Calculate average real variability for successive multiple measurements in R - r

I have a long-form dataframe, with a column (B) including the absolute successive differences between values in column (A), for each individual's ID separately.
ID = c("1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2")
A = c("120", "115", "125", "119", "128", "129", "130", "140", "142", "143", "145", "144", "148")
B = c("NA", "5", "10", "6", "9", "1", "1", "NA", "2", "1", "2", "1", "4")
DF <- data.frame(ID, A, B)
I would like to create a new column (C), that is the sum of the absolute differences before and including each value, divided by (the number of measurements used to calculate it minus 1).
This is what I would like the data to look like:
I hope this makes sense, any help greatly appreciated!

Here's a tidyverse solution. You can first group_by the ID, then divide the cumulative sum (cumsum) of B by the row_number minus one. You can only do this after omitting the first row of each group and replacing it with NA
Note also that in your example, the 'numeric' columns are actually character vectors, so have to be coerced to numeric first.
library(tidyverse)
DF %>%
mutate(across(A:B, \(x) suppressWarnings(as.numeric(x)))) %>%
group_by(ID) %>%
mutate(C = c(NA, cumsum(B[-1])/(row_number() - 1)[-1]))
#> # A tibble: 13 x 4
#> # Groups: ID [2]
#> ID A B C
#> <chr> <dbl> <dbl> <dbl>
#> 1 1 120 NA NA
#> 2 1 115 5 5
#> 3 1 125 10 7.5
#> 4 1 119 6 7
#> 5 1 128 9 7.5
#> 6 1 129 1 6.2
#> 7 1 130 1 5.33
#> 8 2 140 NA NA
#> 9 2 142 2 2
#> 10 2 143 1 1.5
#> 11 2 145 2 1.67
#> 12 2 144 1 1.5
#> 13 2 148 4 2
Created on 2022-11-11 with reprex v2.0.2

Related

Making lists by group

I have data as follows:
library(data.table)
dat <- structure(list(year2006 = c("1110", "1110", "1110", "1110", "1120",
"1120", "1120", "1120"), group2006 = c("1", "2", "3", "4", "1",
"2", "3", "4"), min2006 = c("1.35", "2", "3.7",
"4.25", "5.6", "4.45", "3.09", "1.13"),
year2007 = c("1110", "1110", "1110", "1110", "1120", "1120",
"1120", "1120"), group2007 = c("1", "2", "3", "4", "1",
"2", "3", "4"), min2007 = c("5", "5.05", "5",
"1.59", "2.3", "3", "4.05", "5.16"
)), row.names = c(NA, -8L), class = c("data.table", "data.frame"
))
dat
year2006 group2006 min2006 year2007 group2007 min2007
1: 1110 1 1.35 1110 1 5
2: 1110 2 2 1110 2 5.05
3: 1110 3 3.7 1110 3 5
4: 1110 4 4.25 1110 4 1.59
5: 1120 1 5.6 1120 1 2.3
6: 1120 2 4.45 1120 2 3
7: 1120 3 3.09 1120 3 4.05
8: 1120 4 1.13 1120 4 5.16
What I would like to do, is to create a list of the numbers in min200x, per category in year200x.
Desired output:
cat year2006 year2007
1: 1110 c("1.35", "2", "3.7", "4.25") c("5", "5.05", "5", "1.59")
2: 1120 c("5.6", "4.45", "3.09", "1.13") c("2.3", "3", "4.05", "5.16")
I thought I could do something like:
setDT(dat)[, cat := list(min2006), by=year2006]
But that does not work (it just puts the min2006 item in a new colum cat). And even if it did, it would only provide a solution for the year 2006. How should I go about this?
I'm not sure why your columns in your test data are all character but the columns in your desired output are numeric. Also, you ask for a list of numbers by group but your expected output shows a vector.
Nevertheless, here's a tidyverse solution that creates list columns.
library(tidyverse)
x <- dat %>%
mutate(across(everything(), as.numeric)) %>%
group_by(year2006) %>%
select(year2006, starts_with("min")) %>%
summarise(across(everything(), lst))
x
# A tibble: 2 × 3
year2006 min2006 min2007
<dbl> <named list> <named list>
1 1110 <dbl [4]> <dbl [4]>
2 1120 <dbl [4]> <dbl [4]>
and, for example,
x$min2006
$min2006
[1] 1.35 2.00 3.70 4.25
$min2006
[1] 5.60 4.45 3.09 1.13
If your inputs are actually numeric, you can lose the mutate.
Edit
... and to get the correct name for the grouping column, you can add %>% rename(cat=year2006) to the pipe. Apologies for the omission.
a similar approach
data.table
library(data.table)
COLS <- grep(names(df), pattern = "^min", value = TRUE)
setDT(df)[, lapply(.SD, list), .SDcol = COLS, by = year2006]
#> year2006 min2006 min2007
#> 1: 1110 1.35,2,3.7,4.25 5,5.05,5,1.59
#> 2: 1120 5.6,4.45,3.09,1.13 2.3,3,4.05,5.16
Created on 2022-05-31 by the reprex package (v2.0.1)
Here is also a base R solution,
l1 <- lapply(split.default(dat, gsub('\\D+', '', names(dat))), function(i)
aggregate(as.matrix(i[3]) ~ as.matrix(i[1]), i, list))
do.call(cbind, l1)[-3]
# year2006 2006.min2006 2007.min2007
#1 1110 1.35, 2, 3.7, 4.25 5, 5.05, 5, 1.59
#2 1120 5.6, 4.45, 3.09, 1.13 2.3, 3, 4.05, 5.16

How to replace all variable names with the contents of the first row in a tibble

Is there a quick way to replace variable names with the content of the first row of a tibble?
So turning something like this:
Subject Q1 Q2 Q3
Subject age gender cue
429753 24 1 man
b952x8 23 2 mushroom
264062 19 1 night
53082m 35 1 moon
Into this:
Subject age gender cue
429753 24 1 man
b952x8 23 2 mushroom
264062 19 1 night
53082m 35 1 moon
My dataset has over 100 variables so I'm looking for a way that doesn't involve typing out each old and new variable name.
A possible solution:
df <- structure(list(Subject = c("Subject", "429753", "b952x8", "264062",
"53082m"), Q1 = c("age", "24", "23", "19", "35"), Q2 = c("gender",
"1", "2", "1", "1"), Q3 = c("cue", "man", "mushroom", "night",
"moon")), row.names = c(NA, -5L), class = "data.frame")
names(df) <- df[1,]
df <- df[-1,]
df
#> Subject age gender cue
#> 2 429753 24 1 man
#> 3 b952x8 23 2 mushroom
#> 4 264062 19 1 night
#> 5 53082m 35 1 moon

How can I reshape multiple columns of long data to wide?

structure(tibble(c("top", "jng", "mid", "bot", "sup"), c("369", "Karsa", "knight", "JackeyLove", "yuyanjia"),
c("Malphite", "Rek'Sai", "Zoe", "Aphelios", "Braum"), c("1", "1", "1", "1", "1"), c("7", "5", "7", "5", "0"),
c("6079-7578", "6079-7578", "6079-7578", "6079-7578", "6079-7578")), .Names = c("position", "player", "champion", "result", "kills", "gameid"))
Output:
# A tibble: 5 x 6
position player champion result kills gameid
* <chr> <chr> <chr> <chr> <chr> <chr>
1 top 369 Malphite 1 7 6079-7578
2 jng Karsa Rek'Sai 1 5 6079-7578
3 mid knight Zoe 1 7 6079-7578
4 bot JackeyLove Aphelios 1 5 6079-7578
5 sup yuyanjia Braum 1 0 6079-7578
My desired output would be:
structure(list(gameid = "6079-7578", result = "1", player_top = "369",
player_jng = "Karsa", player_mid = "knight", player_bot = "JackeyLove",
player_sup = "yuyanjia", champion_top = "Malphite", champion_jng = "Rek'Sai",
champion_mid = "Zoe", champion_bot = "Aphelios", champion_sup = "Braum",
kills_top = "7", kills_jng = "5", kills_mid = "7", kills_bot = "5",
kills_sup = "0"), row.names = c(NA, -1L), class = c("tbl_df",
"tbl", "data.frame"))
which looks like this:
gameid result player_top player_jng player_mid player_bot player_sup champion_top champion_jng champion_mid champion_bot champion_sup
1 6079-7578 1 369 Karsa knight JackeyLove yuyanjia Malphite RekSai Zoe Aphelios Braum
kills_top kills_jng kills_mid kills_bot kills_sup
1 7 5 7 5 0
I know I should use pivot_wider() and something like drop_na, but I don't know how to do pivot_wider() with mutiple columns and collapse the rows at the same time. Any help would be appreciated.
You can use pivot_wider() for this, defining the "position" variable as the variable that the new column names come from in names_from and the three variables with values you want to use to fill those columns with as values_from.
By default the multiple values_from variables are pasted on to the front of new columns names. This can be changed, but in this case that matches the naming structure you want.
All other variables in the original dataset will be used as the id_cols in the order that they appear.
library(tidyr)
pivot_wider(dat,
names_from = "position",
values_from = c("player", "champion", "kills"))
#> result gameid player_top player_jng player_mid player_bot player_sup
#> 1 1 6079-7578 369 Karsa knight JackeyLove yuyanjia
#> champion_top champion_jng champion_mid champion_bot champion_sup kills_top
#> 1 Malphite Rek'Sai Zoe Aphelios Braum 7
#> kills_jng kills_mid kills_bot kills_sup
#> 1 5 7 5 0
You can control the order of your id columns in the output by explicitly writing them out via id_cols. Here's an example, matching your desired output.
pivot_wider(dat, id_cols = c("gameid", "result"),
names_from = "position",
values_from = c("player", "champion", "kills"))
#> gameid result player_top player_jng player_mid player_bot player_sup
#> 1 6079-7578 1 369 Karsa knight JackeyLove yuyanjia
#> champion_top champion_jng champion_mid champion_bot champion_sup kills_top
#> 1 Malphite Rek'Sai Zoe Aphelios Braum 7
#> kills_jng kills_mid kills_bot kills_sup
#> 1 5 7 5 0
Created on 2021-06-24 by the reprex package (v2.0.0)
Using data.table might help here. In dcast() each row will be identified by a unique combo of gameid and result, the columns will be spread by position, and filled with values from the variables listed in value.var.
library(data.table)
library(dplyr)
df <- structure(tibble(c("top", "jng", "mid", "bot", "sup"), c("369", "Karsa", "knight", "JackeyLove", "yuyanjia"),
c("Malphite", "Rek'Sai", "Zoe", "Aphelios", "Braum"), c("1", "1", "1", "1", "1"), c("7", "5", "7", "5", "0"),
c("6079-7578", "6079-7578", "6079-7578", "6079-7578", "6079-7578")), .Names = c("position", "player", "champion", "result", "kills", "gameid"))
df2 <- dcast(setDT(df), gameid + result~position, value.var = list('player','champion','kills'))

conditionally aggregate columns using tidyverse for large time series dataset

After looking at a few other asked questions, and reading a few guides, I'm not able to find a suitable solution to my specific problem. Here's an example of the data to begin:
data <- data.frame(
Date = sample(c("1993-07-05", "1993-07-05", "1993-07-05", "1993-08-30", "1993-08-30", "1993-08-30", "1993-08-30", "1993-09-04", "1993-09-04")),
Site = sample(c("1", "1", "1", "1", "1", "1", "1", "1", "1")),
Station = sample(c("1", "2", "3", "1", "2", "3", "4", "1", "2")),
Oxygen = sample(c("0.9", "0.4", "4.2", "5.6", "7.3", "4.3", "9.5", "5.3", "0.3")))
I want to average all the oxygen values for the stations that are nested within a site that corresponds to a date. My dataset has a couple of thousand rows, and like in the example, there are an uneven number of stations, and the dates are uneven in length.
The output I'm looking for are columns like, "Date -> Site -> Average Oxygen", foregoing the need for a station column altogether in the new version of the time series.
Any help would be greatly appreciated!
After grouping by 'Site', 'Date', get the mean of 'Oxygen' (after converting it to numeric - it is factor column)
library(tidyverse)
data %>%
group_by(Site, Date) %>%
summarise(AverageOxygen = mean(as.numeric(as.character(Oxygen))))
# A tibble: 3 x 3
# Groups: Site [1]
# Site Date AverageOxygen
# <fct> <fct> <dbl>
#1 1 1993-07-05 3.97
#2 1 1993-08-30 5.2
#3 1 1993-09-04 2.55
Try:
library(hablar)
library(tidyverse)
data %>%
retype() %>%
group_by(Site, Date) %>%
summarize(AverageOxygen = mean(Oxygen))
which gives you:
# A tibble: 3 x 3
# Groups: Site [?]
Site Date AverageOxygen
<int> <date> <dbl>
1 1 1993-07-05 4.7
2 1 1993-08-30 3.55
3 1 1993-09-04 4.75

Transposing data frames [duplicate]

This question already has answers here:
Transposing a dataframe maintaining the first column as heading
(5 answers)
Closed 1 year ago.
Happy Weekends.
I've been trying to replicate the results from this blog post in R. I am looking for a method of transposing the data without using t, preferably using tidyr or reshape. In example below, metadata is obtained by transposing data.
metadata <- data.frame(colnames(data), t(data[1:4, ]) )
colnames(metadata) <- t(metadata[1,])
metadata <- metadata[-1,]
metadata$Multiplier <- as.numeric(metadata$Multiplier)
Though it achieves what I want, I find it little unskillful. Is there any efficient workflow to transpose the data frame?
dput of data
data <- structure(list(Series.Description = c("Unit:", "Multiplier:",
"Currency:", "Unique Identifier: "), Nominal.Broad.Dollar.Index. = c("Index:_1997_Jan_100",
"1", NA, "H10/H10/JRXWTFB_N.M"), Nominal.Major.Currencies.Dollar.Index. = c("Index:_1973_Mar_100",
"1", NA, "H10/H10/JRXWTFN_N.M"), Nominal.Other.Important.Trading.Partners.Dollar.Index. = c("Index:_1997_Jan_100",
"1", NA, "H10/H10/JRXWTFO_N.M"), AUSTRALIA....SPOT.EXCHANGE.RATE..US..AUSTRALIAN...RECIPROCAL.OF.RXI_N.M.AL. = c("Currency:_Per_AUD",
"1", "USD", "H10/H10/RXI$US_N.M.AL"), SPOT.EXCHANGE.RATE...EURO.AREA. = c("Currency:_Per_EUR",
"1", "USD", "H10/H10/RXI$US_N.M.EU"), NEW.ZEALAND....SPOT.EXCHANGE.RATE..US..NZ...RECIPROCAL.OF.RXI_N.M.NZ.. = c("Currency:_Per_NZD",
"1", "USD", "H10/H10/RXI$US_N.M.NZ"), United.Kingdom....Spot.Exchange.Rate..US..Pound.Sterling.Reciprocal.of.rxi_n.m.uk = c("Currency:_Per_GBP",
"0.01", "USD", "H10/H10/RXI$US_N.M.UK"), BRAZIL....SPOT.EXCHANGE.RATE..REAIS.US.. = c("Currency:_Per_USD",
"1", "BRL", "H10/H10/RXI_N.M.BZ"), CANADA....SPOT.EXCHANGE.RATE..CANADIAN...US.. = c("Currency:_Per_USD",
"1", "CAD", "H10/H10/RXI_N.M.CA"), CHINA....SPOT.EXCHANGE.RATE..YUAN.US.. = c("Currency:_Per_USD",
"1", "CNY", "H10/H10/RXI_N.M.CH"), DENMARK....SPOT.EXCHANGE.RATE..KRONER.US.. = c("Currency:_Per_USD",
"1", "DKK", "H10/H10/RXI_N.M.DN"), HONG.KONG....SPOT.EXCHANGE.RATE..HK..US.. = c("Currency:_Per_USD",
"1", "HKD", "H10/H10/RXI_N.M.HK"), INDIA....SPOT.EXCHANGE.RATE..RUPEES.US. = c("Currency:_Per_USD",
"1", "INR", "H10/H10/RXI_N.M.IN"), JAPAN....SPOT.EXCHANGE.RATE..YEA.US.. = c("Currency:_Per_USD",
"1", "JPY", "H10/H10/RXI_N.M.JA"), KOREA....SPOT.EXCHANGE.RATE..WON.US.. = c("Currency:_Per_USD",
"1", "KRW", "H10/H10/RXI_N.M.KO"), Malaysia...Spot.Exchange.Rate..Ringgit.US.. = c("Currency:_Per_USD",
"1", "MYR", "H10/H10/RXI_N.M.MA"), MEXICO....SPOT.EXCHANGE.RATE..PESOS.US.. = c("Currency:_Per_USD",
"1", "MXN", "H10/H10/RXI_N.M.MX"), NORWAY....SPOT.EXCHANGE.RATE..KRONER.US.. = c("Currency:_Per_USD",
"1", "NOK", "H10/H10/RXI_N.M.NO"), SWEDEN....SPOT.EXCHANGE.RATE..KRONOR.US.. = c("Currency:_Per_USD",
"1", "SEK", "H10/H10/RXI_N.M.SD"), SOUTH.AFRICA....SPOT.EXCHANGE.RATE..RAND.US.. = c("Currency:_Per_USD",
"1", "ZAR", "H10/H10/RXI_N.M.SF"), Singapore...SPOT.EXCHANGE.RATE..SINGAPORE...US.. = c("Currency:_Per_USD",
"1", "SGD", "H10/H10/RXI_N.M.SI"), SRI.LANKA....SPOT.EXCHANGE.RATE..RUPEES.US.. = c("Currency:_Per_USD",
"1", "LKR", "H10/H10/RXI_N.M.SL"), SWITZERLAND....SPOT.EXCHANGE.RATE..FRANCS.US.. = c("Currency:_Per_USD",
"1", "CHF", "H10/H10/RXI_N.M.SZ"), TAIWAN....SPOT.EXCHANGE.RATE..NT..US.. = c("Currency:_Per_USD",
"1", "TWD", "H10/H10/RXI_N.M.TA"), THAILAND....SPOT.EXCHANGE.RATE....THAILAND. = c("Currency:_Per_USD",
"1", "THB", "H10/H10/RXI_N.M.TH"), VENEZUELA....SPOT.EXCHANGE.RATE..BOLIVARES.US.. = c("Currency:_Per_USD",
"1", "VEB", "H10/H10/RXI_N.M.VE")), .Names = c("Series.Description",
"Nominal.Broad.Dollar.Index.", "Nominal.Major.Currencies.Dollar.Index.",
"Nominal.Other.Important.Trading.Partners.Dollar.Index.", "AUSTRALIA....SPOT.EXCHANGE.RATE..US..AUSTRALIAN...RECIPROCAL.OF.RXI_N.M.AL.",
"SPOT.EXCHANGE.RATE...EURO.AREA.", "NEW.ZEALAND....SPOT.EXCHANGE.RATE..US..NZ...RECIPROCAL.OF.RXI_N.M.NZ..",
"United.Kingdom....Spot.Exchange.Rate..US..Pound.Sterling.Reciprocal.of.rxi_n.m.uk",
"BRAZIL....SPOT.EXCHANGE.RATE..REAIS.US..", "CANADA....SPOT.EXCHANGE.RATE..CANADIAN...US..",
"CHINA....SPOT.EXCHANGE.RATE..YUAN.US..", "DENMARK....SPOT.EXCHANGE.RATE..KRONER.US..",
"HONG.KONG....SPOT.EXCHANGE.RATE..HK..US..", "INDIA....SPOT.EXCHANGE.RATE..RUPEES.US.",
"JAPAN....SPOT.EXCHANGE.RATE..YEA.US..", "KOREA....SPOT.EXCHANGE.RATE..WON.US..",
"Malaysia...Spot.Exchange.Rate..Ringgit.US..", "MEXICO....SPOT.EXCHANGE.RATE..PESOS.US..",
"NORWAY....SPOT.EXCHANGE.RATE..KRONER.US..", "SWEDEN....SPOT.EXCHANGE.RATE..KRONOR.US..",
"SOUTH.AFRICA....SPOT.EXCHANGE.RATE..RAND.US..", "Singapore...SPOT.EXCHANGE.RATE..SINGAPORE...US..",
"SRI.LANKA....SPOT.EXCHANGE.RATE..RUPEES.US..", "SWITZERLAND....SPOT.EXCHANGE.RATE..FRANCS.US..",
"TAIWAN....SPOT.EXCHANGE.RATE..NT..US..", "THAILAND....SPOT.EXCHANGE.RATE....THAILAND.",
"VENEZUELA....SPOT.EXCHANGE.RATE..BOLIVARES.US.."), row.names = c(NA,
4L), class = "data.frame")
Using tidyr, you gather all the columns except the first, and then you spread the gathered columns.
Try:
library(dplyr)
library(tidyr)
data %>%
gather(var, val, 2:ncol(data)) %>%
spread(Series.Description, val)
library(dplyr)
# Omitted data <- structure part ...
Here is something that replicates what's in the main answer, but more generically (e.g., works where Series.Description is not the first column of the result) and using the newer pivot_wider/pivot_longer verbs.
df_transpose <- function(df) {
df %>%
tidyr::pivot_longer(-1) %>%
tidyr::pivot_wider(names_from = 1, values_from = value)
}
df_transpose(data)
#> # A tibble: 26 x 5
#> name `Unit:` `Multiplier:` `Currency:` `Unique Identifi…
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Nominal.Broad.Dollar.… Index:_19… 1 <NA> H10/H10/JRXWTFB_…
#> 2 Nominal.Major.Currenc… Index:_19… 1 <NA> H10/H10/JRXWTFN_…
#> 3 Nominal.Other.Importa… Index:_19… 1 <NA> H10/H10/JRXWTFO_…
#> 4 AUSTRALIA....SPOT.EXC… Currency:… 1 USD H10/H10/RXI$US_N…
#> 5 SPOT.EXCHANGE.RATE...… Currency:… 1 USD H10/H10/RXI$US_N…
#> 6 NEW.ZEALAND....SPOT.E… Currency:… 1 USD H10/H10/RXI$US_N…
#> 7 United.Kingdom....Spo… Currency:… 0.01 USD H10/H10/RXI$US_N…
#> 8 BRAZIL....SPOT.EXCHAN… Currency:… 1 BRL H10/H10/RXI_N.M.…
#> 9 CANADA....SPOT.EXCHAN… Currency:… 1 CAD H10/H10/RXI_N.M.…
#> 10 CHINA....SPOT.EXCHANG… Currency:… 1 CNY H10/H10/RXI_N.M.…
#> # … with 16 more rows
But note that (like the answer above) the name of the first column is lost. The following retains this (as, I guess does the spread_(names(data)[1], "val") approach proposed by #jbkunst above).
df_transpose <- function(df) {
first_name <- colnames(df)[1]
temp <-
df %>%
tidyr::pivot_longer(-1) %>%
tidyr::pivot_wider(names_from = 1, values_from = value)
colnames(temp)[1] <- first_name
temp
}
df_transpose(data)
#> # A tibble: 26 x 5
#> Series.Description `Unit:` `Multiplier:` `Currency:` `Unique Identif…
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Nominal.Broad.Dollar.In… Index:_1… 1 <NA> H10/H10/JRXWTFB…
#> 2 Nominal.Major.Currencie… Index:_1… 1 <NA> H10/H10/JRXWTFN…
#> 3 Nominal.Other.Important… Index:_1… 1 <NA> H10/H10/JRXWTFO…
#> 4 AUSTRALIA....SPOT.EXCHA… Currency… 1 USD H10/H10/RXI$US_…
#> 5 SPOT.EXCHANGE.RATE...EU… Currency… 1 USD H10/H10/RXI$US_…
#> 6 NEW.ZEALAND....SPOT.EXC… Currency… 1 USD H10/H10/RXI$US_…
#> 7 United.Kingdom....Spot.… Currency… 0.01 USD H10/H10/RXI$US_…
#> 8 BRAZIL....SPOT.EXCHANGE… Currency… 1 BRL H10/H10/RXI_N.M…
#> 9 CANADA....SPOT.EXCHANGE… Currency… 1 CAD H10/H10/RXI_N.M…
#> 10 CHINA....SPOT.EXCHANGE.… Currency… 1 CNY H10/H10/RXI_N.M…
#> # … with 16 more rows
Created on 2021-05-30 by the reprex package (v2.0.0)

Resources