Random effects (more than one) in multinomial regression in R (mblogit) - r

I'm trying to run a multinomial regression for the first time. I am attempting to build the code based on a built-in dataset, but I'm having trouble getting it to do what I need. I want to run a model with random effects only.
Here is the code with one random effect which I think is fine:
library(MASS)
library(mlogit)
house.mblogit1 <- mblogit(Sat ~ 1, random=~1|Infl, maxit=1000, estimator = "REML",data = housing)
However, I can't find an example of how to add another random effect (e.g., Type). I tried it and I can't figure out the syntax. Both these are wrong apparently:
house.mblogit2 <- mblogit(Sat ~ 1, random=~1|Infl+ ~1|Type, data = housing)
house.mblogit3 <- mblogit(Sat ~ 1, random=~1|Infl+Type, data = housing)
Error: Invalid random formula
Is it even possible to do it?

Related

ggcoef_model error when two random intercepts

When trying to graph the conditional fixed effects of a glmmTMB model with two random intercepts in GGally I get the error:
There was an error calling "tidy_fun()". Most likely, this is because the
function supplied in "tidy_fun=" was misspelled, does not exist, is not
compatible with your object, or was missing necessary arguments (e.g. "conf.level=" or "conf.int="). See error message below.
Error: Error in "stop_vctrs()":
! Can't recycle "..1" (size 3) to match "..2" (size 2).`
I have tinkered with figuring out the issue and it seems to be related to the two random intercepts included in the model. I have also tried extracting the coefficient and standard error information separately through broom.mixed::tidy and then feeding the data frame into GGally:ggcoef() with no avail. Any suggestions?
# Example with built-in randu data set
data(randu)
randu$A <- factor(rep(c(1,2), 200))
randu$B <- factor(rep(c(1,2,3,4), 100))
# Model
test <- glmmTMB(y ~ x + z + (0 +x|A) + (1|B), family="gaussian", data=randu)
# A few of my attempts at graphing--works fine when only one random effects term is in model
ggcoef_model(test)
ggcoef_model(test, tidy_fun = broom.mixed::tidy)
ggcoef_model(test, tidy_fun = broom.mixed::tidy, conf.int = T, intercept=F)
ggcoef_model(test, tidy_fun = broom.mixed::tidy(test, effects="fixed", component = "cond", conf.int = TRUE))
There are some (old!) bugs that have recently been fixed (here, here) that would make confidence interval reporting on RE parameters break for any model with multiple random terms (I think). I believe that if you are able to install updated versions of both glmmTMB and broom.mixed:
remotes::install_github("glmmTMB/glmmTMB/glmmTMB#ci_tweaks")
remotes::install_github("bbolker/broom.mixed")
then ggcoef_model(test) will work.

Strange glmulti results: Why are interaction variables from the candidate model dropped/not included?

I have been using glmulti to obtain model averaged estimates and relative importance values for my variables of interest. In running glmulti I specified a candidate model for which all variables and interactions were included based on a priori knowledge (see code below).
After running the glmutli model I studied the results by using the functions summary() and weightable(). There seem to be a number of strange things going on with the results which I do not understand.
First of all, when I run my candidate model with lme4 glmer() function I obtain an AIC value of 2086. In the glmulti output this candidate model (with exactly the same formula) has a lower AIC value (2107), as a result of which it appears at position 8 out of 26 in the list of all potential models (as obtained through the weigtable() function).
What seems to be causing this problem is that the logArea:Habitat interaction is dropped from the candidate model, despite level=2 being specified. The function summary(output_new#objects[[8]]) provides a different formula (without the logArea:Habitat interaction variable) compared to the formula provided through weightable(). This explains why the candidate model AIC value is not the same as obtained through lme4, but I do not understand why the interaction variables logArea:Habitat is missing from the formula. The same is happening for other possible models. It seems that for all models with 2 or more interactions, one interaction is dropped.
Does anyone have an explanation for what is going on? Any help would be much appreciated!
Best,
Robert
Note: I have created a subset of my data (https://drive.google.com/open?id=1rc0Gkp7TPdnhW6Bw87FskL5SSNp21qxl) and simplified the candidate model by removing variables in order to decrease model run time. (The problem remains the same)
newdat <- Data_ommited2[, c("Presabs","logBodymass", "logIsolation", "Matrix", "logArea", "Protection","Migration", "Habitat", "Guild", "Study","Species", "SpeciesStudy")]
glmer.glmulti <- function (formula, data, random, ...) {
glmer(paste(deparse(formula), random), data = data, family=binomial(link="logit"),contrasts=list(Matrix=contr.sum, Habitat=contr.treatment, Protection=contr.treatment, Guild=contr.sum),glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
}
output_new <- glmulti(y = Presabs ~ Matrix + logArea*Protection + logArea*Habitat,
data = sampledata,
random = '+(1|Study)+(1|Species)+(1|SpeciesStudy)',
family = binomial,
method = 'h',
level=2,
marginality=TRUE,
crit = 'aic',
fitfunc = glmer.glmulti,
confsetsize = 26)
print(output_new)
summary(output_new)
weightable(output_new)
I found a post (https://stats.stackexchange.com/questions/341356/glmulti-package-in-r-reporting-incorrect-aicc-values) of someone who encountered the same problem and it appears that the problem was caused by this line of code:
glmer.glmulti <- function (formula, data, random, ...) {
glmer(paste(deparse(formula), random), data = data, family=binomial(link="logit"))
}
By changing this part of the code into the following the problem was solved:
glmer.glmulti<-function(formula,data,random,...) {
newf <- formula
newf[[3]] <- substitute(f+r,
list(f=newf[[3]],
r=reformulate(random)[[2]]))
glmer(newf,data=data,
family=binomial(link="logit"))
}

Using the caret::train package for calculating prediction error (MdAE) of glmms with beta-binomial errors

The question is more or less as the title indicates. I would like to use the caret::train function with beta-binomial models made with glmmTMB package (although I am not opposed to other functions capable of fitting beta-binomial models) to calculate median absolute error (MdAE) estimates through jack-knife (leave-one-out) cross-validation. The glmmTMBControl function is already capable of estimating the optimal dispersion parameter but I was hoping to retain this information somehow as well... or having caret do the calculation possibly?
The dataset I am working with looks like this:
df <- data.frame(Effect = rep(seq(from = 0.05, to = 1, by = 0.05), each = 5), Time = rep(seq(1:20), each = 5))
Ideally I would be able to pass the glmmTMB function to trainControl like so:
BB.glmm1 <- train(Time ~ Effect,
data = df, method = "glmmTMB",
method = "", metric = "MAD")
The output would be as per the examples contained in train, although possibly with estimates for the dispersion parameter.
Although I am in no way opposed to work arounds - Thank you in advance!
I am unsure how to perform the required operation with caret without creating a custom method but I trust it is fairly easy to implement it with a for (lapply) loop.
In the example I will use the sleepstudy data set since your example data throws a bunch of warnings.
library(glmmTMB)
to perform LOOCV - for every row, create a model without that row and predict on that row:
data(sleepstudy,package="lme4")
LOOCV <- lapply(1:nrow(sleepstudy), function(x){
m1 <- glmmTMB(Reaction ~ Days + (Days|Subject),
data = sleepstudy[-x,])
return(predict(m1, sleepstudy[x,], type = "response"))
})
get the median of the residuals (I think this is MdAE? if not post a comment on how its calculated):
median(abs(unlist(LOOCV) - sleepstudy$Reaction))

Predict function from Caret package give an Error

I am doing just a regular logistic regression using the caret package in R. I have a binomial response variable coded 1 or 0 that is called a SALES_FLAG and 140 numeric response variables that I used dummyVars function in R to transform to dummy variables.
data <- dummyVars(~., data = data_2, fullRank=TRUE,sep="_",levelsOnly = FALSE )
dummies<-(predict(data, data_2))
model_data<- as.data.frame(dummies)
This gives me a data frame to work with. All of the variables are numeric. Next I split into training and testing:
trainIndex <- createDataPartition(model_data$SALE_FLAG, p = .80,list = FALSE)
train <- model_data[ trainIndex,]
test <- model_data[-trainIndex,]
Time to train my model using the train function:
model <- train(SALE_FLAG~. data=train,method = "glm")
Everything runs nice and I get a model. But when I run the predict function it does not give me what I need:
predict(model, newdata =test,type="prob")
and I get an ERROR:
Error in dimnames(out)[[2]] <- modelFit$obsLevels :
length of 'dimnames' [2] not equal to array extent
On the other hand when I replace "prob" with "raw" for type inside of the predict function I get prediction but I need probabilities so I can code them into binary variable given my threshold.
Not sure why this happens. I did the same thing without using the caret package and it worked how it should:
model2 <- glm(SALE_FLAG ~ ., family = binomial(logit), data = train)
predict(model2, newdata =test, type="response")
I spend some time looking at this but not sure what is going on and it seems very weird to me. I have tried many variations of the train function meaning I didn't use the formula and used X and Y. I used method = 'bayesglm' as well to check and id gave me the same error. I hope someone can help me out. I don't need to use it since the train function to get what I need but caret package is a good package with lots of tools and I would like to be able to figure this out.
Show us str(train) and str(test). I suspect the outcome variable is numeric, which makes train think that you are doing regression. That should also be apparent from printing model. Make it a factor if you want to do classification.
Max

Using r and weka. How can I use meta-algorithms along with nfold evaluation method?

Here is an example of my problem
library(RWeka)
iris <- read.arff("iris.arff")
Perform nfolds to obtain the proper accuracy of the classifier.
m<-J48(class~., data=iris)
e<-evaluate_Weka_classifier(m,numFolds = 5)
summary(e)
The results provided here are obtained by building the model with a part of the dataset and testing it with another part, therefore provides accurate precision
Now I Perform AdaBoost to optimize the parameters of the classifier
m2 <- AdaBoostM1(class ~. , data = temp ,control = Weka_control(W = list(J48, M = 30)))
summary(m2)
The results provided here are obtained by using the same dataset for building the model and also the same ones used for evaluating it, therefore the accuracy is not representative of real life precision in which we use other instances to be evaluated by the model. Nevertheless this procedure is helpful for optimizing the model that is built.
The main problem is that I can not optimize the model built, and at the same time test it with data that was not used to build the model, or just use a nfold validation method to obtain the proper accuracy.
I guess you misinterprete the function of evaluate_Weka_classifier. In both cases, evaluate_Weka_classifier does only the cross-validation based on the training data. It doesn't change the model itself. Compare the confusion matrices of following code:
m<-J48(Species~., data=iris)
e<-evaluate_Weka_classifier(m,numFolds = 5)
summary(m)
e
m2 <- AdaBoostM1(Species ~. , data = iris ,
control = Weka_control(W = list(J48, M = 30)))
e2 <- evaluate_Weka_classifier(m2,numFolds = 5)
summary(m2)
e2
In both cases, the summary gives you the evaluation based on the training data, while the function evaluate_Weka_classifier() gives you the correct crossvalidation. Neither for J48 nor for AdaBoostM1 the model itself gets updated based on the crossvalidation.
Now regarding the AdaBoost algorithm itself : In fact, it does use some kind of "weighted crossvalidation" to come to the final classifier. Wrongly classified items are given more weight in the next building step, but the evaluation is done using equal weight for all observations. So using crossvalidation to optimize the result doesn't really fit into the general idea behind the adaptive boosting algorithm.
If you want a true crossvalidation using a training set and a evaluation set, you could do the following :
id <- sample(1:length(iris$Species),length(iris$Species)*0.5)
m3 <- AdaBoostM1(Species ~. , data = iris[id,] ,
control = Weka_control(W = list(J48, M=5)))
e3 <- evaluate_Weka_classifier(m3,numFolds = 5)
# true crossvalidation
e4 <- evaluate_Weka_classifier(m3,newdata=iris[-id,])
summary(m3)
e3
e4
If you want a model that gets updated based on a crossvalidation, you'll have to go to a different algorithm, eg randomForest() from the randomForest package. That collects a set of optimal trees based on crossvalidation. It can be used in combination with the RWeka package as well.
edit : corrected code for a true crossvalidation. Using the subset argument has effect in the evaluate_Weka_classifier() as well.

Resources