Related
I am writing some functions in julia and want the results to be represented as rational numbers. That is, if a function returns 1/2, 1/3, 13/2571 etc I want them to be returned as written and not converted to floats. Say the functions compute some coefficients by some iterative process and I want the coefficient values to be shown as rationals. How can I do that in julia?
Rationals in Julia can be written as
1//2
These will work with functions, including user-defined ones, as you would expect:
5//7*3//5 # results in 3//7
f(x) = x^2 - 1
f(3//4) # results in -7//16
There's really not much else to it, but see also the manual section. If there's something in particular that's not working for you, post some example code and I'll take a look.
I was trying to learn Scipy, using it for mixed integrations and differentiations, but at the very initial step I encountered the following problems.
For numerical differentiation, it seems that the only Scipy function that works for callable functions is scipy.derivative() if I'm right!? However, I couldn't work with it:
1st) when I am not going to specify the point at which the differentiation is to be taken, e.g. when the differentiation is under an integral so that it is the integral that should assign the numerical values to its integrand's variable, not me. As a simple example I tried this code in Sage's notebook:
import scipy as sp
from scipy import integrate, derivative
var('y')
f=lambda x: 10^10*sin(x)
g=lambda x,y: f(x+y^2)
I=integrate.quad( sp.derivative(f(y),y, dx=0.00001, n=1, order=7) , 0, pi)[0]; show(I)
show( integral(diff(f(y),y),y,0,1).n() )
also it gives the warning that "Warning: The occurrence of roundoff error is detected, which prevents the requested tolerance from being achieved. The error may be underestimated." and I don't know what does this warning stand for as it persists even with increasing "dx" and decreasing the "order".
2nd) when I want to find the derivative of a multivariable function like g(x,y) in the above example and something like sp.derivative(g(x,y),(x,0.5), dx=0.01, n=1, order=3) gives error, as is easily expected.
Looking forward to hearing from you about how to resolve the above cited problems with numerical differentiation.
Best Regards
There are some strange problems with your code that suggest you need to brush up on some python! I don't know how you even made these definitions in python since they are not legal syntax.
First, I think you are using an older version of scipy. In recent versions (at least from 0.12+) you need from scipy.misc import derivative. derivative is not in the scipy global namespace.
Second, var is not defined, although it is not necessary anyway (I think you meant to import sympy first and use sympy.var('y')). sin has also not been imported from math (or numpy, if you prefer). show is not a valid function in sympy or scipy.
^ is not the power operator in python. You meant **
You seem to be mixing up the idea of symbolic and numeric calculus operations here. scipy won't numerically differentiate an expression involving a symbolic object -- the second argument to derivative is supposed to be the point at which you wish to take the derivative (i.e. a number). As you say you are trying to do numeric differentiation, I'll resolve the issue for that purpose.
from scipy import integrate
from scipy.misc import derivative
from math import *
f = lambda x: 10**10*sin(x)
df = lambda x: derivative(f, x, dx=0.00001, n=1, order=7)
I = integrate.quad( df, 0, pi)[0]
Now, this last expression generates the warning you mentioned, and the value returned is not very close to zero at -0.0731642869874073 in absolute terms, although that's not bad relative to the scale of f. You have to appreciate the issues of roundoff error in finite differencing. Your function f varies on your interval between 0 and 10^10! It probably seems paradoxical, but making the dx value for differentiation too small can actually magnify roundoff error and cause numerical instability. See the second graph here ("Example showing the difficulty of choosing h due to both rounding error and formula error") for an explanation: http://en.wikipedia.org/wiki/Numerical_differentiation
In fact, in this case, you need to increase it, say to 0.001: df = lambda x: derivative(f, x, dx=0.001, n=1, order=7)
Then, you can integrate safely, with no terrible roundoff.
I=integrate.quad( df, 0, pi)[0]
I don't recommend throwing away the second return value from quad. It's an important verification of what happened, as it is "an estimate of the absolute error in the result". In this case, I == 0.0012846582250212652 and the abs error is ~ 0.00022, which is not bad (the interval that implies still does not include zero). Maybe some more fiddling with the dx and absolute tolerances for quad will get you an even better solution, but hopefully you get the idea.
For your second problem, you simply need to create a proper scalar function (call it gx) that represents g(x,y) along y=0.5 (this is called Currying in computer science).
g = lambda x, y: f(x+y**2)
gx = lambda x: g(x, 0.5)
derivative(gx, 0.2, dx=0.01, n=1, order=3)
gives you a value of the derivative at x=0.2. Naturally, the value is huge given the scale of f. You can integrate using quad like I showed you above.
If you want to be able to differentiate g itself, you need a different numerical differentiation functio. I don't think scipy or numpy support this, although you could hack together a central difference calculation by making a 2D fine mesh (size dx) and using numpy.gradient. There are probably other library solutions that I'm not aware of, but I know my PyDSTool software contains a function diff that will do that (if you rewrite g to take one array argument instead). It uses Ridder's method and is inspired from the Numerical Recipes pseudocode.
I have a function that takes a floating point number and returns a floating point number. It can be assumed that if you were to graph the output of this function it would be 'n' shaped, ie. there would be a single maximum point, and no other points on the function with a zero slope. We also know that input value that yields this maximum output will lie between two known points, perhaps 0.0 and 1.0.
I need to efficiently find the input value that yields the maximum output value to some degree of approximation, without doing an exhaustive search.
I'm looking for something similar to Newton's Method which finds the roots of a function, but since my function is opaque I can't get its derivative.
I would like to down-thumb all the other answers so far, for various reasons, but I won't.
An excellent and efficient method for minimizing (or maximizing) smooth functions when derivatives are not available is parabolic interpolation. It is common to write the algorithm so it temporarily switches to the golden-section search (Brent's minimizer) when parabolic interpolation does not progress as fast as golden-section would.
I wrote such an algorithm in C++. Any offers?
UPDATE: There is a C version of the Brent minimizer in GSL. The archives are here: ftp://ftp.club.cc.cmu.edu/gnu/gsl/ Note that it will be covered by some flavor of GNU "copyleft."
As I write this, the latest-and-greatest appears to be gsl-1.14.tar.gz. The minimizer is located in the file gsl-1.14/min/brent.c. It appears to have termination criteria similar to what I implemented. I have not studied how it decides to switch to golden section, but for the OP, that is probably moot.
UPDATE 2: I googled up a public domain java version, translated from FORTRAN. I cannot vouch for its quality. http://www1.fpl.fs.fed.us/Fmin.java I notice that the hard-coded machine efficiency ("machine precision" in the comments) is 1/2 the value for a typical PC today. Change the value of eps to 2.22045e-16.
Edit 2: The method described in Jive Dadson is a better way to go about this. I'm leaving my answer up since it's easier to implement, if speed isn't too much of an issue.
Use a form of binary search, combined with numeric derivative approximations.
Given the interval [a, b], let x = (a + b) /2
Let epsilon be something very small.
Is (f(x + epsilon) - f(x)) positive? If yes, the function is still growing at x, so you recursively search the interval [x, b]
Otherwise, search the interval [a, x].
There might be a problem if the max lies between x and x + epsilon, but you might give this a try.
Edit: The advantage to this approach is that it exploits the known properties of the function in question. That is, I assumed by "n"-shaped, you meant, increasing-max-decreasing. Here's some Python code I wrote to test the algorithm:
def f(x):
return -x * (x - 1.0)
def findMax(function, a, b, maxSlope):
x = (a + b) / 2.0
e = 0.0001
slope = (function(x + e) - function(x)) / e
if abs(slope) < maxSlope:
return x
if slope > 0:
return findMax(function, x, b, maxSlope)
else:
return findMax(function, a, x, maxSlope)
Typing findMax(f, 0, 3, 0.01) should return 0.504, as desired.
For optimizing a concave function, which is the type of function you are talking about, without evaluating the derivative I would use the secant method.
Given the two initial values x[0]=0.0 and x[1]=1.0 I would proceed to compute the next approximations as:
def next_x(x, xprev):
return x - f(x) * (x - xprev) / (f(x) - f(xprev))
and thus compute x[2], x[3], ... until the change in x becomes small enough.
Edit: As Jive explains, this solution is for root finding which is not the question posed. For optimization the proper solution is the Brent minimizer as explained in his answer.
The Levenberg-Marquardt algorithm is a Newton's method like optimizer. It has a C/C++ implementation levmar that doesn't require you to define the derivative function. Instead it will evaluate the objective function in the current neighborhood to move to the maximum.
BTW: this website appears to be updated since I last visited it, hope it's even the same one I remembered. Apparently it now also support other languages.
Given that it's only a function of a single variable and has one extremum in the interval, you don't really need Newton's method. Some sort of line search algorithm should suffice. This wikipedia article is actually not a bad starting point, if short on details. Note in particular that you could just use the method described under "direct search", starting with the end points of your interval as your two points.
I'm not sure if you'd consider that an "exhaustive search", but it should actually be pretty fast I think for this sort of function (that is, a continuous, smooth function with only one local extremum in the given interval).
You could reduce it to a simple linear fit on the delta's, finding the place where it crosses the x axis. Linear fit can be done very quickly.
Or just take 3 points (left/top/right) and fix the parabola.
It depends mostly on the nature of the underlying relation between x and y, I think.
edit this is in case you have an array of values like the question's title states. When you have a function take Newton-Raphson.
I'm interested in building a derivative calculator. I've racked my brains over solving the problem, but I haven't found a right solution at all. May you have a hint how to start? Thanks
I'm sorry! I clearly want to make symbolic differentiation.
Let's say you have the function f(x) = x^3 + 2x^2 + x
I want to display the derivative, in this case f'(x) = 3x^2 + 4x + 1
I'd like to implement it in objective-c for the iPhone.
I assume that you're trying to find the exact derivative of a function. (Symbolic differentiation)
You need to parse the mathematical expression and store the individual operations in the function in a tree structure.
For example, x + sinĀ²(x) would be stored as a + operation, applied to the expression x and a ^ (exponentiation) operation of sin(x) and 2.
You can then recursively differentiate the tree by applying the rules of differentiation to each node. For example, a + node would become the u' + v', and a * node would become uv' + vu'.
you need to remember your calculus. basically you need two things: table of derivatives of basic functions and rules of how to derivate compound expressions (like d(f + g)/dx = df/dx + dg/dx). Then take expressions parser and recursively go other the tree. (http://www.sosmath.com/tables/derivative/derivative.html)
Parse your string into an S-expression (even though this is usually taken in Lisp context, you can do an equivalent thing in pretty much any language), easiest with lex/yacc or equivalent, then write a recursive "derive" function. In OCaml-ish dialect, something like this:
let rec derive var = function
| Const(_) -> Const(0)
| Var(x) -> if x = var then Const(1) else Deriv(Var(x), Var(var))
| Add(x, y) -> Add(derive var x, derive var y)
| Mul(a, b) -> Add(Mul(a, derive var b), Mul(derive var a, b))
...
(If you don't know OCaml syntax - derive is two-parameter recursive function, with first parameter the variable name, and the second being mathched in successive lines; for example, if this parameter is a structure of form Add(x, y), return the structure Add built from two fields, with values of derived x and derived y; and similarly for other cases of what derive might receive as a parameter; _ in the first pattern means "match anything")
After this you might have some clean-up function to tidy up the resultant expression (reducing fractions etc.) but this gets complicated, and is not necessary for derivation itself (i.e. what you get without it is still a correct answer).
When your transformation of the s-exp is done, reconvert the resultant s-exp into string form, again with a recursive function
SLaks already described the procedure for symbolic differentiation. I'd just like to add a few things:
Symbolic math is mostly parsing and tree transformations. ANTLR is a great tool for both. I'd suggest starting with this great book Language implementation patterns
There are open-source programs that do what you want (e.g. Maxima). Dissecting such a program might be interesting, too (but it's probably easier to understand what's going on if you tried to write it yourself, first)
Probably, you also want some kind of simplification for the output. For example, just applying the basic derivative rules to the expression 2 * x would yield 2 + 0*x. This can also be done by tree processing (e.g. by transforming 0 * [...] to 0 and [...] + 0 to [...] and so on)
For what kinds of operations are you wanting to compute a derivative? If you allow trigonometric functions like sine, cosine and tangent, these are probably best stored in a table while others like polynomials may be much easier to do. Are you allowing for functions to have multiple inputs,e.g. f(x,y) rather than just f(x)?
Polynomials in a single variable would be my suggestion and then consider adding in trigonometric, logarithmic, exponential and other advanced functions to compute derivatives which may be harder to do.
Symbolic differentiation over common functions (+, -, *, /, ^, sin, cos, etc.) ignoring regions where the function or its derivative is undefined is easy. What's difficult, perhaps counterintuitively, is simplifying the result afterward.
To do the differentiation, store the operations in a tree (or even just in Polish notation) and make a table of the derivative of each of the elementary operations. Then repeatedly apply the chain rule and the elementary derivatives, together with setting the derivative of a constant to 0. This is fast and easy to implement.
R question: Looking for the fastest way to NUMERICALLY solve a bunch of arbitrary cubics known to have real coeffs and three real roots. The polyroot function in R is reported to use Jenkins-Traub's algorithm 419 for complex polynomials, but for real polynomials the authors refer to their earlier work. What are the faster options for a real cubic, or more generally for a real polynomial?
The numerical solution for doing this many times in a reliable, stable manner, involve: (1) Form the companion matrix, (2) find the eigenvalues of the companion matrix.
You may think this is a harder problem to solve than the original one, but this is how the solution is implemented in most production code (say, Matlab).
For the polynomial:
p(t) = c0 + c1 * t + c2 * t^2 + t^3
the companion matrix is:
[[0 0 -c0],[1 0 -c1],[0 1 -c2]]
Find the eigenvalues of such matrix; they correspond to the roots of the original polynomial.
For doing this very fast, download the singular value subroutines from LAPACK, compile them, and link them to your code. Do this in parallel if you have too many (say, about a million) sets of coefficients.
Notice that the coefficient of t^3 is one, if this is not the case in your polynomials, you will have to divide the whole thing by the coefficient and then proceed.
Good luck.
Edit: Numpy and octave also depend on this methodology for computing the roots of polynomials. See, for instance, this link.
The fastest known way (that I'm aware of) to find the real solutions a system of arbitrary polynomials in n variables is polyhedral homotopy. A detailed explanation is probably beyond a StackOverflow answer, but essentially it's a path algorithm that exploits the structure of each equation using toric geometries. Google will give you a number of papers.
Perhaps this question is better suited for mathoverflow?
Fleshing out Arietta's answer above:
> a <- c(1,3,-4)
> m <- matrix(c(0,0,-a[1],1,0,-a[2],0,1,-a[3]), byrow=T, nrow=3)
> roots <- eigen(m, symm=F, only.values=T)$values
Whether this is faster or slower than using the cubic solver in the GSL package (as suggested by knguyen above) is a matter of benchmarking it on your system.
Do you need all 3 roots or just one? If just one, I would think Newton's Method would work ok. If all 3 then it might be problematic in circumstances where two are close together.
1) Solve for the derivative polynomial P' to locate your three roots. See there to know how to do it properly. Call those roots a and b (with a < b)
2) For the middle root, use a few steps of bisection between a and b, and when you're close enough, finish with Newton's method.
3) For the min and max root, "hunt" the solution. For the max root:
Start with x0 = b, x1 = b + (b - a) * lambda, where lambda is a moderate number (say 1.6)
do x_n = b + (x_{n - 1} - a) * lambda until P(x_n) and P(b) have different signs
Perform bisection + newton between x_{n - 1} and x_n
The common methods are available: Newton's Method, Bisection Method, Secant, Fixed point iteration, etc. Google any one of them.
If you have a non-linear system on the other hand (e.g. a system on N polynomial eqn's in N unknowns), a method such as high-order Newton may be used.
Have you tried looking into the GSL package http://cran.r-project.org/web/packages/gsl/index.html?