Creating a large integer in Julia - julia

I am learning Julia and I would like to create an object in Julia that contains just a single large integer, for example, 1100000. What I could do is write n = 1.1e6 but then the type of this object is Float64 and if I want to use it as an argument for rand(), I get an error message because the object is not an integer. So instead what I do is as follows.
n = Int64(1.1e6)
rand(n)
But it seems that I am changing the type of the variable here (from Float64 to Int64) and this should be avoided in Julia as far as I understand. Of course I could use n = 1100000 but this is inefficient and difficult to read in my opinion.
Am I changing the type of the variable here? If yes, is this a good way to change the type of the variable or is there a better way to create an integer using scientific notation without having to change the type of the variable?
Any help is much appreciated!

I would write it as:
n = 1_100_000
for me it is more readable than
n = Int(1.1e6)
(or even 1.1e6) but of course it is subjective.
Changing type like in Int(1.1e6) is not a problem in Julia. It will work, as long as passed float represents an integer (otherwise you will get InexactError error).

Related

TensorFlow variable float64 and float32

I am a new to TensorFlow 1.8 and i am using it with R.
I am trying to create a variable float32.
t <- array(0, dim = 3600000)
TF_t <- tf$Variable(t,tf$float32,name="t")
But TensorFlow saves TF_t as a tf$float64.
TF_t
<tf.Variable 't:0' shape=(3600000,) dtype=float64_ref>
I know that the easy solution is tf$cast(TF_t,tf$float32), but i would like a solution that doesn't use cast and I would like to know why do i have this behavior.
There is no workaround to cast, but, why this behaviour is there is due to the fact that you decide on a default type for a tensor, in this float64, it is implicitly set in its constructor. Also, losses do need 64 bits most of the time given how much they vary and how low they can go.
As for the cast operation, it is actually the explicit setting of the type.

Converting a Gray-Scale Array to a FloatingPoint-Array

I am trying to read a .tif-file in julia as a Floating Point Array. With the FileIO & ImageMagick-Package I am able to do this, but the Array that I get is of the Type Array{ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}},2}.
I can convert this FixedPoint-Array to Float32-Array by multiplying it with 255 (because UInt8), but I am looking for a function to do this for any type of FixedPointNumber (i.e. reinterpret() or convert()).
using FileIO
# Load the tif
obj = load("test.tif");
typeof(obj)
# Convert to Float32-Array
objNew = real.(obj) .* 255
typeof(objNew)
The output is
julia> using FileIO
julia> obj = load("test.tif");
julia> typeof(obj)
Array{ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}},2}
julia> objNew = real.(obj) .* 255;
julia> typeof(objNew)
Array{Float32,2}
I have been looking in the docs quite a while and have not found the function with which to convert a given FixedPoint-Array to a FloatingPont-Array without multiplying it with the maximum value of the Integer type.
Thanks for any help.
edit:
I made a small gist to see if the solution by Michael works, and it does. Thanks!
Note:I don't know why, but the real.(obj) .* 255-code does not work (see the gist).
Why not just Float32.()?
using ColorTypes
a = Gray.(convert.(Normed{UInt8,8}, rand(5,6)));
typeof(a)
#Array{ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}},2}
Float32.(a)
The short answer is indeed the one given by Michael, just use Float32.(a) (for grayscale). Another alternative is channelview(a), which generally performs channel separation thus also stripping the color information from the array. In the latter case you won't get a Float32 array, because your image is stored with 8 bits per pixel, instead you'll get an N0f8 (= FixedPointNumbers.Normed{UInt8,8}). You can read about those numbers here.
Your instinct to multiply by 255 is natural, given how other image-processing frameworks work, but Julia has made some effort to be consistent about "meaning" in ways that are worth taking a moment to think about. For example, in another programming language just changing the numerical precision of an array:
img = uint8(255*rand(10, 10, 3)); % an 8-bit per color channel image
figure; image(img)
imgd = double(img); % convert to double-precision, but don't change the values
figure; image(imgd)
produces the following surprising result:
That second "all white" image represents saturation. In this other language, "5" means two completely different things depending on whether it's stored in memory as a UInt8 vs a Float64. I think it's fair to say that under any normal circumstances, a user of a numerical library would call this a bug, and a very serious one at that, yet somehow many of us have grown to accept this in the context of image processing.
These new types arise because in Julia we've gone to the effort to implement new numerical types (FixedPointNumbers) that act like fractional values (e.g., between 0 and 1) but are stored internally with the same bit pattern as the "corresponding" UInt8 (the one you get by multiplying by 255). This allows us to work with 8-bit data and yet allow values to always be interpreted on a consistent scale (0.0=black, 1.0=white).

How to check if a variable is scalar in julia

I would like to check if a variable is scalar in julia, such as Integer, String, Number, but not AstractArray, Tuple, type, struct, etc. Is there a simple method to do this (i.e. isscalar(x))
The notion of what is, or is not a scalar is under-defined without more context.
Mathematically, a scalar is defined; (Wikipedia)
A scalar is an element of a field which is used to define a vector space.
That is to say, you need to define a vector space, based on a field, before you can determine if something is, or is not a scalar (relative to that vector space.).
For the right vector space, tuples could be a scalar.
Of-course we are not looking for a mathematically rigorous definition.
Just a pragmatic one.
Base it off what Broadcasting considers to be scalar
I suggest that the only meaningful way in which a scalar can be defined in julia, is of the behavior of broadcast.
As of Julia 1:
using Base.Broadcast
isscalar(x::T) where T = isscalar(T)
isscalar(::Type{T}) where T = BroadcastStyle(T) isa Broadcast.DefaultArrayStyle{0}
See the docs for Broadcast.
In julia 0.7, Scalar is the default. So it is basically anything that doesn't have specific broadcasting behavior, i.e. it knocks out things like array and tuples etc.:
using Base.Broadcast
isscalar(x::T) where T = isscalar(T)
isscalar(::Type{T}) where T = BroadcastStyle(T) isa Broadcast.Scalar
In julia 0.6 this is a bit more messy, but similar:
isscalar(x::T) where T = isscalar(T)
isscalar(::Type{T}) where T = Base.Broadcast._containertype(T)===Any
The advantage of using the methods for Broadcast to determine if something is scalar, over using your own methods, is that anyone making a new type that is going to act in a scalar way must make sure it works with those methods correctly
(or actually nonscalar since scalar is the default.)
Structs are not not scalar
That is to say: sometimes structs are scalar and sometimes they are not and it depends on the struct.
Note however that these methods do not consider struct to be non-scalar.
I think you are mistaken in your desire to.
Julia structs are not (necessarily or usually) a collection type.
Consider that: BigInteger, BigFloat, Complex128 etc etc
are all defined using structs
I was tempted to say that having a start method makes a type nonscalar, but that would be incorrect as start(::Number) is defined.
(This has been debated a few times)
For completeness, I am copying Tasos Papastylianou's answer from the comments to here. If all you want to do is distinguish scalars from arrays you can use:
isa(x, Number)
This will output true if x is a Number (like a float or an int), and output false if x is an Array (vector, matrix, etc.)
I found myself needing to capture the notion of if something was scalar or not recently in MultiResolutionIterators.jl.
I found the boardcasting based rules from the other answer,
did not meet my needs.
In particular I wanted to consider strings as nonscalar.
I defined a trait,
bases on method_exists(start, (T,)),
with some exceptions as mentioned e.g. for Number.
abstract type Scalarness end
struct Scalar <: Scalarness end
struct NotScalar <: Scalarness end
isscalar(::Type{Any}) = NotScalar() # if we don't know the type we can't really know if scalar or not
isscalar(::Type{<:AbstractString}) = NotScalar() # We consider strings to be nonscalar
isscalar(::Type{<:Number}) = Scalar() # We consider Numbers to be scalar
isscalar(::Type{Char}) = Scalar() # We consider Sharacter to be scalar
isscalar(::Type{T}) where T = method_exists(start, (T,)) ? NotScalar() : Scalar()
Something similar is also done by AbstractTrees.jl
isscalar(x) == applicable(start, x) && !isa(x, Integer) && !isa(x, Char) && !isa(x, Task)

Subtype with different parameter than supertype

Let's say I have defined a Type merely as a alias for a certain array in Julia but with additional information, let's say just a string
abstract A{T,N}
foo::AbstractArray{T,N}
bar::Real
end
I would like to define a Subtype having maybe another element but also restricting the second parameter of the type to be an integer and having a value of N+1 if B is of type N.
type B{N::Int} <: A{T,N+1}
baz::Float64
end
In this example neither ::Int nor N+1 seem to be right nor are they syntactically. I'm a little new to Julia but I read a lot the last days and couldn't find a solution for that.
How can I do such a “restricted” subtype?
Edit: Maybe there's even another glitch. For the supertype N should be able to be a vector specifying the size of foo while for the subtype it should be an integer specifying the length of the vector.
Edit 2: I meant to use an abstract A which I edited now as mentioned in the comments
Edit 3: So I think one problem seems to be, that abstract types can not have fields (which I don't understand why but anyhow), then still I can't declare Type parameters to be e.g. just an Integer.
So how can I do something like
abstract A{T,N}
type B{N::Integer} <: A{Float64,N+1}
v:FixedVector{N+1,Float64}
end
I always get the problem, that N always (no matter what I do) stays a Typevar while I would like to just have an Integer. So is there a way to make a type dependent on a variable?

How to use a vector as a type parameter in Julia

This is similar to my previous question, but a bit more complicated.
Before I was defining a type with an associated integer as a parameter, Intp{p}. Now I would like to define a type using a vector as a parameter.
The following is the closest I can write to what I want:
type Extp{g::Vector{T}}
c::Vector{T}
end
In other words, Extp should be defined with respect to a Vector, g, and I want the contents, c, to be another Vector, whose entries should be the of the same type as the entries of g.
Well, this does not work.
Problem 1: I don't think I can use :: in the type parameter.
Problem 2: I could work around that by making the types of g and c arbitary and just making sure the types in the vectors match up in the constructor. But, even if I completely take everything out and use
type Extp{g}
c
end
it still doesn't seem to like this. When I try to use it the way I want to,
julia> Extp{[1,1,1]}([0,0,1])
ERROR: type: apply_type: in Extp, expected Type{T<:Top}, got Array{Int64,1}
So, does Julia just not like particular Vectors being associated with types? Does what I'm trying to do only work with integers, like in my Intp question?
EDIT: In the documentation I see that type parameters "can be any type at all (or an integer, actually, although here it’s clearly used as a type)." Does that mean that what I'm asking is impossible, and that that only types and integers work for Type parameters? If so, why? (what makes integers special over other types in Julia in this way?)
In Julia 0.4, you can use any "bitstype" as a parameter of a type. However, a vector is not a bitstype, so this is not going to work. The closest analog is to use a tuple: for example, (3.2, 1.5) is a perfectly valid type parameter.
In a sense vectors (or any mutable object) are antithetical to types, which cannot change at runtime.
Here is the relevant quote:
Both abstract and concrete types can be parameterized by other types
and by certain other values (currently integers, symbols, bools, and
tuples thereof).
So, your EDIT is correct. Widening this has come up on the Julia issues page (e.g., #5102 and #6081 were two related issues I found with some discussion), so this may change in the future - I'm guessing not in v0.4 though. It'd have to be an immutable type really to make any sense, so not Vector. I'm not sure I understand your application, but would a Tuple work?

Resources