I'm working with (un-paired/independent) environmental data collected over 2 consecutive months that I'd like to compare for each calendar year (CYR). I have many years and several months of data so running each test one by one is too tedious. I found a useful piece of code for running multiple Kruskal-Wallis tests, but given that the Wilcoxon only compares 2 groups at once and my groups (Month or Month2) change slightly per year (depending on when data were collected) this code won't work - that I know of. Thanks in advance!
# Kruskal-Wallis code (hoping for something like this using wilcoxon test instead):
by(dry_season, dry_season$CYR, function(z) kruskal.test(temp ~ Month2, data = z))
# With these settings (March and April are just examples from my data):
wilcox.test(March, April, mu=0, alt="two.sided", paired=F, conf.int=T, conf.level=0.8, exact = F, correct = F)
# Data:
> dput(dry_season)
structure(list(use_for_analysis = structure(c(3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L,
3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L,
3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L,
1L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 1L,
3L, 3L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L,
1L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
1L, 1L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 1L, 3L, 1L, 3L, 3L, 3L, 3L, 1L, 3L, 1L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
1L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
1L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 1L,
3L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 1L, 3L,
3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L), levels = c("Pre_SAV", "Pre_storm", "Standard"
), class = "factor"), CYR = structure(c(9L, 9L, 9L, 9L, 12L,
12L, 9L, 9L, 9L, 9L, 12L, 7L, 6L, 12L, 6L, 6L, 12L, 12L, 2L,
9L, 9L, 9L, 2L, 9L, 7L, 5L, 6L, 6L, 7L, 9L, 6L, 12L, 12L, 12L,
12L, 2L, 9L, 2L, 9L, 9L, 9L, 12L, 5L, 7L, 2L, 9L, 12L, 6L, 5L,
6L, 6L, 7L, 6L, 5L, 12L, 12L, 2L, 9L, 12L, 7L, 9L, 9L, 7L, 2L,
5L, 5L, 12L, 2L, 2L, 9L, 12L, 2L, 5L, 7L, 6L, 9L, 6L, 7L, 12L,
5L, 7L, 6L, 6L, 6L, 12L, 9L, 12L, 6L, 2L, 2L, 5L, 9L, 2L, 9L,
5L, 12L, 6L, 9L, 12L, 2L, 12L, 7L, 2L, 5L, 7L, 2L, 6L, 9L, 7L,
6L, 6L, 5L, 6L, 2L, 9L, 6L, 2L, 9L, 12L, 2L, 6L, 7L, 9L, 12L,
7L, 12L, 9L, 12L, 5L, 5L, 12L, 6L, 2L, 2L, 7L, 7L, 6L, 2L, 9L,
7L, 5L, 6L, 2L, 6L, 5L, 6L, 12L, 12L, 9L, 5L, 9L, 2L, 7L, 2L,
5L, 7L, 9L, 6L, 2L, 7L, 2L, 5L, 12L, 6L, 7L, 7L, 6L, 7L, 2L,
6L, 6L, 5L, 5L, 12L, 12L, 6L, 7L, 9L, 5L, 9L, 12L, 2L, 9L, 6L,
2L, 7L, 12L, 2L, 7L, 6L, 9L, 6L, 7L, 5L, 5L, 5L, 2L, 7L, 6L,
5L, 7L, 7L, 2L, 9L, 7L, 12L, 12L, 2L, 12L, 6L, 9L, 12L, 6L, 5L,
6L, 9L, 5L, 9L, 2L, 5L, 7L, 7L, 9L, 7L, 7L, 5L, 7L, 5L, 2L, 6L,
12L, 2L, 2L, 6L, 12L, 7L, 5L, 5L, 9L, 9L, 12L, 5L, 7L, 6L, 5L,
5L, 6L, 5L, 7L, 2L, 2L, 7L, 12L, 12L, 2L, 12L, 5L, 5L, 6L, 2L,
5L, 7L, 7L, 2L, 5L, 6L, 2L, 5L, 2L, 7L, 7L, 12L, 5L, 5L, 2L,
5L, 12L, 5L, 7L, 5L, 7L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), levels = c("2005", "2006", "2007",
"2008", "2014", "2015", "2016", "2017", "2018", "2019", "2021",
"2022"), class = "factor"), Season = c("DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY"), Month = c(3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 4, 4, 3, 4,
3, 3, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 2, 3, 3, 2,
2, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 4, 3, 3, 3, 2, 3,
2, 3, 3, 2, 3, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 3, 4, 4, 3, 3, 4,
3, 3, 4, 3, 3, 4, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 3,
3, 3, 4, 2, 3, 4, 3, 3, 2, 3, 3, 4, 4, 3, 3, 3, 3, 2, 2, 3, 2,
4, 4, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 3, 4, 3, 2, 4, 4,
3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 4, 2, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3,
4, 2, 4, 3, 2, 3, 4, 2, 3, 3, 4, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3,
4, 3, 3, 3, 3, 3, 3, 2, 3, 4, 4, 3, 3, 2, 3, 3, 3, 3, 3, 4, 4,
3, 3, 4, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 4,
3, 3, 4, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 4, 3, 4, 2, 3, 3, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2),
Site = c(17, 46, 27, 37, 18, 40, 45, 16, 47, 26, 29, 23,
17, 1, 9, 47, 19, 41, 16, 44, 15, 36, 17, 25, 6, 47, 8, 16,
22, 8, 40, 30, 42, 2, 20, 31, 35, 18, 43, 14, 24, 11, 16,
21, 15, 7, 31, 15, 46, 6, 31, 13, 41, 39, 21, 43, 14, 42,
3, 41, 34, 23, 47, 47, 8, 45, 10, 30, 19, 40, 32, 39, 15,
20, 14, 6, 21, 5, 22, 38, 12, 39, 46, 7, 4, 33, 44, 30, 13,
29, 44, 13, 38, 22, 14, 9, 13, 41, 33, 20, 23, 4, 46, 17,
19, 8, 20, 39, 46, 45, 5, 7, 38, 12, 12, 29, 37, 32, 5, 28,
12, 3, 5, 24, 40, 45, 21, 8, 37, 43, 34, 19, 21, 45, 18,
45, 4, 7, 38, 11, 6, 28, 11, 37, 13, 44, 25, 46, 31, 36,
4, 27, 2, 36, 42, 27, 20, 18, 44, 39, 22, 18, 35, 3, 10,
34, 11, 44, 10, 27, 36, 12, 35, 6, 47, 43, 17, 3, 41, 11,
26, 6, 19, 10, 26, 1, 36, 35, 38, 2, 30, 26, 26, 5, 19, 34,
43, 9, 35, 40, 33, 43, 23, 10, 16, 7, 27, 5, 37, 25, 2, 39,
42, 4, 1, 18, 33, 29, 9, 20, 37, 42, 9, 15, 8, 11, 25, 3,
25, 24, 28, 34, 42, 34, 14, 32, 32, 21, 1, 28, 12, 10, 24,
23, 22, 2, 33, 31, 14, 33, 41, 31, 38, 15, 3, 13, 9, 23,
22, 24, 1, 36, 7, 40, 30, 32, 32, 24, 2, 30, 35, 16, 25,
29, 1, 28, 17, 26, 29, 27, 28, 4, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47), temp = c(24.7, 24.7,
24.3, 24.8, 23.5, 26.3, 24.2, 24.6, 24.1, 24.6, 22.5, 25.8,
23.2, 25.4, 23.7, 25.8, 23.9, 25.6, 18.66, 25.7, 24.8, 24.6,
21.36, 24, 24.7, 20.9, 24, 23.3, 25.7, 22.5, 24.8, 23.5,
25.3, 26.3, 23.9, 25.03, 24.9, 21.58, 25.6, 24.7, 24.5, 25.4,
22.4, 25.9, 19.24, 23.4, 23.4, 23.2, 20.5, 25.3, 26.3, 22.5,
25, 22.2, 24, 26, 19.32, 24.5, 25.8, 23.2, 25.7, 24.8, 26,
23.6, 21.7, 19.9, 25.4, 25.57, 21.95, 27.1, 23.9, 24.9, 21.9,
24.6, 23.8, 24.2, 26.1, 24.7, 24, 21.6, 22.9, 27.4, 26.3,
25.2, 25.6, 25.4, 25.3, 26.4, 19.48, 25.82, 21.4, 25, 25.15,
25.2, 22.3, 26.1, 24.1, 25.8, 24.1, 23.04, 23.6, 24.6, 24.18,
22.9, 26, 22.85, 26, 27.3, 26.9, 26.6, 25, 22.4, 28.4, 19.79,
25.3, 26.3, 25.72, 24.8, 26.6, 25.29, 24.1, 25.1, 25.1, 23.5,
23.1, 24.9, 25.7, 26.4, 21.5, 20.8, 24.3, 26.2, 23.82, 23.9,
26.1, 27, 25.8, 23.37, 28.5, 23.9, 23.2, 26.2, 20.55, 26.6,
22.5, 26.2, 23.6, 25.1, 25.4, 22.4, 24.8, 26.04, 25.3, 25.88,
21.8, 28.6, 25.5, 26.8, 24.51, 23.7, 24.02, 22.9, 24.4, 25.9,
23.3, 28.2, 25, 26.3, 21, 26.7, 28.6, 22.5, 22.3, 26.5, 26.5,
28, 25.9, 25.5, 21.5, 25.8, 23.6, 23.79, 26.1, 24.7, 27.16,
25.5, 24.3, 26.97, 23.7, 26.2, 25.8, 27.2, 29.9, 23.7, 23,
21.5, 24.93, 24.5, 28.6, 22.1, 28.3, 27.4, 24.17, 25.8, 26.1,
26.8, 24.1, 23.66, 24.3, 26.6, 24.5, 27.3, 28.1, 24.2, 26.6,
25.8, 22.4, 26.2, 22.13, 24.5, 24, 27.2, 26.9, 25.3, 24.8,
22.6, 29.5, 24.7, 28.06, 27.1, 24.3, 27.37, 25.89, 26, 27.5,
28.7, 22.3, 24.2, 26, 26.7, 26.8, 22, 29.2, 27.7, 24, 24.4,
27.9, 22.7, 27.2, 28.09, 26.83, 28.4, 25.3, 27, 25.52, 27.9,
23.4, 24.6, 27.4, 28.3, 24.9, 24.4, 26.1, 26.58, 23.6, 28.3,
28.94, 24.4, 26.3, 29.5, 24.6, 28.1, 25.9, 24.6, 26.48, 24.8,
28.5, 25.3, 29.9, 24.6, 29.3, 24.46, 20, 20, 19, 20, 20,
19, 23, 21, 22, 21, 21, 20, 19, 19, 19, 19, 20, 19, 20, 17,
18, 19, 19, 20, 20, 19, 18, 17.5, 19, 19, 19, 19, 18, 18,
19, 19, 19, 19, 20, 20, 19, 20, 20, 20, 20, 21, 21), sal = c(21.29,
33.36, 15.14, 21.77, 25.37, 22.98, 32.4, 22.6, 32.12, 15.49,
20.52, 11.92, 27.33, 28.37, 30.53, 34.62, 24.45, 22.04, 32.48,
33.58, 25.2, 20.77, 27.89, 11.36, 23.64, 28.55, 31.21, 27.49,
13.21, 29.39, 31.54, 21.53, 23.25, 27.55, 22.52, 23.99, 20.4,
25.94, 32.65, 26.36, 11.76, 25.08, 24.33, 13.2, 32.46, 29.36,
22.7, 27.51, 30.08, 31.35, 27.92, 20.49, 32.29, 19.09, 20.72,
25.37, 32.41, 29.26, 28.22, 20.01, 20.07, 11.69, 26.48, 25.8,
30.29, 30.64, 25.47, 25.88, 24.12, 32.13, 22.37, 29.3, 24.44,
12.71, 28.69, 29.94, 25.05, 25.01, 20.79, 13.21, 21.48, 31.62,
33.74, 31.89, 28.01, 20.16, 23.74, 27.41, 32.55, 26.18, 27.49,
27.94, 27.29, 12.98, 26.13, 25.97, 29.49, 25.37, 22.47, 24.47,
20.04, 25.29, 26.56, 23.94, 15.42, 31.41, 24.39, 28.7, 26.42,
33.79, 30.42, 29.19, 31.53, 31.66, 28.33, 25.14, 26.8, 17.55,
27.37, 26.61, 29.8, 25.43, 30.31, 20.04, 17.71, 21.32, 13.05,
26.14, 17.23, 28.6, 22.52, 23.33, 19.29, 26.6, 13.54, 28.12,
31.57, 29.08, 27.46, 22.86, 22.71, 24.7, 32.59, 29.62, 28.31,
33.71, 19.66, 21.39, 16.24, 17.31, 30.67, 24.28, 25.54, 26.56,
26.9, 15.19, 16.56, 22.54, 26.2, 8.76, 19.63, 21.29, 22.82,
31.26, 22.2, 17.99, 30.07, 26.71, 29.02, 25.31, 29.7, 28.69,
17.48, 27.75, 27.64, 33.26, 18.74, 30.66, 28.05, 28.95, 19.8,
33.7, 13.48, 30.12, 24.23, 25.18, 22.57, 25.72, 7.88, 30.94,
15.33, 25.33, 15.89, 26.62, 15.4, 18.21, 27.07, 22.95, 29.72,
27.77, 18.55, 28, 19, 29.13, 18.57, 28.48, 20.25, 34, 21.65,
23.11, 29.77, 20.19, 32.93, 29.61, 32.25, 15.67, 18.5, 15.12,
30.52, 12.57, 9.62, 28.82, 29.05, 16.39, 23.45, 29.5, 10.56,
29.33, 23.72, 23.66, 20.33, 25.49, 25.69, 27.77, 25.3, 17.2,
20.69, 12.68, 30.88, 14.86, 24.92, 29.62, 8.06, 22.97, 13.57,
27.39, 27.45, 21.81, 16.97, 24.86, 26.03, 17.07, 15.57, 25.08,
33.34, 25.08, 29.94, 14.42, 23.65, 24.78, 30.59, 10.25, 24.55,
26.69, 23.37, 26.26, 25.24, 16.62, 31.83, 17.7, 10.51, 24.08,
17.45, 22.16, 32.63, 21.56, 23.51, 21.5, 14.04, 21.57, 13.7,
32.12, 37, 40, 38, 37, 38, 37, 28, 35, 32, 35, 36, 39, 36,
37, 35, 38, 36, 37, 38, 36, 31, 30, 28, 28, 28, 35, 31, 32,
31, 34, 34, 34, 25, 30, 25, 35, 35, 35, 34, 34, 32, 33, 32,
34, 33, 34, 34), DO = c(5.2, 2.7, 5.3, 4, 4.98, 5.04, 4,
5.4, 5, 6.1, 4.29, 4.68, 4.2, 6.51, 3.17, 4.91, 5.02, 4.24,
5.99, 4.5, 4.9, 5, NA, 5.9, 3.56, 5.7, 3.22, 5.2, 5.25, 5.9,
2.4, 4.45, 5.61, 5.42, 6.03, 4.47, 5.6, 9.91, 5.2, 5.9, 6.7,
2.05, 3.74, 6.4, NA, 5.5, 4.77, 7.07, 6.57, 5.17, 2.16, 4.4,
3.85, 5.05, 5.68, 4.74, NA, 6.8, 5.66, 5.57, 5.5, 6.9, 5.05,
7.89, 4.29, 6.78, 3.02, 4.48, 5.73, 5.3, 5.16, 5.96, 5.23,
7.16, 3.92, 4.9, 4.94, 6.7, 5.73, 7.05, 4.46, 3.53, 5.45,
5.05, 7.64, 6.2, 6.19, 4.09, NA, 4.61, 6.69, 5.1, 5.76, 7.2,
4.85, 4.09, 4.69, 10.2, 4.55, 9.87, 5.94, 6.96, 7.25, 6.65,
5.8, NA, 5.64, 5.5, 7.26, 6.83, 3.35, 5.48, 4.15, NA, 5.4,
3.59, 6.69, 5.3, 5.45, 6.22, 4.4, 7.98, 6.1, 6.07, 8.14,
6.45, 7.6, 5.72, 6.94, 7.13, 4.6, 5.03, 6.32, 7.21, 6.88,
8.69, 10.57, NA, 6.6, 7.05, 5.63, 5.41, NA, 3.61, 5.48, 6.42,
5.97, 6.94, 6.1, 8.26, 7.5, 6.06, 8.04, 6.07, 7.49, 4.94,
8.1, 5.52, 8.33, 8.82, 9.2, 7.63, 5.73, 4.69, 5.14, 7.18,
4.6, 7.32, NA, 5.33, 5.9, 5.83, 7.49, 5.21, 6.17, 7.99, 10.5,
7.2, 7.62, 5.3, 6.01, NA, 8.4, 3.92, 8.61, 7.85, 5.16, 7.28,
8.68, 3.79, 7.2, 6.19, 7.29, 5.72, 9.48, 7.15, 8.29, 7.8,
7.33, 7.66, 12.55, 9.88, 10.38, 5.3, 11.45, 4.45, 5.54, NA,
5.41, 4.52, 5.5, 6.73, 9.1, 8.15, 7.59, 9.4, 9.98, 7.7, NA,
9.3, 8.94, 9.74, 7.8, 8.95, 9.32, 7.25, 7.12, 8.11, 6.76,
5.75, 5.34, 7, 9.45, 6.19, 5.56, 7.84, 7.03, 9.26, 7.7, 8.6,
4.59, 6.01, 6.47, 7.6, 8.97, 5.17, 6.42, 7.32, 12.07, 8.38,
8.58, 7.2, 5.88, 4.77, NA, 8.23, 8.19, 12.67, 8.45, 8.76,
6.38, 9.51, 11.91, 8.1, 7.77, 5.58, 10.13, 10.21, NA, 11.72,
9.22, 7.87, 14.43, 9.22, NA, 9.88, 7.36, 10.71, 7.92, 7.42,
8.09, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA), water_depth = c(70, 45, 64, 76, 68,
95, 75, 91, 65, 84, 80, 80, 55, 98, 51, 97, 85, 92, 62, 65,
98, 98, 58, 83, 68, NA, 60, 80, 92, 68, 95, 85, 143, 108,
112, 72, 101, 63, 80, 106, 103, 75, 51, 85, 49, 85, 101,
72, NA, 70, 90, 117, 95, 81, 103, 98, 58, 53, 107, 72, 106,
102, 85, 74, 63, NA, 73, 70, 62, 81, 113, 79, 68, 96, 79,
90, 86, 95, 118, 86, 128, 101, 42, 70, 143, 95, 68, 100,
52, 60, NA, 90, 52, 102, 69, 84, 90, 43, 110, 64, 109, 96,
62, 99, 80, 110, 105, 90, 52, 83, 70, 80, 91, 40, 110, 105,
59, 96, 97, 56, 85, 102, 105, 113, 87, 98, 91, 75, 86, NA,
118, 103, 63, 84, 63, 62, 52, 115, 55, 83, 88, 104, 33, 78,
74, 43, 94, 59, 80, 80, 100, 50, 120, 72, NA, 30, 103, 98,
74, 95, 62, 79, 119, 62, 89, 57, 35, 53, 55, 85, 76, 88,
79, 75, 95, 45, 75, 79, NA, 74, 95, 65, 76, 50, 50, 95, 104,
35, 100, 62, 76, 78, 83, 88, 72, 75, 60, 60, 49, NA, 76,
50, 64, 73, 64, 83, 73, 80, 92, 64, 90, 78, 55, 64, 60, 57,
75, 71, 60, 48, 90, 67, 53, 67, 49, 65, 61, 77, 52, 60, 88,
68, 68, 70, 85, 75, 79, 64, 71, 57, 86, 52, 63, 70, 66, 82,
63, 60, 60, 70, 39, 77, 88, 84, 52, 98, 39, 50, 75, 62, 80,
75, 38, 72, 45, 66, 67, 50, 62, 80, 80, 70, 48, 59, 47, 70,
68, 65, 81, 46, 85, 49, 31, 29, 46, 41, 67, 42, 82, 80, 70,
68, 78, 52, 38, 30, 90, 90, 80, 83, 87, 75, 69, 28, 91, 108,
109, 80, 59, 68, 90, 90, 85, 80, 90, 90, 85, 95, 80, 80,
91, 89, 42, 78, 85, 72, 87, 90, 87), sed_depth = c(51, 4,
52, 47, 2, 45, 36, 39, 25, 54, 17, 18, 10, 45, 25, 78, 7,
69, NA, 105, 60, 35, NA, 58, 27, NA, 0, 15, 33, 6, 60, 29,
39, 22, 14, NA, 40, NA, 80, 34, 50, 19, 93, 33, NA, 39, 32,
15, NA, 50, 40, 4, 80, 92, 25, 72, NA, 27, 8, 73, 40, 66,
45, NA, 0, NA, 22, NA, NA, 46, 9, NA, 34, 27, 50, 47, 34,
21, 23, 54, 7, 49, 7, 60, 7, 28, 72, 36, NA, NA, NA, 30,
NA, 15, 87, 10, 10, 73, 59, NA, 23, 5, NA, 24, 25, NA, 15,
55, 4, 81, 25, 41, 61, NA, 35, 25, NA, 7, 5, NA, 15, 63,
25, 34, 73, 63, 32, 0, 45, NA, 25, 27, NA, NA, 0, 3, 5, NA,
61, 52, 32, 70, NA, 48, 53, 100, 30, 4, 37, 61, 9, NA, 10,
NA, NA, 75, 18, 18, NA, 75, NA, 1, 24, 33, 40, 35, 30, 100,
NA, 65, 50, 34, 58, 17, 45, 90, 19, 61, NA, 61, 33, NA, 13,
35, NA, 94, 42, NA, 57, 50, 26, 75, 27, 13, 40, 57, NA, 24,
61, NA, 9, 68, NA, 29, 43, 10.17, 21, NA, 30, 30, 38, 22,
90, 3, 60, 2, 14, 21, NA, 78, 42, 55, 30, 48, 0, 67, 69,
73, NA, 50, 23, NA, NA, 35, 29, 13, 53, 30, 74, 33, 1, 58,
43, 35, 30, 44, 26, 52, 35, NA, NA, 56, 45, 42, NA, 10, 21,
30, 30, NA, 73, 45, 57, NA, 63, 29, NA, 45, NA, 35, 38, 20,
35, 42, NA, 65, 24, 50, 5, 63, 15, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Month2 = structure(c(3L,
2L, 3L, 2L, 3L, 2L, 2L, 3L, 2L, 3L, 3L, 4L, 4L, 3L, 4L, 3L,
3L, 2L, 3L, 2L, 3L, 2L, 3L, 3L, 4L, 3L, 4L, 4L, 4L, 3L, 3L,
3L, 2L, 3L, 3L, 2L, 2L, 3L, 2L, 3L, 3L, 3L, 3L, 4L, 3L, 3L,
3L, 4L, 3L, 4L, 3L, 4L, 3L, 3L, 3L, 2L, 3L, 2L, 3L, 3L, 2L,
3L, 3L, 2L, 4L, 3L, 3L, 2L, 3L, 2L, 3L, 2L, 3L, 4L, 4L, 3L,
3L, 4L, 3L, 3L, 4L, 3L, 3L, 4L, 3L, 2L, 2L, 3L, 3L, 2L, 3L,
3L, 2L, 3L, 3L, 3L, 4L, 2L, 3L, 3L, 3L, 4L, 2L, 3L, 4L, 3L,
3L, 2L, 3L, 3L, 4L, 4L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 2L, 4L,
4L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 4L, 3L,
4L, 3L, 2L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 3L,
2L, 4L, 2L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 3L,
4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 4L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 2L, 4L, 3L, 2L, 3L, 4L, 2L, 3L, 3L, 4L, 3L, 3L,
2L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 3L,
2L, 3L, 4L, 4L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 3L,
3L, 4L, 2L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L,
3L, 3L, 3L, 3L, 4L, 3L, 3L, 4L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 2L, 4L, 3L, 4L, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), levels = c("Jan",
"Feb", "Mar", "Apr"), class = "factor")), row.names = c(NA,
-329L), class = c("tbl_df", "tbl", "data.frame"))
This will run the analysis for the temp data and should give you what you need to get the other variables you want. First we need to get rid of the empty factor levels in CYR:
dry_season <- droplevels(dry_season)
Now split the data and get rid of the empty factor levels in Month2:
dry_season.splt <- split(dry_season, dry_season$CYR)
dry_season.splt <- lapply(dry_season.splt, droplevels)
Now run the analysis for temp
results.temp <- lapply(dry_season.splt, function(x) wilcox.test(temp~Month2, x, conf.int=TRUE, conf.level=0.8, exact=FALSE, correct=FALSE))
names(results.temp)
results.temp[["2005"]] # or results.temp[[1]]
#
# Wilcoxon rank sum test
#
# data: temp by Month2
# W = 87.5, p-value = 0.5245
# alternative hypothesis: true location shift is not equal to 0
# 80 percent confidence interval:
# -9.999840e-01 1.470944e-05
# sample estimates:
# difference in location
# -1.393135e-05
Just change temp to the other variables to get their results.
I have a dataset containing one DV called Soma(Somatotype) and three IV called WT2(weight at age 2),WT9(weight at age9),WT18(weight at age18) and I am going to plot Soma against weight at each of the three time points. But since it is not exactly like a time series dataset and I am totally stuck with this.
I was thinking of use ggplot but I am not familiar with that and failed a lot.
The dataset:
structure(list(X = 67:136, Sex = c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L),
WT2 = c(13.6, 11.3, 17, 13.2, 13.3, 11.3, 11.6, 11.6, 12.4,
17, 12.2, 15, 14.5, 10.2, 12.2, 12.8, 13.6, 10.9, 13.1, 13.4,
11.8, 12.7, 11.8, 14.1, 10.9, 11.8, 13.6, 12.7, 12.3, 11.5,
12.6, 14.1, 11.5, 12, 10.9, 12.7, 11.3, 11.8, 15.4, 10.9,
13.2, 14.3, 11.1, 13.6, 12.9, 13.5, 16.3, 13.6, 10.2, 12.6,
12.9, 13.3, 13.4, 12.7, 12.2, 15.4, 12.7, 13.2, 12.4, 10.9,
13.4, 10.6, 11.8, 14.2, 12.7, 13.2, 11.8, 13.3, 13.2, 15.9
), HT2 = c(87.7, 90, 89.6, 90.3, 89.4, 85.5, 90.2, 82.2,
85.6, 97.3, 87.1, 88.9, 87.6, 82.6, 87.1, 84, 83.6, 81.4,
89.7, 88.4, 86.4, 83.8, 87.6, 94, 82, 86.4, 88.9, 86.7, 86.4,
86.4, 83.8, 88.9, 85.9, 86.2, 85.1, 88.6, 83, 88.9, 89.7,
81.3, 88.7, 88.4, 85.1, 91.4, 87.6, 86.1, 94, 85.9, 82.2,
88.2, 87.5, 88.6, 86.9, 86.4, 80.9, 90, 94, 89.7, 86.4, 82.6,
86.4, 81.8, 86.2, 86, 91.4, 88.9, 88.6, 86.4, 94, 89.2),
WT9 = c(32.5, 27.8, 44.4, 40.5, 29.9, 22.8, 30, 24.3, 29.9,
44.5, 31.8, 32.1, 39.2, 23.7, 26, 36.3, 29.9, 22.2, 34.4,
35.5, 33, 25.7, 29.2, 31.7, 23.7, 35.3, 39, 30.8, 29.3, 28,
33, 47.4, 27.6, 34.2, 28.1, 27.5, 23.9, 32.2, 29.4, 22, 28.8,
38.8, 36, 31.3, 26.9, 33.3, 36.2, 29.5, 23.4, 33.8, 34.5,
34.4, 38.2, 31.7, 26.6, 34.2, 27.7, 28.5, 30.5, 26.6, 39,
25, 25.6, 34.2, 29.8, 27.9, 27, 41.4, 41.6, 42.4), HT9 = c(133.4,
134.8, 141.5, 137.1, 136.1, 130.6, 136, 128, 132.4, 152.5,
138.4, 135.2, 142.3, 129.1, 133.2, 136.3, 133.1, 123.2, 135.8,
139.5, 139.4, 124.2, 135.6, 144.1, 123.8, 134.6, 137.2, 139.8,
128.8, 134.2, 136.5, 140.8, 132.1, 137, 129, 139.4, 125.6,
137.1, 133.6, 121.4, 133.6, 134.1, 139.4, 138.1, 133.2, 138.4,
139.5, 132.8, 129.8, 144.8, 138.9, 140.3, 143.8, 133.6, 123.5,
139.9, 136.1, 135.8, 131.9, 133.1, 130.9, 126.3, 135.9, 135,
135.5, 136.5, 134, 138.2, 142, 140.8), LG9 = c(28.4, 26.9,
31.9, 31.8, 27.7, 23.4, 27.2, 25.1, 27.5, 32.7, 28.3, 26.9,
31.6, 25.9, 26.7, 28.4, 26.2, 24.9, 32.3, 30, 26.9, 26.2,
26.3, 27.2, 25.5, 30.4, 32.4, 26, 28.3, 25, 29, 32.3, 26.3,
27.3, 27.4, 25.7, 24.5, 28.2, 26.6, 24.4, 26.5, 31.1, 28.2,
27.6, 26.3, 29.4, 28, 27.6, 22.6, 28.3, 30.5, 31.2, 29.8,
27.5, 27.2, 29.1, 26.7, 25.5, 28.6, 25.4, 29.3, 25, 23.7,
27.6, 27, 26.5, 26.5, 32.5, 31, 32.6), ST9 = c(74L, 65L,
104L, 79L, 83L, 60L, 67L, 44L, 76L, 81L, 59L, 67L, 72L, 40L,
40L, 54L, 67L, 58L, 57L, 61L, 64L, 48L, 61L, 74L, 50L, 58L,
80L, 57L, 44L, 46L, 57L, 69L, 51L, 44L, 48L, 68L, 22L, 59L,
58L, 44L, 58L, 57L, 64L, 64L, 58L, 73L, 52L, 52L, 60L, 107L,
62L, 88L, 78L, 52L, 40L, 71L, 30L, 76L, 59L, 75L, 38L, 50L,
45L, 62L, 57L, 66L, 54L, 44L, 56L, 74L), WT18 = c(56.9, 49.9,
55.3, 65.9, 62.3, 47.4, 57.3, 50, 58.8, 80.2, 59.9, 56.3,
67.9, 52.9, 58.5, 73.2, 54.7, 44.1, 70.5, 60.6, 73.2, 57.2,
56.4, 56.6, 46.3, 63.3, 65.4, 60.1, 55, 55.7, 71.2, 65.5,
57.2, 58.2, 56, 64.5, 53, 52.4, 56.8, 49.2, 55.6, 77.8, 69.6,
56.2, 52.5, 64.9, 59.3, 54.2, 49.8, 62.6, 66.6, 65.3, 65.9,
59, 47.4, 60.4, 56.3, 61.7, 52.4, 52.1, 58.4, 52.8, 60.4,
61, 67.4, 54.3, 56.3, 97.7, 68.1, 63.1), HT18 = c(158.9,
166, 162.2, 167.8, 170.9, 164.9, 168.1, 164, 163.3, 183.2,
167, 163.8, 174, 163, 167.1, 168.1, 163, 154.6, 170.3, 170.6,
175.1, 156.5, 160.3, 170.8, 156.5, 165.2, 169.8, 171.2, 160.4,
163.8, 169.6, 172.7, 162.4, 166.8, 157.1, 181.1, 158.4, 165.6,
166.7, 156.5, 168.1, 165.3, 163.7, 173.7, 163.9, 169.2, 170.1,
166, 164.2, 176, 170.9, 169.2, 172, 163, 154.5, 172.5, 175.6,
167.2, 164, 162.1, 161.6, 153.6, 177.5, 169.8, 173.5, 166.8,
166.2, 162.8, 168.6, 169.2), LG18 = c(34.6, 33.8, 35.1, 39.3,
36.3, 31.8, 35, 31.2, 36.2, 42.9, 36.5, 32.6, 37.5, 37.7,
34.5, 37.2, 33.2, 32.4, 40.1, 38.2, 35.1, 35.6, 34.6, 32.6,
32.9, 38.5, 38.6, 33, 36.3, 33.2, 38.8, 36.2, 36.5, 34.3,
37.8, 34.2, 32.4, 33.8, 32.7, 33.5, 34.1, 39.8, 38.6, 34.2,
34.6, 36.7, 32.8, 34.9, 30.3, 35.8, 38.8, 39, 35.7, 32.7,
32.2, 35.7, 34, 35.5, 34.8, 34.1, 33, 33.4, 34.3, 34.5, 34.5,
33.6, 36.2, 42.5, 38.4, 37.9), ST18 = c(143L, 117L, 143L,
148L, 152L, 126L, 134L, 77L, 118L, 135L, 118L, 96L, 131L,
108L, 99L, 105L, 122L, 146L, 126L, 124L, 100L, 118L, 123L,
131L, 101L, 121L, 182L, 116L, 127L, 130L, 107L, 134L, 120L,
130L, 101L, 149L, 112L, 136L, 118L, 110L, 104L, 138L, 108L,
134L, 108L, 141L, 122L, 125L, 128L, 168L, 126L, 142L, 132L,
116L, 112L, 137L, 114L, 122L, 121L, 148L, 107L, 140L, 125L,
124L, 123L, 89L, 135L, 125L, 142L, 142L), Soma = c(5, 4,
5.5, 5.5, 4.5, 3, 5, 4, 5, 5.5, 5, 5, 5.5, 4, 5, 6.5, 4.5,
3.5, 5.5, 4.5, 6, 5, 4.5, 4, 4, 5, 4.5, 4.5, 5, 5, 6, 4.5,
5, 5, 5, 4, 5, 4, 4.5, 4, 4.5, 6.5, 5.5, 3.5, 4, 5, 4.5,
4, 4, 5, 5, 5, 5.5, 5.5, 4, 4, 3, 4.5, 5, 4, 6.5, 5, 3.5,
5.5, 5, 4, 4.5, 7, 5.5, 5.5)), .Names = c("X", "Sex", "WT2",
"HT2", "WT9", "HT9", "LG9", "ST9", "WT18", "HT18", "LG18", "ST18",
"Soma"), row.names = 67:136, class = "data.frame")
my command:
library(tidyr)
library(ggplot2)
newdata.girls %>%
# put WT2, WT9, WT18 in the weight column
# and the weights in the value column
gather(weight, value, -Soma) %>%
# make WT2, WT9, WT18 factors and order them so as
# they plot in the correct order
mutate(weight = factor(weight, levels = c("WT2", "WT9", "WT18"))) %>%
# plot Soma versus value by time
ggplot(aes(Soma, value)) + geom_point() + facet_grid(. ~ weight)
It gives out a column of NA.
result
It's not entirely clear how you would like the output to look, or if Soma is continuous or categorical. But taking your sentence "Soma against weight at each of the three time points" as a start point, an initial attempt could look like this. Assume your data frame is named df1:
library(tidyr)
library(dplyr)
library(ggplot2)
df1 %>%
# put WT2, WT9, WT18 in the weight column
# and the weights in the value column
gather(weight, value, -Soma) %>%
# make WT2, WT9, WT18 factors and order them so as
# they plot in the correct order
mutate(weight = factor(weight, levels = c("WT2", "WT9", "WT18"))) %>%
# plot Soma versus value by time
ggplot(aes(Soma, value)) + geom_point() + facet_grid(. ~ weight) + theme_light()
Result:
I am trying to plot monthly average precipitation broken down into snow and rain in a stacked barplot. From searching around on this site I found some code that does what I want, however, since I am not fully understanding the code I am not able to change the aesthetics of it.
Below is the code that creates the plot that I want, but it looks..well .. a little "ugly". Usually when working with ggplot I save the plot to a variable and then keep adding and changing things. Since in this code the plot function is embedded I don't know how to save the plot output to a variable.
correct_order <- c("Jan","Feb","Mar","Apr","May","Jun",
"Jul","Aug","Sep","Oct","Nov","Dec")
cn %>% group_by(Months) %>%
summarise(Rain = mean(rain_mm,na.rm = TRUE),Snow = mean(snow_cm,na.rm = TRUE)) %>%
gather(Legend, Precipitation, -Months) %>%
ggplot(.,aes(x = Months, y = Precipitation,
group = Legend, color = Legend)) +
scale_x_discrete(limits=correct_order) +
geom_bar(stat="identity")
Below is a dput of my dataset.
structure(list(Months = structure(c(5L, 4L, 8L, 1L, 9L, 7L, 6L,
2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L,
10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L,
4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L,
9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L,
2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L,
10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L,
4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L,
9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L,
2L, 12L, 11L, 10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L,
10L, 3L, 5L, 4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L, 5L,
4L, 8L, 1L, 9L, 7L, 6L, 2L, 12L, 11L, 10L, 3L), .Label = c("Apr",
"Aug", "Dec", "Feb", "Jan", "Jul", "Jun", "Mar", "May", "Nov",
"Oct", "Sep"), class = "factor"), station = structure(c(7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L), .Label = c("albernirob", "blackcreeek",
"campbellrivairp", "campbellrivsurf", "capemudge", "comoxairp",
"courtney", "mudbay", "oysterriver", "powriv", "powrivairp",
"qualicumhatch", "qualicumriverres", "stillwater"), class = "factor"),
temp_davg_c = c(3, 3.6, 5.7, 9.1, 12.5, 15.5, 17.9, 17.6,
14.2, 9, 5.1, 3.1, 2.8, 3.4, 5.4, 8.5, 11.7, 14.8, 17.1,
16.9, 13.6, 8.6, 5, 2.8, 2.4, 3.2, 5.2, 8, 11.6, 14.7, 17.3,
17.2, 13.7, 8.6, 4.4, 2.1, 2.6, 3.8, 5.9, 7.4, 11.5, 14.3,
16.2, 17.2, 12.7, 8.1, 4.1, NA, 4.1, 4.6, 6.3, 8.8, 12.1,
14.9, 17.2, 17.1, 14.2, 9.6, 5.8, 3.8, 3.9, 4.3, 6.1, 8.8,
12.4, 15.5, 18, 17.9, 14.5, 9.5, 5.7, 3.5, 3.5, 4, 5.9, 8.6,
12.1, 15.1, 17.5, 17.4, 14.1, 9.3, 5.3, 3.1, 3.3, 3.8, 5.6,
8.3, 12, 15.1, 17.3, 17.2, 13.6, 8.9, 5.2, 3.2, 3.9, 4.2,
5.9, 8.6, 12, 14.9, 17.1, 16.7, 13.6, 9.2, 5.6, 3.5, 2.8,
3.7, 5.8, 8.5, 11.9, 14.9, 17.3, 17.4, 14.1, 9.2, 4.9, 2.6,
2, 3, 5.7, 8.5, 12.3, 15.5, 18.3, 18.5, 15.3, 9.8, 4.6, 1.8,
4.6, 5.1, 7, 9.6, 13, 15.8, 18.4, 18.6, 15.6, 10.8, 6.8,
4.3, 3.6, 3.9, 5.9, 8.6, 11.9, 14.9, 17.2, 17.2, 14.1, 9.4,
5.3, 3.1, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA),
temp_dmax_c = c(5.6, 7.1, 10, 14.3, 18.1, 21, 23.8, 23.7,
20.1, 13, 8, 5.4, 5.8, 7.4, 10, 13.9, 17.3, 20.2, 22.9, 22.8,
19.6, 13, 8.4, 5.4, 5.5, 7.2, 9.7, 13.2, 17, 20.1, 23, 23.3,
19.8, 13.1, 7.7, 4.9, 5.6, 7.5, 10.6, 12.2, 16.7, 19.5, 21.6,
23.2, 18, 12.3, 7.5, NA, 6.6, 7.6, 9.8, 12.9, 16.5, 19.5,
22.1, 22, 18.6, 12.8, 8.5, 6.2, 6.4, 7.4, 9.6, 12.9, 16.6,
19.8, 22.8, 22.7, 19, 12.9, 8.5, 5.9, 6.2, 7.5, 10.1, 13.5,
17.2, 20.3, 23.1, 23.1, 19.5, 13.4, 8.3, 5.6, 6.2, 7.4, 9.8,
13.2, 17.1, 20.2, 22.6, 22.5, 18.9, 12.8, 8.3, 5.8, 6.5,
7.5, 9.9, 12.9, 16.7, 19.6, 22.3, 22.1, 18.7, 13, 8.5, 5.9,
5.5, 7.4, 10.1, 13.5, 17.2, 20.3, 23.1, 23.5, 20, 13.3, 7.8,
5, 4.3, 6.6, 10.5, 14.2, 18.6, 21.9, 25.6, 26.1, 22.4, 14.4,
7.3, 3.8, 6.8, 7.8, 10.4, 13.5, 17.1, 19.8, 22.7, 22.9, 19.5,
13.6, 9, 6.4, 5.8, 6.9, 9.4, 12.8, 16.5, 19.4, 22.1, 22.3,
18.7, 12.6, 7.7, 5.3, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA), temp_dmin_c = c(0.3, 0, 1.3, 3.9, 6.8, 9.9,
11.9, 11.5, 8.2, 5, 2.1, 0.7, -0.3, -0.6, 0.9, 3.1, 6.1,
9.3, 11.3, 10.9, 7.5, 4.2, 1.6, 0.2, -0.8, -0.7, 0.7, 2.8,
6.2, 9.3, 11.5, 11.1, 7.6, 4, 1, -0.8, -0.5, 0, 1.3, 2.6,
6.2, 9, 10.8, 11.1, 7.4, 3.8, 0.6, NA, 1.6, 1.5, 2.8, 4.7,
7.7, 10.3, 12.2, 12.2, 9.7, 6.4, 3.1, 1.4, 1.4, 1.2, 2.5,
4.6, 8, 11.1, 13.3, 13, 9.9, 6, 2.9, 0.9, 0.7, 0.5, 1.7,
3.7, 6.9, 9.8, 11.8, 11.7, 8.6, 5.3, 2.3, 0.5, 0.3, 0.1,
1.5, 3.4, 6.9, 9.8, 11.7, 11.7, 8.2, 5, 2, 0.5, 1.2, 0.8,
2, 4.1, 7.3, 10.1, 11.8, 11.3, 8.4, 5.3, 2.7, 0.9, 0.1, 0.1,
1.4, 3.5, 6.6, 9.4, 11.5, 11.2, 8.2, 5, 1.9, 0.2, -0.3, -0.6,
0.7, 2.7, 6, 9, 10.9, 10.9, 8, 5, 1.8, -0.3, 2.3, 2.4, 3.6,
5.6, 8.8, 11.8, 14, 14.3, 11.6, 8, 4.6, 2.2, 1.2, 0.9, 2.3,
4.3, 7.3, 10.4, 12.3, 12.1, 9.4, 6.1, 2.8, 0.9, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), rain_mm = c(216, 134.8,
127, 90.7, 53, 53, 29.9, 35.4, 45.7, 146.9, 232.3, 236.4,
216, 166.8, 149.3, 105, 72.8, 63.2, 42.3, 43.1, 54, 171.8,
256.2, 247.3, 194.6, 135.5, 128.4, 91.6, 68.4, 62.9, 39.4,
44.6, 55.2, 161, 222.1, 204.2, 186, 140.2, 120.3, 87.2, 58.2,
51.3, 35.1, 39, 52.9, 154.8, 228.4, 218.5, 215.2, 135.1,
130.8, 93.6, 70.2, 61.1, 39.5, 45.6, 58.7, 168.6, 241, 220.8,
159.1, 107.8, 95.7, 64.4, 45.6, 42.8, 26.7, 29.2, 41.8, 122.7,
191.9, 168.9, 256.9, 174.1, 151.6, 98, 56.6, 45.2, 26, 37.6,
53.6, 189.7, 285.2, 256.7, 182, 144.2, 139.3, 87.2, 64.6,
54.7, 36.4, 39, 48.9, 152.9, 228.4, 215.9, 200.6, 131.1,
116.3, 79.4, 51.3, 45.3, 26, 34.6, 46.3, 146.8, 214, 180.7,
219.3, 150.4, 141, 101.1, 72.1, 62.8, 41.9, 49.5, 59.3, 180.8,
249.9, 234.2, 317, 222.7, 215.6, 143.6, 87.8, 62.2, 31, 46.4,
61.4, 218.3, 345.2, 323.2, 132, 88.4, 92.4, 70.8, 70.9, 57.4,
36.5, 42.3, 51.4, 117.5, 154.9, 134.5, 145.7, 101.9, 104.2,
83.2, 76.6, 67.6, 37.5, 45.3, 54.7, 125.5, 171.6, 146.5,
185.2, 125.5, 127.8, 99.6, 92.4, 73.7, 46, 50.7, 64.6, 152.1,
212.6, 178.5), snow_cm = c(15.9, 9.3, 11.3, 0.1, 0, 0, 0,
0, 0, 0.2, 6, 12.1, 17.3, 10, 6.7, 0.2, 0, 0, 0, 0, 0, 1.1,
6.4, 16, 23.3, 14.4, 11.7, 0.5, 0, 0, 0, 0, 0, 1.2, 10.5,
22.6, 13.2, 8.4, 7.6, 0, 0, 0, 0, 0, 0, 0.8, 7.3, 14.3, 13.8,
6.4, 6.3, 0.2, 0, 0, 0, 0, 0, 0.6, 6, 14.7, 11.9, 6, 9.9,
0.2, 0, 0, 0, 0, 0, 0.1, 8.2, 18.7, 12.9, 13.3, 8.2, 0, 0,
0, 0, 0, 0, 1.1, 4.8, 15.2, 14.9, 7.8, 4.6, 0, 0, 0, 0, 0,
0, 0.9, 4.1, 8.6, 10.4, 8.8, 4.3, 0, 0, 0, 0, 0, 0, 0.4,
4.2, 9.2, 14.8, 10.1, 7.1, 0.1, 0, 0, 0, 0, 0, 0.5, 7.2,
16.5, 22.6, 16.9, 8.2, 0.6, 0, 0, 0, 0, 0, 1.6, 8, 21.4,
6.1, 4.6, 3.8, 0, 0, 0, 0, 0, 0, 0.2, 3.4, 4.2, 13.6, 7.8,
6.8, 0.1, 0, 0, 0, 0, 0, 0.3, 6.5, 11.5, 8.1, 4.8, 2.7, 0,
0, 0, 0, 0, 0, 0.2, 4.4, 9), precip_mm = c(231.8, 144.1,
138.3, 90.7, 53, 53, 29.9, 35.4, 45.7, 147.1, 238.3, 248.5,
233.3, 176.8, 155.9, 105.2, 72.8, 63.2, 42.3, 43.1, 54, 172.9,
262.6, 263.3, 217.5, 149.5, 140, 92.1, 68.4, 62.9, 39.4,
44.6, 55.2, 162.2, 231.9, 225.7, 198.9, 148.6, 127.9, 87.2,
58.2, 51.3, 35.1, 39, 52.9, 155.6, 235.7, 232.8, 229.1, 141.4,
137.1, 93.8, 70.2, 61.1, 39.5, 45.6, 58.7, 169.2, 246.9,
235.5, 171.9, 114.3, 105.7, 64.6, 45.6, 42.8, 26.7, 29.2,
41.8, 122.8, 200.5, 187.9, 269.9, 187.4, 159.8, 98, 56.6,
45.2, 26, 37.6, 53.6, 190.8, 290, 272, 196.9, 151.9, 143.9,
87.2, 64.6, 54.7, 36.4, 39, 48.9, 153.8, 232.6, 224.5, 211,
139.9, 120.6, 79.4, 51.3, 45.3, 26, 34.6, 46.3, 147.2, 218.1,
189.8, 234.1, 160.4, 148, 101.2, 72.1, 62.8, 41.9, 49.5,
59.3, 181.3, 257.1, 250.7, 339.5, 239.6, 223.8, 144.2, 87.8,
62.2, 31, 46.4, 61.4, 219.8, 353.2, 344.6, 138.1, 93.1, 96.1,
70.8, 70.9, 57.4, 36.5, 42.3, 51.4, 117.7, 158.3, 138.7,
158.9, 109.4, 110.7, 83.3, 76.6, 67.6, 37.5, 45.3, 54.7,
125.8, 178, 157.8, 193.3, 130.3, 130.6, 99.6, 92.4, 73.7,
46, 50.7, 64.6, 152.3, 216.9, 187.5), date = structure(c(14610,
14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883,
14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791,
14822, 14853, 14883, 14914, 14944, 14610, 14641, 14669, 14700,
14730, 14761, 14791, 14822, 14853, 14883, 14914, 14944, 14610,
14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883,
14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791,
14822, 14853, 14883, 14914, 14944, 14610, 14641, 14669, 14700,
14730, 14761, 14791, 14822, 14853, 14883, 14914, 14944, 14610,
14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883,
14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791,
14822, 14853, 14883, 14914, 14944, 14610, 14641, 14669, 14700,
14730, 14761, 14791, 14822, 14853, 14883, 14914, 14944, 14610,
14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883,
14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791,
14822, 14853, 14883, 14914, 14944, 14610, 14641, 14669, 14700,
14730, 14761, 14791, 14822, 14853, 14883, 14914, 14944, 14610,
14641, 14669, 14700, 14730, 14761, 14791, 14822, 14853, 14883,
14914, 14944, 14610, 14641, 14669, 14700, 14730, 14761, 14791,
14822, 14853, 14883, 14914, 14944), class = "Date")), .Names = c("Months",
"station", "temp_davg_c", "temp_dmax_c", "temp_dmin_c", "rain_mm",
"snow_cm", "precip_mm", "date"), row.names = c(NA, -168L), class = "data.frame")
You can separate the dplyr part of your code from the gg-plotting part:
correct_order <- c("Jan","Feb","Mar","Apr","May","Jun", "Jul","Aug","Sep","Oct","Nov","Dec")
weather_data <-
dtt %>%
group_by(Months) %>%
summarise(Rain = mean(rain_mm,na.rm = TRUE),Snow = mean(snow_cm,na.rm = TRUE)) %>%
gather(Legend, Precipitation, -Months)
ggplot(weather_data, aes(x = Months, y = Precipitation, fill = Legend)) +
scale_x_discrete(limits=correct_order) +
geom_col()
As it has been mentioned before, fill= instead of color= is probably what you are looking for: