevation on the primary y axis and "Precipitation" on the secondary y axis. Is this possible or would it be best to stick with having the two graphs on top of each other?
pe1.plot <- combine.df %>% filter(site== "VWP 1") %>%
ggplot(aes(x = datetime, y = elevation)) +
geom_line(color = "blue")+
theme(plot.subtitle = element_text(vjust = 1),
plot.caption = element_text(vjust = 1),
plot.background = element_rect(linetype = "solid")) +labs(title = "VWP 1", x = "Date", y = "Elevation (MSL)")
precip.plot <- ggplot(precip.df, aes(x = datetime, y = precipitation)) +
geom_bar(stat = "identity")+
theme(plot.subtitle = element_text(vjust = 1),
plot.caption = element_text(vjust = 1),
plot.background = element_rect(linetype = "solid")) +labs(x = "Date", y = "Pecipitation (in.)")
pe1.plot+precip.plot + plot_layout(ncol = 1)
Possible but kind of a pain:
library(tidyverse)
set.seed(42)
my_data = tibble(date = seq.Date(as.Date("2020-01-01"),
as.Date("2020-06-30"), by = "day"),
line_y = seq(698, 700, length.out = 182) + rnorm(182, sd = 0.1),
bar_y = rpois(182, c(0,0,5))/10)
ggplot(my_data, aes(date)) +
geom_line(aes(y = line_y)) +
geom_col(aes(y = (2*bar_y) + 695)) +
scale_y_continuous(breaks = seq(695, 699.5, by = 0.5),
labels = c(rep("", 6), seq(698, 699.5, by = 0.5)),
sec.axis = sec_axis(~ (. - 695) / 2,
breaks = seq(0, 1, by = 0.25))) +
coord_cartesian(ylim = c(695, NA), expand = 0)
Background
I took the data from a Stephen Few Example and wanted to add labels to each of the bars to pull the legend from the side of the graphic.
The code in the "Hack Graphic" section got me there because I couldn't get the position_dodge() to work with the text labels.
Load Data
library(tidyverse)
library(forcats)
### Build data from his table
candidates <- tibble::tibble(`Rating Areas` = c("Experience",
"Communication", "Friendliness", "Subject matter knowledge", "Presentation",
"Education"), `Karen Fortou` = c(4,3.5, 4, 4, 3, 3.5), `Mike Rafun` = c(4.5,
2, 2, 5, 1.5, 4.5), `Jack Nymbul` = c(2.5, 5, 4.5, 2.5, 2.75, 2)) %>%
gather("Candidates", "Score", -`Rating Areas`)
# The totals for each candidate
totals <- candidates %>% group_by(Candidates) %>% summarise(Score =
sum(Score))
Hack Graphic
Notice how I used manually created x-axis values (x = c(seq(.6,1.35, by = .15), seq(1.6,2.35, by = .15), seq(2.6,3.35, by = .15))) to place the labels instead of using position = position_dodge() as described in this post.
candidates %>%
ggplot(aes(x = fct_reorder(Candidates, Score), y = Score)) +
geom_col(data = totals, alpha = .45) +
geom_col(aes(fill = `Rating Areas`), position = position_dodge(.9), color = "black",
show.legend = FALSE) +
geom_text(label = rep(c("Experience", "Communication", "Friendliness",
"Subject matter knowledge", "Presentation", "Education"),3),
x = c(seq(.6,1.35, by = .15), seq(1.6,2.35, by = .15),
seq(2.6,3.35, by = .15)), y = 5.1, angle = 90, color = "black",
hjust = "left", size = 4, fontface = "bold") +
scale_fill_brewer(type = "qual") +
scale_y_continuous(breaks = seq(0, 25, by = 2)) +
theme_bw() +
labs(x = "\nCandidates", y = "Rating Score") +
theme(axis.text.x = element_text(size = 14, color = "black"), legend.text = element_text(size = 14),
legend.title = element_text(size = 15), axis.title = element_text(size = 15))
Graphic Code that doesn't work
When I follow the example from the previous Stack answer using geom_text(aes(label =Rating Areas), position = position_dodge(width = 0.9), angle = 90, color = "black", hjust = "left", size = 4, fontface = "bold") it does not spread the labels out ever each bar.
I must be missing something obvious. Please help with how to get position_dodge() to work with this example?
candidates %>%
ggplot(aes(x = fct_reorder(Candidates, Score), y = Score)) +
geom_col(data = totals, alpha = .45) +
geom_col(aes(fill = `Rating Areas`), position = position_dodge(.9), color = "black", show.legend = FALSE) +
geom_text(aes(label = `Rating Areas`), position = position_dodge(width = 0.9), angle = 90, color = "black", hjust = "left", size = 4, fontface = "bold") +
scale_fill_brewer(type = "qual") +
scale_y_continuous(breaks = seq(0, 25, by = 2)) +
theme_bw() +
labs(x = "\nCandidates", y = "Rating Score") +
theme(axis.text.x = element_text(size = 14, color = "black"), legend.text = element_text(size = 14), legend.title = element_text(size = 15), axis.title = element_text(size = 15))
I think you need to have the same mapping for both geom_col and geom_text. You can add fill = Rating Areas to the aesthetics of geom_text. You will get a warning though.
candidates %>%
ggplot(aes(x = fct_reorder(Candidates, Score), y = Score)) +
geom_col(data = totals, alpha = .45) +
geom_col(aes(fill = `Rating Areas`), position = position_dodge(.9), color = "black", show.legend = FALSE) +
geom_text(aes(fill = `Rating Areas`, label = `Rating Areas`), position = position_dodge(width = 0.9), angle = 90, color = "black", hjust = "left", size = 4, fontface = "bold") +
scale_fill_brewer(type = "qual") +
scale_y_continuous(breaks = seq(0, 25, by = 2)) +
theme_bw() +
labs(x = "\nCandidates", y = "Rating Score") +
theme(axis.text.x = element_text(size = 14, color = "black"), legend.text = element_text(size = 14), legend.title = element_text(size = 15), axis.title = element_text(size = 15))
Edit: Here's a way to do it without the warning:
candidates %>%
ggplot(aes(x = fct_reorder(Candidates, Score), y = Score, fill = `Rating Areas`)) +
geom_col(data = totals, aes(x = fct_reorder(Candidates, Score), y = Score), alpha = .45, inherit.aes = FALSE) +
geom_col(position = position_dodge(.9), color = "black", show.legend = FALSE) +
geom_text(aes(label = `Rating Areas`), position = position_dodge(width = 0.9), angle = 90, color = "black", hjust = "left", size = 4, fontface = "bold") +
scale_fill_brewer(type = "qual") +
scale_y_continuous(breaks = seq(0, 25, by = 2)) +
theme_bw() +
labs(x = "\nCandidates", y = "Rating Score") +
theme(axis.text.x = element_text(size = 14, color = "black"), legend.text = element_text(size = 14), legend.title = element_text(size = 15), axis.title = element_text(size = 15))