I am trying to download several tables from this website using rvest and SelectorGadget.
The css selector is "#main li" as can be seen from the screenshot below.
When I run the following code, unfortunately an empty table results.
library(rvest)
psh <- read_html("https://pershingsquareholdings.com/performance/net-asset-value-and-returns/")
psh.node <- html_node(psh, "#main li")
psh.table = html_table(psh, fill = TRUE)
I guess the site prevents scraping, but it would otherwise be great if an alternative way could be recommended to get the data.
Thanks in advance!
Problem is that it is not an html <table> but a list:
library(rvest)
library(purrr)
psh <- read_html("https://pershingsquareholdings.com/performance/net-asset-value-and-returns/")
psh.node <- html_node(psh, "#main .psh_table")
headers <- psh.node %>% html_element(".psh_table_row.headings") %>%
html_elements("li") %>% html_text()
table <- psh.node %>% html_elements("ul.psh_table_row") %>%
map_dfr(~ html_elements(., "li") %>% html_text() %>% set_names(headers))
table
#> # A tibble: 44 × 10
#> `As of Date` Period USDNAV…¹ Euron…² GBPNA…³ LSE G…⁴ LSE U…⁵ MTDRe…⁶ QTDRe…⁷
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 As of Date Period USDNAV/… Eurone… GBPNAV… LSE GB… LSE US… MTDRet… QTDRet…
#> 2 25 October Weekly $51.01 $32.60 £44.47 £28.45 $32.63 12.0% 12.0%
#> 3 18 October Weekly $47.81 $30.25 £42.22 £26.70 $30.23 5.0% 5.0%
#> 4 11 October Weekly $44.96 $29.35 £40.93 £26.35 $29.55 -1.3% -1.3%
#> 5 30 September Monthly $45.55 $30.00 £40.79 £27.00 $30.25 -4.5% 8.2%
#> 6 27 September Weekly $45.49 $30.25 £42.44 £28.00 $30.23 -4.6% 8.1%
#> 7 20 September Weekly $47.88 $32.00 £42.06 £27.80 $31.75 0.4% 13.8%
#> 8 13 September Weekly $49.11 $32.00 £42.71 £27.70 $32.13 2.7% 16.4%
#> 9 6 September Weekly $47.80 $32.25 £41.51 £28.10 $32.48 -0.1% 13.3%
#> 10 31 August Monthly $47.83 $32.70 £41.17 £27.90 $32.83 2.9% 13.4%
#> # … with 34 more rows, 1 more variable: YTDReturn <chr>, and abbreviated
#> # variable names ¹`USDNAV/Share`, ²`EuronextPrice/Share`, ³`GBPNAV/Share`,
#> # ⁴`LSE GBPPrice/Share`, ⁵`LSE USDPrice/Share`, ⁶MTDReturn, ⁷QTDReturn
Edit
To find all similar tables:
psh.nodes <- html_elements(psh, "#main .psh_table")
tables <- map(psh.nodes, function(psh.node){
headers <- psh.node %>% html_element(".psh_table_row.headings") %>%
html_elements("li") %>% html_text()
table <- psh.node %>% html_elements("ul.psh_table_row") %>%
map_dfr(~ html_elements(., "li") %>% html_text() %>% set_names(headers))
table
})
Related
Im some ocassion a Stack user help me for make this script. Im edit it for add more attributes but I have problems when try to add Authors
The Author label is next to target and href. I have problem in this part.
library(tidyverse)
library(rvest)
startTime <- Sys.time()
get_cg <- function(pages) {
cat("Scraping page", pages, "\n")
page <-
str_c("https://cgspace.cgiar.org/discover?
scope=10568%2F106146&query=cassava&submit=&rpp=10&page=", pages) %>%
read_html()
tibble(
title = page %>%
html_elements(".ds-artifact-item") %>%
html_element(".description-info") %>%
html_text2(), # run well
fecha = page %>%
html_elements(".ds-artifact-item") %>%
html_element(".date") %>%
html_text2(), # run well
Type = page %>%
html_elements(".ds-artifact-item") %>%
html_element(".artifact-type") %>%
html_text2(), # run well
Autor= page %>%
html_elements(".ds-artifact-item") %>%
html_element(".description-info") %>%
html_attr("href"), # not download the Authors
link = page %>%
html_elements(".ds-artifact-item") %>%
html_element(".description-info") %>%
html_attr("href") %>% # run well
str_c("https://cgspace.cgiar.org", .)
)
}
df <- map_dfr(1, get_cg)
endTime <- Sys.time()
print(endTime - startTim)
Im try with other selector but get NA
This should get you a collapsed list of authors for each book, separated by ; , basically the same as presented on the page:
library(tidyverse, warn.conflicts = F)
library(rvest, warn.conflicts = F)
startTime <- Sys.time()
get_cg <- function(pages) {
cat("Scraping page", pages, "\n")
page <-
str_c("https://cgspace.cgiar.org/discover?scope=10568%2F106146&query=cassava&submit=&rpp=10&page=", pages) %>%
read_html()
html_elements(page, "div.artifact-description > div.artifact-description") %>%
map_df(~ list(
title = html_element(.x, ".description-info") %>% html_text2(),
fecha = html_element(.x, ".date") %>% html_text2(),
Type = html_element(.x, ".artifact-type") %>% html_text2(),
# Autor_links = html_elements(.x,".description-info > span > a") %>% html_attr("href") %>% paste(collapse = ";"),
Autor = html_element(.x, "span.description-info") %>% html_text2(),
link = html_element(.x, "a.description-info") %>% html_attr("href") %>% str_c("https://cgspace.cgiar.org", .)
))
}
df <- map_dfr(1, get_cg)
#> Scraping page 1
endTime <- Sys.time()
print(endTime - startTime)
#> Time difference of 0.989037 secs
Result:
df
#> # A tibble: 10 × 5
#> title fecha Type Autor link
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Global Climate Regions for Cassava 2020… Type… Hyma… http…
#> 2 Performance of the CSM–MANIHOT–Cassava model for sim… 2021… Type… Phon… http…
#> 3 Adoption of cassava improved modern varieties in the… 2020 Type… Laba… http…
#> 4 First report of Sri Lankan cassava mosaic virus and … 2021… Type… Chit… http…
#> 5 Surveillance and diagnostics dataset on Sri Lankan c… 2020 Type… Siri… http…
#> 6 Socieconomic and soil conservation practices for cas… 2022… Type… Ibar… http…
#> 7 The transformation and outcome of traditional cassav… 2020 Type… Dou,… http…
#> 8 Cassava Annual Report 2019 2020 Type… Inte… http…
#> 9 Cassava Annual Report 2020 2021… Type… Bece… http…
#> 10 Adoption of cassava improved modern varieties in the… 2020 Type… Flor… http…
glimpse(df)
#> Rows: 10
#> Columns: 5
#> $ title <chr> "Global Climate Regions for Cassava", "Performance of the CSM–MA…
#> $ fecha <chr> "2020-08-03", "2021-05-01", "2020", "2021-04-23", "2020", "2022-…
#> $ Type <chr> "Type:Dataset", "Type:Journal Article", "Type:Dataset", "Type:Jo…
#> $ Autor <chr> "Hyman, Glenn G.", "Phoncharoen, Phanupong; Banterng, Poramate; …
#> $ link <chr> "https://cgspace.cgiar.org/handle/10568/109500", "https://cgspac…
Created on 2022-12-03 with reprex v2.0.2
I'm trying to scrape all the data from this website. There are icons over some of the competitors names indicating that the person was disqualified for being a 'no-show'.
I would like create a data frame with all the competitors while also specifying who was disqualified, but I'm running into two issues:
(1) trying to add the disclaimer next to the persons name produces the error cannot coerce class ‘"xml_nodeset"’ to a data.frame.
(2) trying to extract the text from just the icon (and not the competitor names) produces a blank data frame.
library(rvest); library(tidyverse)
html = read_html('https://web.archive.org/web/20220913034642/https://www.bjjcompsystem.com/tournaments/1869/categories/2053162')
dq = data.frame(winner = html %>%
html_nodes('.match-card__competitor--red') %>%
html_text(trim = TRUE),
opponent = html %>%
html_nodes('hr+ .match-card__competitor'),
dq = html %>%
html_nodes('.match-card__disqualification') %>%
html_text())
This approach generally works only on tabular data where you can be sure that the number of matches for each of those selectors are constant and order is also fixed. In your example you have:
127 matches for .match-card__competitor--red
127 matches for hr+ .match-card__competitor
14 matches for .match-card__disqualification (you get no results for this because you should use html_attr("title") for title attribute instead of html_text())
Basically you are trying to combine columns of different lengths into the same dataframe. Even if it would work, you'd just add DSQ for 14 first matches.
As you'd probably want to keep information about matched, participants, results and disqualifications instead of just having a list of participants, I'd suggest to work with a list of match cards, i.e. extract all required information from a single card while not breaking relations and then move to the next card.
My purrr is far from perfect, but perhaps something like this:
library(rvest)
library(magrittr)
library(purrr)
library(dplyr)
library(tibble)
library(tidyr)
# helpers -----------------------------------------------------------------
# to keep matches with details (when/where) in header
is_valid_match <- function(element){
return(length(html_elements(element, ".bracket-match-header")) > 0)
}
# detect winner
is_winner <- function(element){
return(length(html_elements(element, ".match-competitor--loser")) < 1 )
}
# extract data from competitor sections
comp_details <- function(comp_card, prefix="_"){
l = lst()
l[paste(prefix, "n", sep = "")] <- comp_card %>% html_element(".match-card__competitor-n") %>% html_text()
l[paste(prefix, "name", sep = "")] <- comp_card %>% html_element(".match-card__competitor-name") %>% html_text()
l[paste(prefix, "club", sep = "")] <- comp_card %>% html_element(".match-card__club-name") %>% html_text()
l[paste(prefix, "dq", sep = "")] <- comp_card %>% html_element(".match-card__disqualification") %>% html_attr("title")
l[paste(prefix, "won", sep = "")] <- comp_card %>% html_element(".match-competitor--loser") %>% length() == 0
return(l)
}
# scrape & process --------------------------------------------------------
html <- read_html('https://web.archive.org/web/20220913034642/https://www.bjjcompsystem.com/tournaments/1869/categories/2053162')
html %>%
# collect all match cards
html_elements("div.tournament-category__match") %>%
keep(is_valid_match) %>%
# apply anonymous function to every item in the list of match cards
map(function(match_card){
match_id <- match_card %>% html_element(".tournament-category__match-card") %>% html_attr("id")
where <- match_card %>% html_element(".bracket-match-header__where") %>% html_text()
when <- match_card %>% html_element(".bracket-match-header__when") %>% html_text()
competitors <- html_nodes(match_card, ".match-card__competitor")
# extract competitior data
comp01 <- competitors[[1]] %>% comp_details(prefix = "comp01_")
comp02 <- competitors[[2]] %>% comp_details(prefix = "comp02_")
winner_idx <- competitors %>% detect_index(is_winner)
# lst for creating a named list
l <- lst(match_id, where, when, winner_idx)
# combine all items and comp lists into single list
l <- c(l,comp01, comp02)
return(l)
}) %>%
# each resulting list item into single-row tibble
map(as_tibble) %>%
# reduce list of tibbles into single tibble
reduce(bind_rows)
Result:
#> # A tibble: 65 × 14
#> match_id where when winne…¹ comp0…² comp0…³ comp0…⁴ comp0…⁵ comp0…⁶ comp0…⁷
#> <chr> <chr> <chr> <int> <chr> <chr> <chr> <chr> <lgl> <chr>
#> 1 match-1-1 FIGH… Sat … 2 58 Christ… Rodrig… <NA> FALSE 66
#> 2 match-1-9 FIGH… Sat … 2 6 Melvin… GF Team Disqua… FALSE 66
#> 3 match-1-… FIGH… Sat … 2 47 Eric R… Atos J… <NA> FALSE 66
#> 4 match-1-… FIGH… Sat … 1 47 Eric R… Atos J… <NA> TRUE 10
#> 5 match-1-… FIGH… Sat … 2 42 Ivan M… CheckM… <NA> FALSE 66
#> 6 match-1-… FIGH… Sat … 2 18 Joel S… Gracie… <NA> FALSE 47
#> 7 match-1-… FIGH… Sat … 1 42 Ivan M… CheckM… <NA> TRUE 26
#> 8 match-1-… FIGH… Sat … 2 34 Matthe… Super … <NA> FALSE 18
#> 9 match-2-9 FIGH… Sat … 1 62 Bryan … Team J… <NA> TRUE 4
#> 10 match-2-… FIGH… Sat … 2 22 Steffe… Six Bl… <NA> FALSE 30
#> # … with 55 more rows, 4 more variables: comp02_name <chr>, comp02_club <chr>,
#> # comp02_dq <chr>, comp02_won <lgl>, and abbreviated variable names
#> # ¹winner_idx, ²comp01_n, ³comp01_name, ⁴comp01_club, ⁵comp01_dq,
#> # ⁶comp01_won, ⁷comp02_n
Created on 2022-09-19 with reprex v2.0.2
Also note that not all matches have a winner and both participants can be disqualified (screenshot), so splitting them to winners & opponents might not be optimal.
I am an infectious diseases physician and have set myself the challenge of creating a dataframe with the UK cumulative published cases of monkeypox, so I can graph it as a runing tally or a chloropleth map as there is no nice dashboard at present for this.
All the data is published as html webpages rather than as a nice csv so I am trying to scrape it all off the internet using the rvest package.
Data is only published intermittently (about twice per week) with the cumulative totals for each of the 4 home nations in UK.
I have managed to get working code to pull data from each of the separate webpages and testing it on the first 2 pages in my mpx_gov_uk_pages list works well giving a small example tibble:
library(tidyverse)
library(lubridate)
library(rvest)
library(janitor)
# load in overview page url which has links to each date of published cases
mpx_gov_uk_overview_page <- c("https://www.gov.uk/government/publications/monkeypox-outbreak-epidemiological-overview")
# extract urls for each date page
mpx_gov_uk_pages <- mpx_gov_uk_overview_page %>%
read_html %>%
html_nodes(".govuk-link") %>%
html_attr('href') %>%
str_subset("\\d{1,2}-[a-z]+-\\d{4}") %>%
paste0("https://www.gov.uk", .) %>%
as.character()
# make table for home nations for each date
table1 <- mpx_gov_uk_pages[1] %>%
read_html() %>%
html_table() %>%
.[[1]] %>%
janitor::clean_names() %>%
rename(area = starts_with(c("uk", "devolved")),
cases = matches(c("total", "confirmed_cases"))) %>%
separate(cases, c("cases", NA), sep = "\\s\\(") %>%
mutate(date = dmy(str_extract(mpx_gov_uk_pages[1], "\\d{1,2}-[a-z]+-\\d{4}")),
cases = as.numeric(gsub(",", "", cases))) %>%
select(date, area, cases) %>%
filter(!area %in% c("Total"))
table2 <- mpx_gov_uk_pages[2] %>%
read_html() %>%
html_table() %>%
.[[1]] %>%
janitor::clean_names() %>%
rename(area = starts_with(c("uk", "devolved")),
cases = matches(c("total", "confirmed_cases"))) %>%
separate(cases, c("cases", NA), sep = "\\s\\(") %>%
mutate(date = dmy(str_extract(mpx_gov_uk_pages[2], "\\d{1,2}-[a-z]+-\\d{4}")),
cases = as.numeric(gsub(",", "", cases))) %>%
select(date, area, cases) %>%
filter(!area %in% c("Total"))
#> Warning: Expected 2 pieces. Missing pieces filled with `NA` in 1 rows [4].
# Combine tables
bind_rows(table1, table2)
#> # A tibble: 8 × 3
#> date area cases
#> <date> <chr> <dbl>
#> 1 2022-08-02 England 2638
#> 2 2022-08-02 Northern Ireland 24
#> 3 2022-08-02 Scotland 65
#> 4 2022-08-02 Wales 32
#> 5 2022-07-29 England 2436
#> 6 2022-07-29 Northern Ireland 19
#> 7 2022-07-29 Scotland 61
#> 8 2022-07-29 Wales 30
I want to automate this by creating a generic function and passing the list of urls to purrr::map_df as there will be an ever growing number of pages (there's already 13):
pull_first_table <- function(x){
x %>%
read_html() %>%
html_table() %>%
.[[1]] %>%
janitor::clean_names() %>%
rename(area = starts_with(c("uk", "devolved")),
cases = matches(c("total", "confirmed_cases"))) %>%
separate(cases, c("cases", NA), sep = "\\s\\(") %>%
mutate(date = dmy(str_extract({{x}}, "\\d{1,2}-[a-z]+-\\d{4}")),
cases = as.numeric(gsub(",", "", cases))) %>%
select(date, area, cases) %>%
filter(!area %in% c("Total"))
}
summary_table <- map_df(mpx_gov_uk_pages, ~ pull_first_table)
Error in `dplyr::bind_rows()`:
! Argument 1 must be a data frame or a named atomic vector.
Run `rlang::last_error()` to see where the error occurred.
The generic function seems to work ok when I supply it with a single element e.g. mpx_gov_uk_cases[2] but I cannot seem to get map_df to work properly even though the webscraping is producing tibbles.
All help and pointers greatly welcomed.
We just need the function and not a lambda expression.
map_dfr(mpx_gov_uk_pages, pull_first_table)
-output
# A tibble: 52 × 3
date area cases
<date> <chr> <dbl>
1 2022-08-02 England 2638
2 2022-08-02 Northern Ireland 24
3 2022-08-02 Scotland 65
4 2022-08-02 Wales 32
5 2022-07-29 England 2436
6 2022-07-29 Northern Ireland 19
7 2022-07-29 Scotland 61
8 2022-07-29 Wales 30
9 2022-07-26 England 2325
10 2022-07-26 Northern Ireland 18
# … with 42 more rows
If we use the lambda expression,
map_dfr(mpx_gov_uk_pages, ~ pull_first_table(.x))
I'm trying to write a script that will go through a list of players provided by the website Transfermarkt and gathering some information about them. For that, I've created the script below, but faced a problem with 1 of the 29 players in the list. Due to one page being arranged differently than the others, the code outputs a list of only 28 players since it can't find information on the aforementioned page.
I understand why the code I've written doesn't find any information on the given page and thus giving me a list of 28, but I don't know how to rewrite a code in order to achieve what I want:
for the script to simply replace the entry with a "-" if it does not find anything, in this case a nationality, for the node on a particular page and return a full list with 29 players with all the other info in it.
The player page in question is this and while the other pages has the node used in the code for nationality, here it's ".dataValue span".
I'm still quite new to R and it might be an easy fix, but atm I can't figure it out. Any help or advise is appreciated.
URL <- "http://www.transfermarkt.de/fc-bayern-munchen/leistungsdaten/verein/27/reldata/%262016/plus/1"
WS <- read_html(URL)
Team <- WS %>% html_nodes(".spielprofil_tooltip") %>% html_attr("href") %>% as.character()
Team <- paste0("http://www.transfermarkt.de",Team)
Catcher <- data.frame(Name=character(),Nat=character(),Vertrag=character())
for (i in Team) {
WS1 <- read_html(i)
Name <- WS1 %>% html_nodes("h1") %>% html_text() %>% as.character()
Nat <- WS1 %>% html_nodes(".hide-for-small+ p .dataValue span") %>% html_text() %>% as.character()
Vertrag <- WS1 %>% html_nodes(".dataValue:nth-child(9)") %>% html_text() %>% as.character()
if (length(Nat) > 0) {
temp <- data.frame(Name,Nat,Vertrag)
Catcher <- rbind(Catcher,temp)
}
else {}
cat("*")
}
num_Rows <- nrow(Catcher)
odd_indexes <- seq(1,num_Rows,2)
Catcher <- data.frame(Catcher[odd_indexes,])
It's honestly easier to scrape the whole table, just in case things move around. I find purrr is a helpful complement for rvest, allowing you to iterate over URLs and node lists and easily coerce results to data.frames:
library(rvest)
library(purrr)
# build dynamically if you like
urls <- c(boateng = 'http://www.transfermarkt.de/jerome-boateng/profil/spieler/26485',
friedl = 'http://www.transfermarkt.de/marco-friedl/profil/spieler/156990')
# scrape once, parse iteratively
html <- urls %>% map(read_html)
df <- html %>%
map(html_nodes, '.dataDaten p') %>%
map_df(map_df,
~list(
variable = .x %>% html_node('.dataItem') %>% html_text(trim = TRUE),
value = .x %>% html_node('.dataValue') %>% html_text(trim = TRUE) %>% gsub('\\s+', ' ', .)
),
.id = 'player')
df
#> # A tibble: 17 × 3
#> player variable value
#> <chr> <chr> <chr>
#> 1 boateng Geb./Alter: 03.09.1988 (28)
#> 2 boateng Geburtsort: Berlin
#> 3 boateng Nationalität: Deutschland
#> 4 boateng Größe: 1,92 m
#> 5 boateng Position: Innenverteidiger
#> 6 boateng Vertrag bis: 30.06.2021
#> 7 boateng Berater: SAM SPORTS
#> 8 boateng Nationalspieler: Deutschland
#> 9 boateng Länderspiele/Tore: 67/1
#> 10 friedl Geb./Alter: 16.03.1998 (19)
#> 11 friedl Nationalität: Österreich
#> 12 friedl Größe: 1,87 m
#> 13 friedl Position: Linker Verteidiger
#> 14 friedl Vertrag bis: 30.06.2021
#> 15 friedl Berater: acta7
#> 16 friedl Akt. Nationalspieler: Österreich U19
#> 17 friedl Länderspiele/Tore: 6/0
Alternately, that particular piece of data is in three places on those pages, so if one is inconsistent there's a chance the others are better. Or grab them from the table with the whole team—countries are not printed, but they're in the title attribute of the flag images, which can be grabbed with html_attr:
html <- read_html('http://www.transfermarkt.de/fc-bayern-munchen/leistungsdaten/verein/27/reldata/%262016/plus/1')
team <- html %>%
html_nodes('tr.odd, tr.even') %>%
map_df(~list(player = .x %>% html_node('a.spielprofil_tooltip') %>% html_text(),
nationality = .x %>% html_nodes('img.flaggenrahmen') %>% html_attr('title') %>% toString()))
team
#> # A tibble: 29 × 2
#> player nationality
#> <chr> <chr>
#> 1 Manuel Neuer Deutschland
#> 2 Sven Ulreich Deutschland
#> 3 Tom Starke Deutschland
#> 4 Jérôme Boateng Deutschland
#> 5 David Alaba Österreich
#> 6 Mats Hummels Deutschland
#> 7 Javi Martínez Spanien
#> 8 Juan Bernat Spanien
#> 9 Philipp Lahm Deutschland
#> 10 Rafinha Brasilien, Deutschland
#> # ... with 19 more rows
Yes, that's just another "how-to-scrape" question. Sorry for that, but I've read the previous answers and the manual for rvest as well.
I'm doing web-scraping for my homework (so I do not plan to use the data for any commercial issue). The idea is to show that average skill of team affect individual skill. I'm trying to use CS:GO data from HLTV.org for it.
The information is available at http://www.hltv.org/?pageid=173&playerid=9216
I need two tables: Keystats (data only) and Teammates (data and URLs). I try to use CSS selectors generated by SelectorGadget and I also tryed to analyze the source code of webpage. I've failed. I'm doing the following:
library(rvest)
library(dplyr)
url <- 'http://www.hltv.org/?pageid=173&playerid=9216'
info <- html_session(url) %>% read_html()
info %>% html_node('.covSmallHeadline') %>% html_text()
Can you please tell me that is the right CSS selector?
If you look at the source, those tables aren't HTML tables, but just piles of divs with inconsistent nesting and inline CSS for alignment. Thus, it's easiest to just grab all the text and fix the strings afterwards, as the data is either all numeric or not at all.
library(rvest)
library(tidyverse)
h <- 'http://www.hltv.org/?pageid=173&playerid=9216' %>% read_html()
h %>% html_nodes('.covGroupBoxContent') %>% .[-1] %>%
html_text(trim = TRUE) %>%
strsplit('\\s*\\n\\s*') %>%
setNames(map_chr(., ~.x[1])) %>% map(~.x[-1]) %>%
map(~data_frame(variable = gsub('[.0-9]+', '', .x),
value = parse_number(.x)))
#> $`Key stats`
#> # A tibble: 9 × 2
#> variable value
#> <chr> <dbl>
#> 1 Total kills 9199.00
#> 2 Headshot %% 46.00
#> 3 Total deaths 6910.00
#> 4 K/D Ratio 1.33
#> 5 Maps played 438.00
#> 6 Rounds played 11242.00
#> 7 Average kills per round 0.82
#> 8 Average deaths per round 0.61
#> 9 Rating (?) 1.21
#>
#> $TeammatesRating
#> # A tibble: 4 × 2
#> variable value
#> <chr> <dbl>
#> 1 Gabriel 'FalleN' Toledo 1.11
#> 2 Fernando 'fer' Alvarenga 1.11
#> 3 Joao 'felps' Vasconcellos 1.09
#> 4 Epitacio 'TACO' de Melo 0.98