Having created a least-squares regression model using a data set with certain set of x and y values, how do I then use an x value that is not from the original data set to find residual of the y-value corresponding to that x-value?
When I use resid(lm(y~x)), it gives me the residuals of all the original points/observations, but I am interested in finding out residual for a point on the regression line that was not part of the observations in the original dataset.
This snippet of code should give you an idea. I generate data, fit a model and use it to predict a new X vector, finding the residuals for it.
# creating data
x <- rnorm(1000)
y <- x * 2 + rnorm(1000)
new_x <- rnorm(1000)
new_y <- new_x * 2 + rnorm(10000)
# creating model
lm_model <- lm(y ~ x)
# predicting using model new data
y_hat_new <- predict(lm_model, data.frame(new_x)) # data must be in data.frame
new_resid <- new_y - y_hat_new
Related
I am able to change the coefficients of my linear model. Then i want to compare the results of my "new" model with the new coefficients, but R is not calculating the results with the new coefficients.
As you can see in my following example the summary of my models fit and fit1 are excactly the same, though results like multiple R-squared should or fitted values should change.
set.seed(2157010) #forgot set.
x1 <- 1998:2011
x2 <- x1 + rnorm(length(x1))
y <- 3*x2 + rnorm(length(x1)) #you had x, not x1 or x2
fit <- lm( y ~ x1 + x2)
# view original coefficients
coef(fit)
# generate second function for comparing results
fit1 <- fit
# replace coefficients with new values, use whole name which is coefficients:
fit1$coefficients[2:3] <- c(5, 1)
# view new coefficents
coef(fit1)
# Comparing
summary(fit)
summary(fit1)
Thanks in advance
It might be easier to compute the multiple R^2 yourself with the substituted parameters.
mult_r2 <- function(beta, y, X) {
tot_ss <- var(y) * (length(y) - 1)
rss <- sum((y - X %*% beta)^2)
1 - rss/tot_ss
}
(or, more compactly, following the comments, you could compute p <- X %*% beta; (cor(y,beta))^2)
mult_r2(coef(fit), y = model.response(model.frame(fit)), X = model.matrix(fit))
## 0.9931179, matches summary()
Now with new coefficients:
new_coef <- coef(fit)
new_coef[2:3] <- c(5,1)
mult_r2(new_coef, y = model.response(model.frame(fit)), X = model.matrix(fit))
## [1] -343917
That last result seems pretty wild, but the substituted coefficients are very different from the true least-squares coeffs, and negative R^2 is possible when the model is bad enough ...
I performed a regression analyses in R on some dataset and try to predict the contribution of each individual independent variable on the dependent variable for each row in the dataset.
So something like this:
set.seed(123)
y <- rnorm(10)
m <- data.frame(v1=rnorm(10), v2=rnorm(10), v3=rnorm(10))
regr <- lm(formula=y~v1+v2+v3, data=m)
summary(regr)
terms <- predict.lm(regr,m, type="terms")
In short: run a regression and use the predict function to calculate the terms of v1,v2 and v3 in dataset m. But I am having a hard time understanding what the predict function is calculating. I would expect it multiplies the coefficient of the regression result with the variable data. So something like this for v1:
coefficients(regr)[2]*m$v1
But that gives different results compared to the predict function.
Own calculation:
0.55293884 0.16253411 0.18103537 0.04999729 -0.25108302 0.80717945 0.22488764 -0.88835486 0.31681455 -0.21356803
And predict function calculation:
0.45870070 0.06829597 0.08679724 -0.04424084 -0.34532115 0.71294132 0.13064950 -0.98259299 0.22257641 -0.30780616
The prediciton function is of by 0.1 or so Also if you add all terms in the prediction function together with the constant it doesn’t add up to the total prediction (using type=”response”). What does the prediction function calculate here and how can I tell it to calculate what I did with coefficients(regr)[2]*m$v1?
All the following lines result in the same predictions:
# our computed predictions
coefficients(regr)[1] + coefficients(regr)[2]*m$v1 +
coefficients(regr)[3]*m$v2 + coefficients(regr)[4]*m$v3
# prediction using predict function
predict.lm(regr,m)
# prediction using terms matrix, note that we have to add the constant.
terms_predict = predict.lm(regr,m, type="terms")
terms_predict[,1]+terms_predict[,2]+terms_predict[,3]+attr(terms_predict,'constant')
You can read more about using type="terms" here.
The reason that your own calculation (coefficients(regr)[2]*m$v1) and the predict function calculation (terms_predict[,1]) are different is because the columns in the terms matrix are centered around the mean, so their mean becomes zero:
# this is equal to terms_predict[,1]
coefficients(regr)[2]*m$v1-mean(coefficients(regr)[2]*m$v1)
# indeed, all columns are centered; i.e. have a mean of 0.
round(sapply(as.data.frame(terms_predict),mean),10)
Hope this helps.
The function predict(...,type="terms") centers each variable by its mean. As a result, the output is a little difficult to interpret. Here's an alternative where each variable (constant, x1, and x2) is multiplied to its coefficient.
TLDR: pred_terms <- model.matrix(formula(mod$terms), testData) %*% diag(coef(mod))
library(tidyverse)
### simulate data
set.seed(123)
nobs <- 50
x1 <- cumsum(rnorm(nobs) + 3)
x2 <- cumsum(rnorm(nobs) * 3)
y <- 2 + 2*x1 -0.5*x2 + rnorm(nobs,0,50)
df <- data.frame(t=1:nobs, y=y, x1=x1, x2=x2)
train <- 1:round(0.7*nobs,0)
rm(x1, x2, y)
trainData <- df[train,]
testData <- df[-train,]
### linear model
mod <- lm(y ~ x1 + x2 , data=trainData)
summary(mod)
### predict test set
test_preds <- predict(mod, newdata=testData)
head(test_preds)
### contribution by predictor
test_contribution <- model.matrix(formula(mod$terms), testData) %*% diag(coef(mod))
colnames(test_contribution) <- names(coef(mod))
head(test_contribution)
all(round(apply(test_contribution, 1, sum),5) == round(test_preds,5)) ## should be true
### Visualize each contribution
test_contribution_df <- as.data.frame(test_contribution)
test_contribution_df$pred <- test_preds
test_contribution_df$t <- row.names(test_contribution_df)
test_contribution_df$actual <- df[-train,"y"]
test_contribution_df_long <- pivot_longer(test_contribution_df, -t, names_to="variable")
names(test_contribution_df_long)
ggplot(test_contribution_df_long, aes(x=t, y=value, group=variable, color=variable)) +
geom_line() +
theme_bw()
I have written my function for MLR. However, there seems to an issue with output (see examples in the end).
But when I run the code, line by line, the output is correct.
mlr <- function(dependentvar, dataset) {
x <- model.matrix(dependentvar ~., dataset) # Design Matrix for x
y <- dependentvar # dependent variable
betas <- solve(crossprod(x))%*%crossprod(x,y) # beta values
SST <- t(y)%*%y - (sum(y)^2/dim(dataset)[1]) # total sum of squares
SSres <- t(y)%*%y -(t(betas)%*%crossprod(x,y)) # sum of squares of residuals
SSreg <- SST - SSres # regression sum of squares
sigmasqr <- SSres/(length(y) - dim(dataset)[2]) # variance or (MSE)
varofbeta <- sigmasqr[1]*solve( crossprod(x)) # variance of beta
cat("SST:", SST,"SSresiduals:", SSres,"SSregression:", SSreg, sep = "\n", append = FALSE)
return(betas)
}
To see the problem, try
mlr(trees$Height, trees)
I get the same problem even if I get rid of $
Height <- trees$Height
mlr(Height, trees)
Use the following:
x <- model.matrix(reformulate(".", dependentvar), dataset)
y <- dataset[[dependentvar]]
and pass in dependentvar as a string.
Example:
mlr("Height", trees)
Is there a way how I can extract coefficients of globally fitted terms in local regression modeling?
Maybe I do misunderstand the role of globally fitted terms in the function loess, but what I would like to have is the following:
# baseline:
x <- sin(seq(0.2,0.6,length.out=100)*pi)
# noise:
x_noise <- rnorm(length(x),0,0.1)
# known structure:
x_1 <- sin(seq(5,20,length.out=100))
# signal:
y <- x + x_1*0.25 + x_noise
# fit loess model:
x_seq <- seq_along(x)
mod <- loess(y ~ x_seq + x_1,parametric="x_1")
The fit is done perfectly, however, how can I extract the estimated value of the globally fitted term x_1 (i.e. some value near 0.25 for the example above)?
Finally, I found a solution to my problem using the function gam from the package gam:
require(gam)
mod2 <- gam(y ~ lo(x_seq,span=0.75,degree=2) + x_1)
However, the fits from the two models are not exactly the same (which might be due to different control settings?)...
I would like to know how to simulate quantities of interest out of a regression model estimated using either the arm or the rstanarm packages in R. I am a newbie in Bayesian methods and R and have been using the Zelig package for some time. I asked a similar question before, but I would like to know if it is possible to simulate those quantities using the posterior distribution estimated by those packages.
In Zelig you can set the values you want for the independent values and it calculates the results for the outcome variable (expected value, probability, etc). An example:
# Creating a dataset:
set.seed(10)
x <- rnorm(100,20,10)
z <- rnorm(100,10,5)
e <- rnorm(100,0,1)
y <- 2*x+3*z+e
df <- data.frame(x,z,e,y)
# Loading Zelig
require(Zelig)
# Model
m1.zelig <- zelig(y ~ x + z, model="ls", data=df)
summary(m1.zelig)
# Simulating z = 10
s1 <- setx(m1.zelig, z = 10)
simulation <- sim(m1.zelig, x = s1)
summary(simulation)
So Zelig keeps x at its mean (20.56), and simulates the quantity of interest with z = 10. In this case, y is approximately 71.
The same model using arm:
# Model
require(arm)
m1.arm <- bayesglm(y ~ x + z, data=df)
summary(m1.arm)
And using rstanarm:
# Model
require(rstanarm)
m1.stan <- stanlm(y ~ x + z, data=df)
print(m1.stan)
Is there any way to simulate z = 10 and x equals to its mean with the posterior distribution estimated by those two packages and get the expected value of y? Thank you very much!
In the case of bayesglm, you could do
sims <- arm::sim(m1.arm, n = 1000)
y_sim <- rnorm(n = 1000, mean = sims#coef %*% t(as.matrix(s1)), sd = sims#sigma)
mean(y_sim)
For the (unreleased) rstanarm, it would be similar
sims <- as.matrix(m1.stan)
y_sim <- rnorm(n = nrow(sims), mean = sims[,1:(ncol(sims)-1)] %*% t(as.matrix(s1)),
sd = sims[,ncol(sims)])
mean(y_sim)
In general for Stan, you could pass s1 as a row_vector and utilize it in a generated quantities block of a .stan file like
generated quantities {
real y_sim;
y_sim <- normal_rng(s1 * beta, sigma);
}
in which case the posterior distribution of y_sim would appear when you print the posterior summary.