Proof of a theorem using induction - functional-programming

Consider the statement: The last digit of n^5 is equal to the last digit of n. This is equivalent to saying n^ 5 mod 10 = n mod 1 . The proof for this is rather simple, the steps are
Proof 1
The last digit of n^5 can only be affected by the last digit n, as the first digit of any power n is only affected by the one digit of n. In this case, it becomes a matter of 'Prood by cases' where you only have to prove it for 0-9
0^5 = 0 , 1^5 = 1, 2^5 = 32 etc..
Alternatively,
Proof 2
This is also equvalent to saying, n^5−n is divisible by 10 . By induction:
if n=0, this is obviously true.
3.1) Assume correct for n
3.2)
(n+1)^5-(n+1) = n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1 - (n+1) =n^5 - n + 10(n^3+n^2) +5n(n^3+1) is divisible by 10
This then has 3 subgoals.
3.3.1) Prove n^5 - n is divisble by 10, by induction
3.3.2) 10(n^3+n^2) is oobviously divisible by 10
3.3.3) prove that 5n(n^3+1) is divisible by 10. which is the same as showing n(n^3+1) is divisible by 2.
confusion
I have been attempting to complete this proof in Isabelle for weeks now. I have gone through the documentation and consulted colleagues, however, one way or another, no matter which way I frame the proof in Isabelle, I am unable to prove it.
For example, consider
theorem "(n::nat) ^ 5 mod 10 = n mod 10"
proof (induct n)
case 0
show "(0::nat)^5 mod 10 = 0 mod 10" by simp
next
case (Suc n)
hence"n^5 mod 10 = n mod 10" by assumption
have "Suc n = n+1" by simp
have "(n+1)^5-(n+1) = n^5+5*n^4+10*n^3+10*n^2+5*n+1-(n+1)"
also have "... = n^5+5*n^4+10*n^3+10*n^2+5*n+1-(n+1)"
also have "(Suc n)^5 mod 10 = (n+1)^5 mod 10"
thus "(Suc n)^5 mod 10 = (Suc n) mod 10" sorry
qed

This question is part of an assessed coursework exercise that is currently active at Imperial College London. I'd really appreciate it if folks could hold off answering this question until February or so, to give the students taking the course the opportunity to complete it themselves.
That said, if you have a question that is more specific than "I'm unable to prove it" (e.g. "What does this particular error message mean?"), I'd be delighted to help.

Related

How to analyze if-expressions in assumptions?

I'm trying to prove the following lemma:
lemma if_assumption: "(if a = 1 then 2 else 3) = 2 ⟹ a = 1"
apply (cases "a = 1")
apply simp_all
After simplification I get the following formula:
3 = 2 ⟹ a ≠ 1 ⟹ False
The result of if-expression equals 2 iff a equals 1. So, I guess that I can deduce this fact somehow.
How to prove this lemma?
Your statement is not correct as you wrote it down. Numbers in Isabelle are polymorphic by default (you can check that by hovering over the numbers while pressing Ctrl). There might be a number type for which 3 = 2 holds (e.g. the finite field {0,1,2}). In that case, a may not be equal to 1.
If instead you fix the number type:
lemma if_assumption: "(if a = 1 then 2 else 3) = (2::nat) ⟹ a = 1"
the proof script you wrote goes through. Or shorter:
apply (auto split: if_splits)
... which tells the system to split the if _ then _ else _ into two subgoals.

last digit of a^b^c

I've got stuck on this problem :
Given a, b and c three
natural numbers (such that 1<= a, b, c <= 10^9), you are supposed to find the last digit of the number a^b^c."
What I've firstly thought was the O(log n) algorithm for raising a at power n.
int acc=1; //accumulator
while(n>0) {
if(n%2==1)
acc*=a;
a=a*a;
n/=2;
}
Obviously, some basic math might help, like the "last digit" stuff :
Last_digit(2^n) = Last_digit(2^(n%4))
Where n%4 is the remainder of the division n/4
In a nutshell, I've tried to combine these, but I couldn't get on the good way.
Some help would really be apreciated.
The problem is that b^c may be very large. So you want to reduce it before using the standard modular exponentiation.
You can remark that a^(b^c) MOD 10 can have a maximum of 10 different values.
Because of the pigeonhole principle, there will be a number p such that for some r:
a^r MOD 10 = a^(p+r) MOD 10
p <= 10
r <= 10
This implies that for any q:
a^r MOD 10 = a^r*a^p MOD 10
= (a^r*a^p)*a^p MOD 10
= ...
= a^(r+q*p) MOD 10
For any n = s+r+q*p, with s < p you have:
a^n MOD 10 = a^s*a^(r+q*p) MOD 10
= a^s*a^r MOD 10
= a^((n-r) MOD p)*a^r MOD 10
You can just replace n= (b^c) in the previous equation.
You will only compute (b^c-r) MOD p where p <= 10 which is easily done and then compute a^((b^c-r) MOD p)*a^r MOD 10.
Like I mentioned in my comments, this really doesn't have much to do with smart algorithms. The problem can be reduced completely using some elementary number theory. This will yield an O(1) algorithm.
The Chinese remainder theorem says that if we know some number x modulo 2 and modulo 5, we know it modulo 10. So finding a^b^c modulo 10 can be reduced to finding a^b^c modulo 2 and a^b^c modulo 5. Fermat's little theorem says that for any prime p, if p does not divide a, then a^(p-1) = 1 (mod p), so a^n = a^(n mod (p-1)) (mod p). If p does divide a, then obviously a^n = 0 (mod p) for any n > 0. Note that x^n = x (mod 2) for any n>0, so a^b^c = a (mod 2).
What remains is to find a^b^c mod 5, which reduces to finding b^c mod 4. Unfortunately, we can use neither the Chinese remainder theorem, nor Fermat's little theorem here. However, mod 4 there are only 4 possibilities for b, so we can check them separately. If we start with b = 0 (mod 4) or b = 1 (mod 4), then of course b^c = b (mod 4). If we have b = 2 (mod 4) then it is easily seen that b^c = 2 (mod 4) if c = 1, and b^c = 0 (mod 4) if c > 1. If b = 3 (mod 4) then b^c = 3 if c is even, and b^c = 1 if c is odd. This gives us b^c (mod 4) for any b and c, which then gives us a^b^c (mod 5), all in constant time.
Finally with a^b^c = a (mod 2) we can use the Chinese remainder theorem to find a^b^c (mod 10). This requires a mapping between (x (mod 2), y (mod 5)) and z (mod 10). The Chinese remainder theorem only tells us that this mapping is bijective, it doesn't tell us how to find it. However, there are only 10 options, so this is easily done on a piece of paper or using a little program. Once we find this mapping we simply store it in an array, and we can do the entire calculation in O(1).
By the way, this would be the implementation of my algorithm in python:
# this table only needs to be calculated once
# can also be hard-coded
mod2mod5_to_mod10 = [[0 for i in range(5)] for j in range(2)]
for i in range(10):
mod2mod5_to_mod10[i % 2][i % 5] = i
[a,b,c] = [int(input()) for i in range(3)]
if a % 5 == 0:
abcmod5 = 0
else:
bmod4 = b % 4
if bmod4 == 0 or bmod4 == 1:
bcmod4 = bmod4
elif bmod4 == 2:
if c == 1:
bcmod4 = 2
else:
bcmod4 = 0
else:
if c % 2 == 0:
bcmod4 = 1
else:
bcmod4 = 3
abcmod5 = ((a % 5)**bcmod4) % 5
abcmod2 = a % 2
abcmod10 = mod2mod5_to_mod10[abcmod2][abcmod5]
print(abcmod10)

How to prove 3n + 2log n = O(n)

How would I be able to prove 3n + 2log n = O(n) using the definition of big-O?
The C is supposedly 6, & the k is 1, but I have no idea how that is found. Much help will greatly be appreciated.
To formally prove this result, you need to find a choice of n0 and c such that
For any n ≥ n0: 3n + 2log n ≤ cn
To start this off, note that if you have any n ≥ 1, then log n < n. Consequently, if you consider any n ≥ 1, you have that
3n + 2log n < 3n + 2n = 5n
Consequently, if you pick n0 = 1 and c = 5, you have that
For any n ≥ n0: 3n + 2log n < 3n + 2n = 5n ≤ cn
And therefore 3n + 2 log n = O(n).
More generally, when given problems like these, try identifying the dominant term (here, the n term) and trying to find some choice of n0 such that the non-dominant terms are overwhelmed by the dominant term. Once you've done this, all that's left to do is choose the right constant c.
Hope this helps!
Wild guess (your question is quite unclear): the task is to show that
O(3n + 2log n) = O(n)
Now that's how it comes out: n -> n grows faster than n -> log n, and since the complexity is asymptotic, only the fastest-growing term matters, which is n in this case.
You can prove the following if I remember correctly:
if f1(n)=O(g1(n)), f2(n)=O(g2(n)) then f1(n)+f2(n)=O(max{g1(n),g2(n)}).
From there it's pretty straight forward.

How to implement c=m^e mod n for enormous numbers?

I'm trying to figure out how to implement RSA crypto from scratch (just for the intellectual exercise), and i'm stuck on this point:
For encryption, c = me mod n
Now, e is normally 65537. m and n are 1024-bit integers (eg 128-byte arrays). This is obviously too big for standard methods. How would you implement this?
I've been reading a bit about exponentiation here but it just isn't clicking for me:
Wikipedia-Exponentiation by squaring
This Chapter (see section 14.85)
Thanks.
edit: Also found this - is this more what i should be looking at? Wikipedia- Modular Exponentiation
Exponentiation by squaring:
Let's take an example. You want to find 1723. Note that 23 is 10111 in binary. Let's try to build it up from left to right.
// a exponent in binary
a = 17 //17^1 1
a = a * a //17^2 10
a = a * a //17^4 100
a = a * 17 //17^5 101
a = a * a //17^10 1010
a = a * 17 //17^11 1011
a = a * a //17^22 10110
a = a * 17 //17^23 10111
When you square, you double the exponent (shift left by 1 bit). When you multiply by m, you add 1 to the exponent.
If you want to reduce modulo n, you can do it after each multiplication (rather than leaving it to the end, which would make the numbers get very large).
65537 is 10000000000000001 in binary which makes all of this pretty easy. It's basically
a = m
repeat 16 times:
a = a * a
a = a mod n
a = a * m
a = a mod n
where of course a, n and m are "big integers". a needs to be at least 2048 bits as it can get as large as (n-1)2.
For an efficient algorithm you need to combine the exponentiation by squaring with repeated application of mod after each step.
For odd e this holds:
me mod n = m ⋅ me-1 mod n
For even e:
me mod n = (me/2 mod n)2 mod n
With m1 = m as a base case this defines a recursive way to do efficient modular exponentiation.
But even with an algorithm like this, because m and n will be very large, you will still need to use a type/library that can handle integers of such sizes.
result = 1
while e>0:
if (e & 1) != 0:
result = result * m
result = result mod n
m = m*m
m = m mod n
e = e>>1
return result
This checks bits in the exponent starting with the least significant bit. Each time we move up a bit it corresponds to doubling the power of m - hence we shift e and square m. The result only gets the power of m multiplied in if the exponent has a 1 bit in that position. All multiplications need to be reduced mod n.
As an example, consider m^13. 11 = 1101 in binary. so this is the same as m^8 * m^4 * m. Notice the powers 8,4,(not 2),1 which is the same as the bits 1101. And then recall that m^8 = (m^4)^2 and m^4 = (m^2)^2.
If g(x) = x mod 2^k is faster to calculate for your bignum library than f(x) = x mod N for N not divisible by 2, then consider using Montgomery multiplication. When used with modular exponentiation, it avoids having to calculate modulo N at each step, you just need to do the "Montgomeryization" / "un-Montgomeryization" at the beginning and end.

Can someone explain Mathematical Induction (to prove a recursive method)

Can someone explain mathematical induction to prove a recursive method? I am a freshmen computer science student and I have not yet taken Calculus (I have had up through Trig). I kind of understand it but I have trouble when asked to write out an induction proof for a recursive method.
Here is a explanation by example:
Let's say you have the following formula that you want to prove:
sum(i | i <- [1, n]) = n * (n + 1) / 2
This formula provides a closed form for the sum of all integers between 1 and n.
We will start by proving the formula for the simple base case of n = 1. In this case, both sides of the formula reduce to 1. This in turn means that the formula holds for n = 1.
Next, we will prove that if the formula holds for a value n, then it holds for the next value of n (or n + 1). In other words, if the following is true:
sum(i | i <- [1, n]) = n * (n + 1) / 2
Then the following is also true:
sum(i | i <- [1, n + 1]) = (n + 1) * (n + 2) / 2
To do so, let's start with the first side of the last formula:
s1 = sum(i | i <- [1, n + 1]) = sum(i | i <- [1, n]) + (n + 1)
That is, the sum of all integers between 1 and n + 1 is equal to the sum of integers between 1 and n, plus the last term n + 1.
Since we are basing this proof on the condition that the formula holds for n, we can write:
s1 = n * (n + 1) / 2 + (n + 1) = (n + 1) * (n + 2) / 2 = s2
As you can see, we have arrived at the second side of the formula we are trying to prove, which means that the formula does indeed hold.
This finishes the inductive proof, but what does it actually mean?
The formula is correct for n = 0.
If the formula is correct for n, then it is correct for n + 1.
From 1 and 2, we can say: if the formula is correct for n = 0, then it is correct for 0 + 1 = 1. Since we proved the case of n = 0, then the case of n = 1 is indeed correct.
We can repeat this above process again. The case of n = 1 is correct, then the case of n = 2 is correct. This reasoning can go ad infinitum; the formula is correct for all integer values of n >= 1.
induction != Calc!!!
I can get N guys drunk with 10*N beers.
Base Case: 1 guy
I can get one guy drunk with 10 beers
Inductive step, given p(n) prove p(n + 1)
I can get i guys drunk with 10 * i beers, if I add another guy, I can get him drunk with 10 more beers. Therefore, I can get i + 1 guys drunk with 10 * (i + 1) beers.
p(1) -> p(i + 1) -> p(i + 2) ... p(inf)
Discrete Math is easy!
First, you need a base case. Then you need an inductive step that holds true for some step n. In your inductive step, you will need an inductive hypothesis. That hypothesis is the assumption that you needed to have made. Finally, use that assumption to prove step n+1

Resources