I have some doubts about how to use the hts library to create an optimal reconciliation of my forecasts.
The goal is to forecast the wind energy production of some plants that are located in a macrozone.
Of each macrozone {A;B;C} I have information of the total energy input hour by hour. Each macrozone is divided into multiple zones {A1;A2;A3[...];B4;B5;B6[...];C;7;C8;C9[...]} and I know the total energy input of these microzones (which are about 95% of the total energy input of the macrozone).
I have already generated my forecasts for both each microzone and the total macrozone A with a random forest algorithm since I use some weather variables as regressors.
I would like to figure out how to apply hierarachic optimal reconciliation to these forecasts without having to use the "forecast" function.
I report a one-day excerpt of both the actual and estimated measurements from macrozone A.
In Table 1 and Table2 you will find the actual measurements to be tested, in Table 3 the predicted values for the total macrozone A, and in Table 3 the predicted values for the microzones with the random forest models.
How can I apply the method of hierarchical optimal reconciliation in R to this data?
Thanks for your attention!
#Table1
Test_MacrozoneA<-data.frame(Macrozone="A",
Date=as.Date("2021/05/15"),
Hour=c(seq(1,24,1)),
Measure=c(8.92,6.50,7.06,5.89,7.34,10.65,15.03,16.21,17.55,21.00,19.90,14.88,11.74,10.62,10.08,9.01,7.16,5.12,5.40,8.97,12.43,15.67,22.09,24.30)
)
#Table2
Test_MicrozoneA<-data.frame(Date=as.Date("2021/05/15"),
Hour=c(seq(1,24,1)),
A1=c(1.32,1.04,1.44,1.45,3.11,4.84,9.97,11.52,11.99,14.54,13.93,7.87,6.13,6.20,5.84,5.34,4.37,2.82,3.12,6.02,8.20,12.58,19.67,21.32),
A2=c(1.90,0.79,0.92,0.50,0.43,1.18,1.14,1.01,0.33,0.12,0.79,2.18,1.07,0.36,0.23,0.20,0.09,0.06,0.06,0.06,0.11,0.12,0.08,0.02),
A3=c(1.78,1.47,1.48,1.34,1.27,1.59,0.84,0.85,1.05,1.47,1.17,0.68,0.86,1.21,1.28,1.33,1.38,1.40,1.39,1.59,1.61,1.67,1.38,1.75),
A4=c(2.54,2.09,2.03,1.28,1.13,1.15,0.75,0.89,1.35,1.81,1.82,1.65,1.63,1.27,0.97,0.92,0.78,0.53,0.60,1.09,1.70,0.69,0.14,0.20),
A5=c(0.58,0.03,0.00,0.23,0.04,0.71,1.95,1.64,2.45,2.87,2.00,2.33,1.77,1.30,1.53,1.04,0.35,0.12,0.01,0.00,0.58,0.40,0.56,0.67)
)
#Table3
Pred_MacrozoneA<-data.frame(Macrozone="A",
Date=as.Date("2021/05/15"),
Hour=c(seq(1,24,1)),
Measure=c(5.21,6.62,4.66,4.92,6.38,7.13,8.14,8.90,12.09,15.29,19.62,17.51,21.00,20.72,17.55,15.83,15.94,14.45,10.61,7.09,5.37,7.01,11.98,16.51)
)
#Table4
Pred_MicrozoneA<-data.frame(Date=as.Date("2021/05/15"),
Hour=c(seq(1,24,1)),
A1=c(1.84,1.61,1.26,1.16,1.41,2.47,4.54,4.34,4.14,10.97,11.74,10.73,11.61,11.37,9.50,5.73,5.75,6.12,5.64,2.34,3.70,3.06,7.23,10.53),
A2=c(0.79,1.95,1.92,2.11,2.65,2.66,1.72,0.84,0.91,1.32,1.90,2.31,2.49,2.23,1.70,1.43,1.65,1.70,1.02,0.33,0.18,0.17,0.30,0.33),
A3=c(0.46,0.43,0.38,0.22,0.23,0.56,1.28,0.83,0.75,0.77,0.89,1.02,1.05,1.29,1.43,1.48,1.47,1.41,1.34,1.36,1.42,1.43,1.23,1.76),
A4=c(2.00,0.95,0.63,0.88,0.69,0.33,1.30,1.08,1.59,2.57,2.59,2.14,1.95,1.90,1.75,2.31,2.40,2.20,2.20,1.19,0.89,0.88,0.92,0.95),
A5=c(0.67,0.74,0.55,0.38,0.23,0.30,0.30,0.55,0.58,0.97,0.80,0.81,1.24,1.83,1.79,1.55,1.13,0.56,0.36,0.12,0.16,0.20,0.25,0.30)
)
> Test_MacrozoneA
Macrozone Date Hour Measure
1 A 2021-05-15 1 8.92
2 A 2021-05-15 2 6.50
3 A 2021-05-15 3 7.06
4 A 2021-05-15 4 5.89
5 A 2021-05-15 5 7.34
6 A 2021-05-15 6 10.65
7 A 2021-05-15 7 15.03
8 A 2021-05-15 8 16.21
9 A 2021-05-15 9 17.55
10 A 2021-05-15 10 21.00
11 A 2021-05-15 11 19.90
12 A 2021-05-15 12 14.88
13 A 2021-05-15 13 11.74
14 A 2021-05-15 14 10.62
15 A 2021-05-15 15 10.08
16 A 2021-05-15 16 9.01
17 A 2021-05-15 17 7.16
18 A 2021-05-15 18 5.12
19 A 2021-05-15 19 5.40
20 A 2021-05-15 20 8.97
21 A 2021-05-15 21 12.43
22 A 2021-05-15 22 15.67
23 A 2021-05-15 23 22.09
24 A 2021-05-15 24 24.30
> Test_MicrozoneA
Date Hour A1 A2 A3 A4 A5
1 2021-05-15 1 1.32 1.90 1.78 2.54 0.58
2 2021-05-15 2 1.04 0.79 1.47 2.09 0.03
3 2021-05-15 3 1.44 0.92 1.48 2.03 0.00
4 2021-05-15 4 1.45 0.50 1.34 1.28 0.23
5 2021-05-15 5 3.11 0.43 1.27 1.13 0.04
6 2021-05-15 6 4.84 1.18 1.59 1.15 0.71
7 2021-05-15 7 9.97 1.14 0.84 0.75 1.95
8 2021-05-15 8 11.52 1.01 0.85 0.89 1.64
9 2021-05-15 9 11.99 0.33 1.05 1.35 2.45
10 2021-05-15 10 14.54 0.12 1.47 1.81 2.87
11 2021-05-15 11 13.93 0.79 1.17 1.82 2.00
12 2021-05-15 12 7.87 2.18 0.68 1.65 2.33
13 2021-05-15 13 6.13 1.07 0.86 1.63 1.77
14 2021-05-15 14 6.20 0.36 1.21 1.27 1.30
15 2021-05-15 15 5.84 0.23 1.28 0.97 1.53
16 2021-05-15 16 5.34 0.20 1.33 0.92 1.04
17 2021-05-15 17 4.37 0.09 1.38 0.78 0.35
18 2021-05-15 18 2.82 0.06 1.40 0.53 0.12
19 2021-05-15 19 3.12 0.06 1.39 0.60 0.01
20 2021-05-15 20 6.02 0.06 1.59 1.09 0.00
21 2021-05-15 21 8.20 0.11 1.61 1.70 0.58
22 2021-05-15 22 12.58 0.12 1.67 0.69 0.40
23 2021-05-15 23 19.67 0.08 1.38 0.14 0.56
24 2021-05-15 24 21.32 0.02 1.75 0.20 0.67
> Pred_MacrozoneA
Macrozone Date Hour Measure
1 A 2021-05-15 1 5.21
2 A 2021-05-15 2 6.62
3 A 2021-05-15 3 4.66
4 A 2021-05-15 4 4.92
5 A 2021-05-15 5 6.38
6 A 2021-05-15 6 7.13
7 A 2021-05-15 7 8.14
8 A 2021-05-15 8 8.90
9 A 2021-05-15 9 12.09
10 A 2021-05-15 10 15.29
11 A 2021-05-15 11 19.62
12 A 2021-05-15 12 17.51
13 A 2021-05-15 13 21.00
14 A 2021-05-15 14 20.72
15 A 2021-05-15 15 17.55
16 A 2021-05-15 16 15.83
17 A 2021-05-15 17 15.94
18 A 2021-05-15 18 14.45
19 A 2021-05-15 19 10.61
20 A 2021-05-15 20 7.09
21 A 2021-05-15 21 5.37
22 A 2021-05-15 22 7.01
23 A 2021-05-15 23 11.98
24 A 2021-05-15 24 16.51
> Pred_MicrozoneA
Date Hour A1 A2 A3 A4 A5
1 2021-05-15 1 1.84 0.79 0.46 2.00 0.67
2 2021-05-15 2 1.61 1.95 0.43 0.95 0.74
3 2021-05-15 3 1.26 1.92 0.38 0.63 0.55
4 2021-05-15 4 1.16 2.11 0.22 0.88 0.38
5 2021-05-15 5 1.41 2.65 0.23 0.69 0.23
6 2021-05-15 6 2.47 2.66 0.56 0.33 0.30
7 2021-05-15 7 4.54 1.72 1.28 1.30 0.30
8 2021-05-15 8 4.34 0.84 0.83 1.08 0.55
9 2021-05-15 9 4.14 0.91 0.75 1.59 0.58
10 2021-05-15 10 10.97 1.32 0.77 2.57 0.97
11 2021-05-15 11 11.74 1.90 0.89 2.59 0.80
12 2021-05-15 12 10.73 2.31 1.02 2.14 0.81
13 2021-05-15 13 11.61 2.49 1.05 1.95 1.24
14 2021-05-15 14 11.37 2.23 1.29 1.90 1.83
15 2021-05-15 15 9.50 1.70 1.43 1.75 1.79
16 2021-05-15 16 5.73 1.43 1.48 2.31 1.55
17 2021-05-15 17 5.75 1.65 1.47 2.40 1.13
18 2021-05-15 18 6.12 1.70 1.41 2.20 0.56
19 2021-05-15 19 5.64 1.02 1.34 2.20 0.36
20 2021-05-15 20 2.34 0.33 1.36 1.19 0.12
21 2021-05-15 21 3.70 0.18 1.42 0.89 0.16
22 2021-05-15 22 3.06 0.17 1.43 0.88 0.20
23 2021-05-15 23 7.23 0.30 1.23 0.92 0.25
24 2021-05-15 24 10.53 0.33 1.76 0.95 0.30
I have a dataframe like this:
head(Betula, 10)
year start Start_DayOfYear end End_DayOfYear duration DateMax Max_DayOfYear BetulaPollenMax SPI Jan.NAO Jan.AO
1 1997 <NA> NA <NA> NA NA <NA> NA NA NA -0.49 -0.46
2 1998 <NA> 143 <NA> 184 41 <NA> 146 42 361 0.39 -2.08
3 1999 <NA> 148 <NA> 188 40 <NA> 158 32 149 0.77 0.11
4 2000 <NA> 135 <NA> 197 62 <NA> 156 173 917 0.60 1.27
5 2001 <NA> 143 <NA> 175 32 <NA> 154 113 457 0.25 -0.96
Jan.SO Feb.NAO Feb.AO Feb.SO Mar.NAO Mar.AO Mar.SO Apr.NAO Apr.AO Apr.SO DecJanFebMarApr.NAO DecJanFebMar.NAO
1 0.5 1.70 1.89 1.7 1.46 1.09 -0.4 -1.02 0.32 -0.6 0.14 0.43
2 -2.7 -0.11 -0.18 -2.0 0.87 -0.25 -2.4 -0.68 -0.04 -1.4 0.27 0.51
3 1.8 0.29 0.48 1.0 0.23 -1.49 1.3 -0.95 0.28 1.4 0.39 0.73
4 0.7 1.70 1.08 1.7 0.77 -0.45 1.3 -0.03 -0.28 1.2 0.49 0.62
5 1.0 0.45 -0.62 1.7 -1.26 -1.69 0.9 0.00 0.91 0.2 -0.28 -0.35
DecJanFeb.NAO DecJan.NAO JanFebMarApr.NAO JanFebMar.NAO JanFeb.NAO FebMarApr.NAO FebMar.NAO MarApr.NAO
1 0.08 -0.73 0.41 0.89 0.61 0.71 1.58 0.22
2 0.38 0.63 0.12 0.38 0.14 0.03 0.38 0.10
3 0.89 1.19 0.09 0.43 0.53 -0.14 0.26 -0.36
4 0.57 0.01 0.76 1.02 1.15 0.81 1.24 0.37
5 -0.04 -0.29 -0.14 -0.19 0.35 -0.27 -0.41 -0.63
DecJanFebMarApr.AO DecJanFebMar.AO DecJanFeb.AO DecJan.AO JanFebMarApr.AO JanFebMar.AO JanFeb.AO FebMarApr.AO
1 0.55 0.61 0.45 -0.27 0.71 0.84 0.72 1.10
2 -0.24 -0.29 -0.30 -0.37 -0.64 -0.84 -1.13 -0.16
3 0.08 0.04 0.54 0.58 -0.16 -0.30 0.30 -0.24
4 -0.15 -0.11 0.00 -0.54 0.41 0.63 1.18 0.12
5 -0.74 -1.15 -0.97 -1.14 -0.59 -1.09 -0.79 -0.47
FebMar.AO MarApr.AO DecJanFebMarApr.SO DecJanFebMar.SO DecJanFeb.SO DecJan.SO JanFebMarApr.SO JanFebMar.SO
1 1.49 0.71 0.04 0.20 0.40 -0.25 0.30 0.60
2 -0.22 -0.15 -1.42 -1.43 -1.10 -0.65 -2.13 -2.37
3 -0.51 -0.61 1.38 1.38 1.40 1.60 1.38 1.37
4 0.32 -0.37 1.14 1.13 1.07 0.75 1.23 1.23
5 -1.16 -0.39 0.60 0.70 0.63 0.10 0.95 1.20
JanFeb.SO FebMarApr.SO FebMar.SO MarApr.SO TmaxAprI TminAprI TmeanAprI RainfallAprI HumidityAprI SunshineAprI
1 1.10 0.23 0.65 -0.50 3.27 -3.86 -0.44 0.82 76.3 3.45
2 -2.35 -1.93 -2.20 -1.90 4.52 -3.28 -0.15 0.12 73.5 7.12
3 1.40 1.23 1.15 1.35 4.11 -3.86 -0.34 1.32 78.4 4.85
4 1.20 1.40 1.50 1.25 6.11 -1.31 1.93 0.80 71.9 4.20
5 1.35 0.93 1.30 0.55 1.46 -2.37 -1.04 2.83 84.4 1.21
CloudAprI WindAprI SeeLevelPressureAprI TmaxAprII TminAprII TmeanAprII RainfallAprII HumidityAprII
1 6.30 5.26 1008.63 12.12 2.11 6.17 0.23 76.5
2 3.93 3.86 1022.39 5.57 -0.44 1.82 0.83 77.9
3 5.02 3.23 1007.09 0.20 -6.36 -3.23 2.63 82.5
4 6.15 5.13 1012.21 2.74 -4.88 -2.35 0.34 76.0
5 7.50 3.90 1009.50 6.75 -3.22 1.16 0.32 71.5
SunshineAprII CloudAprII WindAprII SeeLevelPressureAprII TmaxAprIII TminAprIII TmeanAprIII RainfallAprIII
1 3.12 6.53 5.19 1024.31 7.35 0.33 3.37 0.33
2 2.41 6.85 3.70 1012.01 6.34 0.76 2.69 2.01
3 4.99 5.87 6.23 1019.66 8.65 0.73 4.23 0.70
4 6.63 5.17 5.84 1022.62 5.84 -1.81 2.02 0.00
5 6.11 4.82 3.92 1018.81 8.47 1.02 4.17 1.09
HumidityAprIII SunshineAprIII CloudAprIII WindAprIII SeeLevelPressureAprIII TmaxDecI TminDecI TmeanDecI
1 75.0 3.73 6.40 4.08 1009.91 -0.90 -5.88 -3.67
2 83.5 1.52 7.31 4.66 1008.33 5.33 0.01 2.46
3 73.4 6.62 5.12 3.16 1017.01 -0.24 -6.93 -3.64
4 69.0 8.80 4.80 4.99 1021.18 4.67 1.86 2.79
5 72.7 5.33 5.41 4.27 1005.48 3.69 -1.43 1.65
RainfallDecI HumidityDecI SunshineDecI CloudDecI WindDecI SeeLevelPressureDecI TmaxDecII TminDecII TmeanDecII
1 0.12 77.3 0.22 5.08 3.49 1003.15 7.99 0.77 4.10
2 1.10 73.5 0.04 6.29 5.21 999.94 0.24 -4.74 -2.67
3 2.41 82.3 0.00 6.70 4.92 998.64 1.22 -5.90 -2.05
4 3.13 88.1 0.00 7.97 4.00 997.82 2.76 -3.89 -0.54
5 1.60 79.1 0.07 5.44 5.76 996.35 10.82 4.36 6.90
RainfallDecII HumidityDecII SunshineDecII CloudDecII WindDecII SeeLevelPressureDecII TmaxDecIII TminDecIII
1 1.90 71.3 0 4.96 5.55 1007.16 4.78 -2.12
2 4.34 82.2 0 7.03 6.06 998.02 2.07 -4.60
3 1.94 78.6 0 6.53 5.82 1008.33 2.09 -2.48
4 1.45 77.2 0 6.57 5.26 1005.11 -1.49 -8.37
5 1.15 66.6 0 5.74 5.47 1030.02 1.40 -7.34
TmeanDecIII RainfallDecIII HumidityDecIII SunshineDecIII CloudDecIII WindDecIII SeeLevelPressureDecIII TmaxFebI
1 1.15 3.96 82.36 0 6.01 4.02 991.60 -0.23
2 -0.51 4.10 81.18 0 6.67 3.91 986.52 0.79
3 -0.61 1.97 81.27 0 6.21 5.53 982.13 2.19
4 -5.28 1.26 79.64 0 6.11 4.22 1019.63 3.27
5 -3.45 1.19 82.18 0 6.20 4.77 1015.53 2.42
TminFebI TmeanFebI RainfallFebI HumidityFebI SunshineFebI CloudFebI WindFebI SeeLevelPressureFebI TmaxFebII
1 -6.67 -3.57 0.84 84.3 1.11 6.81 5.35 990.51 2.97
2 -7.79 -4.49 2.31 72.2 1.88 4.73 4.53 990.39 3.31
3 -4.14 -1.77 0.42 73.3 1.29 6.02 5.57 1007.67 1.55
4 -2.48 0.04 2.28 77.0 0.46 6.84 4.29 982.97 -1.24
5 -3.52 -0.74 1.98 81.5 0.76 5.78 4.93 1008.29 6.71
TminFebII TmeanFebII RainfallFebII HumidityFebII SunshineFebII CloudFebII WindFebII SeeLevelPressureFebII
1 -2.31 -0.10 1.44 82.2 1.07 6.45 4.42 980.59
2 -4.85 -0.99 3.84 75.0 2.54 5.91 5.05 999.98
3 -5.76 -2.44 2.89 75.3 0.40 6.95 5.82 990.44
4 -8.47 -4.65 3.33 83.1 0.63 6.55 4.95 1000.10
5 -0.25 3.01 1.38 66.1 1.16 6.18 6.28 1001.46
TmaxFebIII TminFebIII TmeanFebIII RainfallFebIII HumidityFebIII SunshineFebIII CloudFebIII WindFebIII
1 0.05 -6.01 -3.35 4.60 83.50 1.29 6.58 4.71
2 -0.45 -7.43 -4.51 2.93 78.38 1.00 6.91 5.99
3 2.13 -4.51 -1.21 2.90 79.38 2.51 5.76 5.46
4 0.59 -3.79 -1.92 5.94 88.33 1.40 6.86 6.70
5 -2.68 -7.23 -5.05 1.39 83.88 1.13 7.41 5.69
SeeLevelPressureFebIII TmaxJanI TminJanI TmeanJanI RainfallJanI HumidityJanI SunshineJanI CloudJanI WindJanI
1 980.25 0.38 -5.57 -3.36 0.01 82.9 0.27 3.45 2.97
2 997.71 4.29 -0.03 2.08 3.70 82.9 0.00 7.39 5.01
3 988.45 1.02 -4.47 -1.87 2.22 82.3 0.00 6.94 4.29
4 987.21 0.04 -6.28 -3.03 4.99 85.8 0.00 5.84 4.75
5 1023.84 -0.33 -5.11 -3.17 0.66 81.2 0.00 7.08 3.88
SeeLevelPressureJanI TmaxJanII TminJanII TmeanJanII RainfallJanII HumidityJanII SunshineJanII CloudJanII
1 1023.71 0.09 -6.48 -2.50 4.29 86.5 0.01 7.23
2 984.57 -0.34 -6.49 -3.61 2.74 80.2 0.23 6.99
3 1004.06 0.32 -5.59 -3.03 5.28 83.3 0.00 6.68
4 983.42 8.38 1.46 4.97 0.64 69.3 0.10 6.13
5 1010.31 7.35 3.00 5.09 1.27 66.3 0.03 6.19
WindJanII SeeLevelPressureJanII TmaxJanIII TminJanIII TmeanJanIII RainfallJanIII HumidityJanIII SunshineJanIII
1 5.42 998.88 5.66 -2.39 1.97 1.03 74.27 0.65
2 6.38 1011.44 3.84 -3.32 -0.37 0.70 73.55 0.55
3 6.24 980.15 4.33 -5.19 -0.59 2.23 76.64 0.69
4 6.44 1019.41 4.09 -2.67 0.05 2.18 71.73 0.42
5 6.74 1006.10 4.43 -0.86 1.58 1.91 80.09 0.20
CloudJanIII WindJanIII SeeLevelPressureJanIII TmaxMarI TminMarI TmeanMarI RainfallMarI HumidityMarI
1 6.47 7.59 1004.59 2.83 -3.60 -0.72 2.14 79.9
2 5.25 4.72 1019.95 -5.31 -12.52 -9.52 2.28 72.6
3 5.34 4.65 1001.66 -0.70 -6.67 -4.47 1.39 81.0
4 5.85 4.83 1007.23 0.10 -7.91 -3.98 2.36 80.2
5 6.53 3.63 992.53 -0.38 -4.59 -2.27 3.00 86.4
SunshineMarI CloudMarI WindMarI SeeLevelPressureMarI TmaxMarII TminMarII TmeanMarII RainfallMarII HumidityMarII
1 0.85 6.77 6.64 986.96 -1.48 -8.43 -5.58 1.09 81.0
2 2.92 5.91 4.68 1013.17 6.53 -1.81 2.56 0.43 65.5
3 2.40 5.71 4.02 1014.62 0.53 -5.17 -2.90 5.20 82.8
4 0.91 7.02 5.87 1006.64 5.32 -0.94 1.23 1.11 74.4
5 0.19 7.82 4.49 999.35 1.60 -4.29 -1.89 0.95 79.3
SunshineMarII CloudMarII WindMarII SeeLevelPressureMarII TmaxMarIII TminMarIII TmeanMarIII RainfallMarIII
1 2.12 5.51 3.93 1021.57 3.88 -1.95 0.55 1.42
2 2.25 6.29 6.11 1008.31 3.95 -2.46 -0.15 1.30
3 1.00 6.61 5.77 1006.63 -0.68 -6.60 -4.07 0.70
4 2.16 6.61 6.45 1003.23 5.49 -0.68 1.65 1.58
5 4.07 5.21 3.14 1017.24 -0.66 -7.21 -4.00 1.37
HumidityMarIII SunshineMarIII CloudMarIII WindMarIII SeeLevelPressureMarIII
1 80.45 2.80 6.13 4.03 995.31
2 72.09 3.98 5.99 5.14 1000.32
3 78.73 2.34 6.46 3.81 1005.67
4 74.64 2.85 6.54 6.34 1013.45
5 79.45 4.71 5.65 4.95 1010.47
[ reached 'max' / getOption("max.print") -- omitted 5 rows ]
And I would like to do the normality test for all column in once. I tried
apply(x, shapiro.test)
Betula_shapiro <- apply(Betula, shapiro.test)
Error in FUN(X[[i]], ...) : is.numeric(x) is not TRUE
and it didnĀ“t work. I also tried this:
Betula <- apply(Betula[which(sapply(Betula, is.numeric))], 2, shapiro.test)
Error in FUN(newX[, i], ...) : all 'x' values are identical
f<-function(x){if(diff(range(x))==0)list()else shapiro.test(x)}
Betula <- apply(Betula[which(sapply(Betula, is.numeric))], 2, f)
Error in if (diff(range(x)) == 0) list() else shapiro.test(x) :
missing value where TRUE/FALSE needed
So I did:
Betula_numerics_only <- Betula[which(sapply(Betula, is.numeric))]
selecting columns with at least 3 not missing values and applying shapiro.test on them
Betula_numerics_only_filled_columns <- Betula_numerics_only[which(apply(Betula_numerics_only, 2, function(f) sum(!is.na(f))>=3 ))]
Betula_shapiro<-apply(Betula_numerics_only_filled_columns, 2, shapiro.test)
Error in FUN(newX[, i], ...) : all 'x' values are identical
Could you please help me with this problem?
Since i was talking about readability in my comment i felt i should provide something more readable too as an answer.
Lets make some dummy-data:
data_test <- data.frame(matrix(rnorm(100, 10, 1), ncol = 5, byrow = T), stringsAsFactors = F)
Lets apply shapiro.test to each column
apply(data_test, 2, shapiro.test)
In case there are non numeric columns:
Lets add a dummy-char column for testing-purposes
data_test$non_numeric <- sample(c("hello", "hi", "good morning"), NROW(data_test), replace = T)
and try to apply the test again
apply(data_test, 2, shapiro.test)
which results in:
> apply(data_test, 2, shapiro.test)
Error: is.numeric(x) is not TRUE
To solve this we select only numeric colums by using sapply:
data_test[which(sapply(data_test, is.numeric))]
and combine it with the apply:
apply(data_test[which(sapply(data_test, is.numeric))], 2, shapiro.test)
Removing colums, that are all NA:
data_test_numerics_only <- data_test[which(sapply(data_test, is.numeric))]
Selecting colums with at least 3 not missing values and applying shapiro.test on them:
data_test_numerics_only_filled_colums = data_test_numerics_only[which(apply(data_test_numerics_only, 2, function(f) sum(!is.na(f)) >= 3))]
apply(data_test_numerics_only_filled_colums, 2, shapiro.test)
We will get this running, lets try once more :)
remove non numeric columns
Betula_numerics <- Betula[which(sapply(Betula, is.numeric))]
Remove columns with less than 3 values
Betula_numerics_filled <- Betula_numerics[which(apply(Betula_numerics, 2, function(f) sum(!is.na(f)) >= 3))]
Remove columns with zero variance
Betula_numerics_filled_not_constant <- Betula_numerics_filled [apply(Betula_numerics_filled , 2, function(f) var(f, na.rm = T) != 0)]
Shapiro.test and hope for the best :)
apply(Betula_numerics_filled_not_constant, 2, shapiro.test)