Upwards tangent vector of triangle in 3D space - vector

I have a triangle in 3D cartesian space, it forms a surface. I have a normal vector of that surface. What I want to find out, is a vector tangent to that surface, which points the most "upwards". (The orange one on image, forgive my paint skills)

Let one triangle edge vector is A. Get perpendicular vector in the plane
P = N x A
and normalize P and A
p = P / len(P)
a = A / len(A)
Any unit vector in the plane is combination of these base vectors
v = p * cos(t) + a * sin(t) (1)
We want that Z-component of v to be maximal (as far as I understand most "upwards")
vz = pz * cos(t) + az * sin(t) (2)
has extremum when it's derivative by t is zero
0 = (pz * cos(t) + az * sin(t))' = -pz * sin(t) + az * cos(t)
tan(t) = az / pz
t = atan2(az , pz)
put t values into (1) and get needed vector v

Related

How do I generate a random point on a circles circumference in 3D space? [migrated]

This question was migrated from Stack Overflow because it can be answered on Mathematics Stack Exchange.
Migrated 24 days ago.
I have a position vector and a normal vector that describes a plane. The plane is always orthogonal to the position vector. On this plane is a circle with its center at the position vector. How do I generate a random point on that circle with a given radius r? I know that in 2d space, I can do
x = cos(2 * PI * random) * radius
y = sin(2 * PI * random) * radius
but... I don't know how to translate that to a circle on a plane.
I tried to find a way to use the position vector and normal vector to generate points, but I just can't think of a correct way to do so. I might not be familiar enough with planes.
At first we need two base vectors in the circle plane.
The first one is arbitrary vector orthogonal to normal n:
Choose component of normal with the largest magnitude, then component with the second magnitude.
Exchange their values, negate the largest, and make the third component zero (note that dot product of result with normal is zero, so they are othogonal)
For example, if n.y is the largest and n.z is the second, make
v = (0, n.z, -n.y)
Then calculate the second base vector using vector product
u = n x v
Normalize vectors v and u (make unit magnitude).
Now we can generate a random point on circumference using center point c (your position, I think):
rho = 2 * PI * random
f.x = c.x + radius * v.x * cos(rho) + radius * u.x * sin(rho)
f.y = c.y + radius * v.y * cos(rho) + radius * u.y * sin(rho)
f.z = c.z + radius * v.z * cos(rho) + radius * u.z * sin(rho)

Find the next 3D point given a starting point, a orientation quaternion, and a distance travelled

What is the formula I need to use to find the second 3D point (P1) given:
The first point P0 = [x0, y0, z0]
An orientation quaternion Q0 = [q0, q1, q2, q3]
The distance traveled S
I'm guessing that the distance traveled S needs to be split up into it's constituent X, Y and Z components. Is there an easy way to do this using quaternions?
Components of direction vector (forward-vector) are:
x = 2 * (q1*q3 + q0*q2)
y = 2 * (q2*q3 - q0*q1)
z = 1 - 2 * (q1*q1 + q2*q2)
This formula is calculated from Quaternion-to-Matrix (below) with multiplication by (0,0,1) vector.
Normalize D=(x,y,z) if it is not unit, and calculate P_New.x= P0.x + S * D.x and other components.
To get up- and left- vector of orientation (perhaps your orientation refers to another base frame orientation - OX or OY as forward), use another columns of the matrix cited below:
Link:
Quaternion multiplication and orthogonal matrix multiplication can both be used to represent rotation. If a quaternion is represented by qw + i qx + j qy + k qz , then the equivalent matrix, to represent the same rotation, is:
1 - 2*qy2 - 2*qz2 2*qx*qy - 2*qz*qw 2*qx*qz + 2*qy*qw
2*qx*qy + 2*qz*qw 1 - 2*qx2 - 2*qz2 2*qy*qz - 2*qx*qw
2*qx*qz - 2*qy*qw 2*qy*qz + 2*qx*qw 1 - 2*qx2 - 2*qy2

Position of a point in a circle

Hello again first part is working like a charm, thank you everyone.
But I've another question...
As I've no interface, is there a way to do the same thing with out not knowing the radius of the circle?
Should have refresh the page CodeMonkey solution is exactly what I was looking for...
Thank you again.
============================
First I'm not a developer, I'm a simple woodworker that left school far too early...
I'm trying to make one of my tool to work with an autonomous robot.
I made them communicate by reading a lot of tutorials.
But I have one problem I cant figure out.
Robot expect position of the tool as (X,Y) but tool's output is (A,B,C)
A is the distance from tool to north
B distance to east
C distance at 120 degree clockwise from east axe
the border is a circle, radius may change, and may or may not be something I know.
I've been on that for 1 month, and I can't find a way to transform those value into the position.
I made a test with 3 nails on a circle I draw on wood, and if I have the distance there is only one position possible, so I guess its possible.
But how?
Also, if someone as an answer I'd love pseudo code not code so I can practice.
If there is a tool to make a drawing I can use to make it clearer can you point it out to me?
Thank you.
hope it helps :
X, Y are coordinate from center, Da,Db, Dc are known.
Trying to make it more clear (sorry its so clear in my head).
X,Y are the coordinate of the point where is the tool (P).
Center is at 0,0
A is the point where vertical line cut the circle from P, with Da distance P to A;
B is the point where horizontal line cuts the circle fom P, with Db distance P to B.
C is the point where the line at 120 clockwise from horizontal cuts the circle from P, with Dc distance P to C.
Output from tool is an array of int (unit mm): A=123, B=114, C=89
Those are the only informations I have
thanks for all the ideas I'll try them at home later,
Hope it works :)
Basic geometry. I decided to give up having the circle at the origin. We don't know the center of the circle yet. What you do have, is three points on that circle. Let's try having the tool's position, given as P, as the new (0,0). This thus resolves to finding a circle given three points: (0, Da); (Db,0), and back off at 120° at Dc distance.
Pseudocode:
Calculate a line from A to B: we'll call it AB. Find AB's halfway point. Calculate a line perpendicular to AB, through that midpoint (e.g. the cross product of AB and a unit Z axis finds the perpendicular vector).
Calculate a line from B to C (or C to A works just as well): we'll call it BC. Find BC's halfway point. Calculate a line perpendicular to BC, through that midpoint.
Calculate where these two lines cross. This will be the origin of your circle.
Since P is at (0,0), the negative of your circle's origin will be your tool's coordinates relative to the circle's origin. You should be able to calculate anything you need relative to that, now.
Midpoint between two points: X=(X1+X2)/2. Y=(Y1+Y2)/2.
The circle's radius can be calculated using, e.g. point A and the circle's origin: R=sqrt(sqr((Ax-CirX)+sqr(Ay-CirY))
Distance from the edge: circle's radius - tool's distance from the circle's center via Pythagorean Theorem again.
Assume you know X and Y. R is the radius of the circle.
|(X, Y + Da)| = R
|(X + Db, Y)| = R
|(X - cos(pi/3) * Dc, Y - cos(pi/6) * Dc)| = R
Assuming we don't know the radius R. We can still say
|(X, Y + Da)|^2 = |(X + Db, Y)|^2
=> X^2 + (Y+Da)^2 = (X+Db)^2 + Y^2
=> 2YDa + Da^2 = 2XDb + Db^2 (I)
and denoting cos(pi/3)*Dc as c1 and cos(pi/6)*Dc as c2:
|(X, Y + Da)|^2 = |(X - c1, Y - c2)|^2
=> X^2 + Y^2 + 2YDa + Da^2 = X^2 - 2Xc1 + c1^2 + Y^2 - 2Yc2 + c2^2
=> 2YDa + Da^2 = - 2Xc1 + c1^2 - 2Yc2 + c2^2
=> Y = (-2Xc1 + c1^2 + c2^2 - Da^2) / 2(c2+Da) (II)
Putting (II) back in the equation (I) we get:
=> (-2Xc1 + c1^2 + c2^2 - Da^2) Da / (c2+Da) + Da^2 = 2XDb + Db^2
=> (-2Xc1 + c1^2 + c2^2 - Da^2) Da + Da^2 * (c2+Da) = 2XDb(c2+Da) + Db^2 * (c2+Da)
=> (-2Xc1 + c1^2 + c2^2) Da + Da^2 * c2 = 2XDb(c2+Da) + Db^2 * (c2+Da)
=> X = ((c1^2 + c2^2) Da + Da^2 * c2 - Db^2 * (c2+Da)) / (2Dbc2 + 2Db*Da + 2Dac1) (III)
Knowing X you can get Y by calculating (II).
You can also make some simplifications, e.g. c1^2 + c2^2 = Dc^2
Putting this into Python (almost Pseudocode):
import math
def GetXYR(Da, Db, Dc):
c1 = math.cos(math.pi/3) * Dc
c2 = math.cos(math.pi/6) * Dc
X = ((c1**2 + c2**2) * Da + Da**2 * c2 - Db * Db * (c2 + Da)) / (2 * Db * c2 + 2 * Db * Da + 2 * Da * c1)
Y = (-2*X*c1 + c1**2 + c2**2 - Da**2) / (2*(c2+Da))
R = math.sqrt(X**2 + (Y+Da)**2)
R2 = math.sqrt(Y**2 + (X+Db)**2)
R3 = math.sqrt((X - math.cos(math.pi/3) * Dc)**2 + (Y - math.cos(math.pi/6) * Dc)**2)
return (X, Y, R, R2, R3)
(X, Y, R, R2, R3) = GetXYR(123.0, 114.0, 89.0)
print((X, Y, R, R2, R3))
I get the result (X, Y, R, R2, R3) = (-8.129166703588021, -16.205081335032794, 107.1038654949096, 107.10386549490958, 107.1038654949096)
Which seems reasonable if both Da and Db are longer than Dc, then both coordinates are probably negative.
I calculated the Radius from three equations to cross check whether my calculation makes sense. It seems to fulfill all three equations we set up in the beginning.
Your problem is know a "circumscribed circle". You have a triangle define by 3 distances at given angles from your robot position, then you can construct the circumscribed circle from these three points (see Circumscribed circle from Wikipedia - section "Other properties"). So you know the diameter (if needed).
It is also known that the meeting point of perpendicular bisector of triangle sides is the center of the circumscribed circle.
Let's a=Da, b=Db. The we can write a system for points A and B at the circumference:
(x+b)^2 + y^2 = r^2
(y+a)^2 + x^2 = r^2
After transformations we have quadratic equation
y^2 * (4*b^2+4*a^2) + y * (4*a^3+4*a*b^2) + b^4-4*b^2*r^2+a^4+2*a^2*b^2 = 0
or
AA * y^2 + BB * y + CC = 0
where coefficients are
AA = (4*b^2+4*a^2)
BB = (4*a^3+4*a*b^2)
CC = b^4-4*b^2*r^2+a^4+2*a^2*b^2
So calculate AA, BB, CC coefficients, find solutions y1,y2 of quadratic eqiation, then get corresponding x1, x2 values using
x = (a^2 - b^2 + 2 * a * y) / (2 * b)
and choose real solution pair (where coordinate is inside the circle)
Quick checking:
a=1,b=1,r=1 gives coordinates 0,0, as expected (and false 1,-1 outside the circle)
a=3,b=4,r=5 gives coordinates (rough) 0.65, 1.96 at the picture, distances are about 3 and 4.
Delphi code (does not check all possible errors) outputs x: 0.5981 y: 1.9641
var
a, b, r, a2, b2: Double;
aa, bb, cc, dis, y1, y2, x1, x2: Double;
begin
a := 3;
b := 4;
r := 5;
a2 := a * a;
b2:= b * b;
aa := 4 * (b2 + a2);
bb := 4 * a * (a2 + b2);
cc := b2 * b2 - 4 * b2 * r * r + a2 * a2 + 2 * a2 * b2;
dis := bb * bb - 4 * aa * cc;
if Dis < 0 then begin
ShowMessage('no solutions');
Exit;
end;
y1 := (- bb - Sqrt(Dis)) / (2 * aa);
y2 := (- bb + Sqrt(Dis)) / (2 * aa);
x1 := (a2 - b2 + 2 * a * y1) / (2 * b);
x2 := (a2 - b2 + 2 * a * y2) / (2 * b);
if x1 * x1 + y1 * y1 <= r * r then
Memo1.Lines.Add(Format('x: %6.4f y: %6.4f', [x1, y1]))
else
if x2 * x2 + y2 * y2 <= r * r then
Memo1.Lines.Add(Format('x: %6.4f y: %6.4f', [x2, y2]));
From your diagram you have point P that you need it's X & Y coordinate. So we need to find Px and Py or (Px,Py). We know that Ax = Px and By = Py. We can use these for substitution if needed. We know that C & P create a line and all lines have slope in the form of y = mx + b. Where the slope is m and the y intercept is b. We don't know m or b at this point but they can be found. We know that the angle of between two vectors where the vectors are CP and PB gives an angle of 120°, but this does not put the angle in standard position since this is a CW rotation. When working with circles and trig functions along with linear equations of slope within them it is best to work in standard form. So if this line of y = mx + b where the points C & P belong to it the angle above the horizontal line that is parallel to the horizontal axis that is made by the points P & B will be 180° - 120° = 60° We also know that the cos angle between two vectors is also equal to the dot product of those vectors divided by the product of their magnitudes.
We don't have exact numbers yet but we can construct a formula: Since theta = 60° above the horizontal in the standard position we know that the slope m is also the tangent of that angle; so the slope of this line is tan(60°). So let's go back to our linear equation y = tan(60°)x + b. Since b is the y intercept we need to find what x is when y is equal to 0. Since we still have three undefined variables y, x, and b we can use the points on this line to help us here. We know that the points C & P are on this line. So this vector of y = tan(60°)x + b is constructed from (Px, Py) - (Cx, Cy). The vector is then (Px-Cx, Py-Cy) that has an angle of 60° above the horizontal that is parallel to the horizontal axis. We need to use another form of the linear equation that involves the points and the slope this time which happens to be y - y1 = m(x - x1) so this then becomes y - Py = tan(60°)(x - Px) well I did say earlier that we could substitute so let's go ahead and do that: y - By = tan(60°)(x - Ax) then y - By = tan(60°)x - tan(60°)Ax. And this becomes known if you know the actual coordinate points of A & B. The only thing here is that you have to convert your angle of 120° to standard form. It all depends on what your known and unknowns are. So if you need P and you have both A & B are known from your diagram the work is easy because the points you need for P will be P(Ax,By). And since you already said that you know Da, Db & Dc with their lengths then its just a matter of apply the correct trig functions with the proper angle and or using the Pythagorean Theorem to find the length of another leg of the triangle. It shouldn't be all that hard to find what P(x,y) is from the other points. You can use the trig functions, linear equations, the Pythagorean theorem, vector calculations etc. If you can find the equation of the line that points C & P knowing that P has A's x value and has B's y value and having the slope of that line that is defined by the tangent above the horizontal which is 180° - phi where phi is the angle you are giving that is CW rotation and theta would be the angle in standard position or above the horizontal you have a general form of y - By = tan(180° - phi)(x - Ax) and from this equation you can find any point on that line.
There are other methods such as using the existing points and the vectors that they create between each other and then generate an equilateral triangle using those points and then from that equilateral if you can generate one, you can use the perpendicular bisectors of that triangle to find the centroid of that triangle. That is another method that can be done. The only thing you may have to consider is the linear translation of the line from the origin. Thus you will have a shift in the line of (Ax - origin, By - origin) and to find one set the other to 0 and vise versa. There are many different methods to find it.
I just showed you several mathematical techniques that can help you to find a general equation based on your known(s) and unknown(s). It just a matter of recognizing which equations work in which scenario. Once you recognize the correct equations for the givens; the rest is fairly easy. I hope this helps you.
EDIT
I did forget to mention one thing; and that is the line of CP has a point on the edge of the circle defined by (cos(60°), sin(60°)) in the 1st quadrant. In the third quadrant you will have a point on this line and the circle defined by (-cos(60°), -sin(60°)) provided that this line goes through the origin (0,0) where there is no y nor x intercepts and if this is the case then the point on the circle at either end and the origin will be the radius of that circle.

Cone from direction vector

I have a normalized direction vector (from a 3d position to a light position) and I would like this vector to be rotated by some angle so I can create a "cone".
Id like to simulate cone tracing by using the direction vector as the center of the cone and create an X number of samples to create more rays to sample from.
What I would like to know is basically the math behind:
https://docs.unrealengine.com/latest/INT/BlueprintAPI/Math/Random/RandomUnitVectorinCone/index.html
Which seems to do exactly what Im looking for.
1) Make arbitrary vector P, perpendicular to your direction vector D.
You can choose component with max magnitude, exchange it with middle-magnitude component, negate it, and make min magnitude component zero.
For example, if z- component is maximal and y-component is minimal, you may make such P:
D = (dx, dy, dz)
p = (-dz, 0, dx)
P = Normalize(p) //unit vector
2) Make vector Q perpendicular both D and P through vector product:
Q = D x P //unit vector
3) Generate random point in the PQ plane disk
RMax = Tan(Phi) //where Phi is cone angle
Theta = Random(0..2*Pi)
r = RMax * Sqrt(Random(0..1))
V = r * (P * Cos(Theta) + Q * Sin(Theta))
4) Normalize vector V
Note that distribution of vectors is slightly non-uniform on the sphere segment.(it is uniform on the plane disk). There are methods to generate uniform distribution on the sphere but some work needed to apply them to segment (my first attempt before edit was wrong).
Edit: Modification to make sphere-uniform distribution (not checked thoroughly)
RMax = Tan(Phi) //where Phi is cone angle
Theta = Random(0..2*Pi)
u = Random(Cos(Phi)..1)
r = RMax * Sqrt(1 - u^2)
V = r * (P * Cos(Theta) + Q * Sin(Theta))

Calculating the Coordinates of a Regular Polygon Given Its Center and its side length

I was wondering how to calculate the coordinates of a regular polygon given its center and its side length. I came up with a method for the square already, but I am looking for something that could be applicable to other regular polygons.
Question is poor formulated. But let's assume that the most right edge of regular polygon is vertical. N is number of edges, L is side length. All vertices lie at circle with center given (CX, CY). Radius of this circle:
R = L / (2 * Sin(Pi / N))
I'th vertice of regular N-gon has coordinates:
i = 0..N-1
X[i] = CX + R * Cos(Pi/N * (1 + 2 * i))
Y[i] = CY + R * Sin(Pi/N * (1 + 2 * i))

Resources