I have this data frame where I want to create multiple plots at the same time in a loop, but when I run the code it gives me an error. Can anyone please tell me what I am doing wrong!
Data:
structure(list(Date = structure(c(289094400, 297043200, 304992000,
312854400, 320716800, 328665600), tzone = "UTC", class = c("POSIXct",
"POSIXt")), NORTH = c(4.06976744186047, 5.51675977653633, 7.2799470549305,
4.75015422578655, 4.59363957597172, 3.15315315315317), YORKSANDTHEHUMBER = c(4.0121120363361,
5.45851528384282, 9.52380952380951, 6.04914933837431, 3.03030303030299,
5.42099192618225), NORTHWEST = c(6.57894736842105, 6.95256660168939,
6.50060753341436, 5.5904164289789, 4.59211237169096, 4.70041322314051
), EASTMIDS = c(4.98489425981872, 8.20143884892085, 6.91489361702127,
5.22388059701494, 5.61465721040189, 4.64465584778958), WESTMIDS = c(4.65838509316771,
4.74777448071216, 8.66855524079319, 6.56934306569344, 3.22896281800389,
3.17535545023698), EASTANGLIA = c(6.74525212835624, 8.58895705521476,
8.47457627118643, 10.7291666666667, 4.8447789275635, 4.84522207267835
), OUTERSEAST = c(6.7110371602884, 7.53638253638255, 9.47317544707589,
8.56512141280351, 3.82269215128102, 2.11515863689776), OUTERMET = c(4.54545454545458,
6.58505698607005, 7.36633663366336, 7.08225746956843, 4.3747847054771,
1.68316831683168), LONDON = c(8.11719500480309, 10.3065304309196,
6.32299637535239, 7.65151515151515, 1.30190007037299, 2.1535255296978
), SOUTHWEST = c(6.17577197149644, 7.71812080536912, 7.63239875389407,
9.45489628557649, 2.46804759806079, 2.19354838709679), WALES = c(6.09418282548476,
8.35509138381203, 7.40963855421687, 7.01065619742007, 1.15303983228513,
3.47150259067357), SCOTLAND = c(5.15222482435597, 4.12026726057908,
5.40106951871658, 8.67579908675796, -0.280112044817908, 2.94943820224719
), NIRELAND = c(4.54545454545454, 4.94752623688156, 4.42857142857145,
2.96397628818967, 6.06731620903454, 0.0835073068893502), UK = c(5.76890543055322,
7.20302836425676, 7.39543442582184, 7.22885986848197, 3.23472252213347,
2.95766398929048)), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))
Code:
for (i in 2:ncol(data2)) { # Printing ggplot within for-loop
print(ggplot(data2, aes(x = Date, y = data2[, i])) + # Basic ggplot2 plot of x & y's
geom_line() +
labs(title = "Uk States",
y = "",
x = "") +
theme_bw() +
geom_hline(yintercept = 0))
Sys.sleep(1)
}
Error:
Don't know how to automatically pick scale for object of type tbl_df/tbl/data.frame. Defaulting to continuous.
Error in is.finite(x) : default method not implemented for type 'list'
I would suggest to loop over the column names instead of value. You may then use .data to use as y-index.
library(tidyverse)
for(i in names(data2)[-1]) { # Printing ggplot within for-loop
# Basic ggplot2 plot of x & y's
print(ggplot(data2, aes(x = Date, y = .data[[i]])) +
geom_line()+ labs(title = "Uk States",
y = "",
x = "")+
theme_bw()+
geom_hline(yintercept = 0))
Sys.sleep(1)
}
You may also try facet_wrap to combine multiple plots together.
data2 %>%
pivot_longer(cols = -Date) %>%
ggplot(aes(Date, value)) +
geom_line() + facet_wrap(~name) +
labs(title = "Uk States", x = "", y = "") +
theme_bw() +
geom_hline(yintercept = 0)
Another way of generating ggplot in a loop is to use lapply, where we loop for colnames and use aes_string as the aesthetic mapping.
Here the results are saved to the list ggplot_list, where you can extract individual plot by indexing (e.g. plot for NORTH is stored in ggplot_list[[1]])
Note that I've changed labs(title = i) so that the plot title would be your column names.
library(ggplot2)
ggplot_list <- lapply(colnames(data2[-1]), \(i) {
ggplot(data2, aes_string("Date", x)) +
geom_line() +
labs(title = i, y = "", x = "") +
theme_bw() +
geom_hline(yintercept = 0)
})
Related
Given this R script:
library(glue)
library(ggplot2)
ir.data <- read.csv(file="~/apps/mine/cajueiro_weather_station/sensor_data/temperature_data.csv", header = F)
ir.data$V1 <- as.POSIXct(ir.data$V1, format = "%Y-%m-%dT%H:%M:%S", tz = "UTC")
ir.data$size <- (ir.data$V2 - ir.data$V3)
ggplot(ir.data, aes(x=V1)) +
labs(title = "IR-radiation-based sky temperature monitoring.",
subtitle = glue("Samples from {ir.data$V1[1]}h to {tail(ir.data$V1, n=1)}h UTC-3."),
caption = "Cajueiro Weather Station - fschuindt.githhub.io/blog/weather") +
geom_line(aes(y = V2), color = "#6163c2") +
geom_line(aes(y = V3), color = "#ad1fa2") +
scale_color_discrete(name = "Labels", labels = c("Ambient temperature.", "Sky temperature.")) +
xlab("Timestamp") +
ylab("Measured temperature in °Celcius")
And this .csv data sample:
2022-04-30T19:47:00,28.03,28.05
2022-04-30T19:47:02,27.99,28.01
2022-04-30T19:47:04,28.07,28.01
2022-04-30T19:47:06,28.05,28.05
2022-04-30T19:47:08,28.05,28.01
2022-04-30T19:47:10,28.03,28.01
2022-04-30T19:47:12,28.05,27.99
2022-04-30T19:47:14,28.07,28.01
2022-04-30T19:47:16,28.07,28.05
2022-04-30T19:47:18,28.05,28.05
2022-04-30T19:47:20,28.09,28.07
That's the plot output (the .csv data is bigger than the example):
Why the labels described at scale_color_discrete(name = "Labels", labels = c("Ambient temperature.", "Sky temperature.")) are not being displayed?
It's not recognising those values in an aes call to colour. Reshape data to put all y values in a single column, pass a grouping variable to aes(colour = ...) and use scale_colour_manual to set colours instead:
library(tidyverse)
ir.data <- read_csv(
"2022-04-30T19:47:00,28.03,28.05
2022-04-30T19:47:02,27.99,28.01
2022-04-30T19:47:04,28.07,28.01
2022-04-30T19:47:06,28.05,28.05
2022-04-30T19:47:08,28.05,28.01
2022-04-30T19:47:10,28.03,28.01
2022-04-30T19:47:12,28.05,27.99
2022-04-30T19:47:14,28.07,28.01
2022-04-30T19:47:16,28.07,28.05
2022-04-30T19:47:18,28.05,28.05
2022-04-30T19:47:20,28.09,28.07",
col_names = c("V1", "V2", "V3")
)
ir.data %>%
pivot_longer(-V1, names_to = "Labels", values_to = "V") %>%
ggplot(aes(x = V1, y = V, colour = Labels)) +
labs(
title = "IR-radiation-based sky temperature monitoring.",
subtitle = glue::glue(
"Samples from {ir.data$V1[1]}h to {tail(ir.data$V1, n=1)}h UTC-3."
),
caption = "Cajueiro Weather Station - fschuindt.githhub.io/blog/weather"
) +
geom_line(size = 1) +
scale_color_manual(
name = "Labels",
,
values = c("#6163c2", "#ad1fa2"),
limits = c("V2", "V3"),
labels = c("Ambient temperature.", "Sky temperature."),
) +
xlab("Timestamp") +
ylab("Measured temperature in °Celcius")
Created on 2022-05-06 by the reprex package (v2.0.1)
I need to convert a ggplot that has two x variables to mschart so that I can work with it in Word. I used to produce these in Excel, but we are moving to R for stats. Here's what it looks like in ggplot2:
In ggplot2, I just pass the x variable as interaction('Gender','JO_Type'). When I try to pass this to mschart, it returns this error message:
x %in% names(data) is not TRUE
I have tried converting the data to an array and vector, but no luck. I am not even sure mscharts can handle a two-dimensional x argument.
Data:
gender_category_JOType = structure(list(JO_Type = c("Standard" ,"Standard","Standard","Standard","Standard","Standard","Standard","Standard","Continuous","Continuous","Continuous","Continuous","Continuous","Continuous","Continuous","Continuous"),
Category = c("FS","FS","P1-P4","P1-P4","P5-P6","P5-P6","D1","D1","FS","FS","P1-P4","P1-P4","P5-P6","P5-P6","D1","D1"),
Gender = c("Female","Male","Female","Male","Female","Male","Female","Male","Female","Male","Female","Male","Female","Male","Female","Male"),
count = c(76,144,668,697,173,305,61,110,514,1214,264,504,46,130,18,41),
percentage=c("34.5%","65.5%","48.9%","51.1%","36.2%","63.8%","35.7%","64.3%","29.7%","70.3%","34.4%","65.6%","26.1%","73.9%","30.5%","69.5%")), row.names = c(1:16), class = "data.frame")
Code:
library(tidyverse)
library(magrittr)
library(mschart)
library(officer)
# the data for gender_category_JOType
print(gender_category_JOType)
# ggplot function
myBarChart_3 <- function(data,var1,var2,var3,count,title,xLabel,yLabel){
ggplot(data,
aes_string(x=var1, y=count, fill=var2)) +
ggtitle(title) +
geom_bar(stat = 'identity',width=1.15,
position = position_dodge2(padding=0.15, reverse=FALSE, preserve=c("single"))) +
geom_text(aes(label=count),
vjust=-.5, position=position_dodge2(width=1.15), size=2.5) +
scale_y_continuous(sec.axis=waiver(),
expand = expansion(mult = c(0,0.05))) +
facet_wrap(var3, nrow=1,strip.position="bottom",scales = "free_x") +
xlab(xLabel) +
ylab(yLabel)
}
myBarChart_3(gender_category_JOType, interaction('Gender','JO_Type'), 'Category',
c('JO_Type','Gender'), 'count', "Category, Gender, and JO Type",
"level", "total")# +
#geom_text(aes(label = percentage), vjust=-1.75, hjust='center',
# position=position_dodge2(width=1.15), size=2.5)
# the msbarchart version
# add the chart to an existing Word doc
gen_docx <- function(chart,file,file2){
doc <- read_docx()
doc <- body_add_par(doc, " ", style = "Normal", pos = "after")
doc <- body_add_chart(doc, chart = chart, style = "Normal", pos="after")
doc <- body_add_break(doc, pos="after")
doc <- body_add_par(doc, " ", style = "Normal", pos = "after")
doc <- body_add_par(doc, " ", style = "Normal", pos = "after")
doc <- body_add_docx(doc, src = file2, pos = "before")
doc <- print(doc, target = file)
}
# create the chart function
my_msbarchart_doc <- function(srcFile, docName, chartName, data, var, count,
grouping, title, xLabel, yLabel){
chartName <- ms_barchart(data, x = var, y = count, group = grouping) %>%
chart_labels(title = title, xlab = xLabel, ylab = yLabel)
chartName <- chart_data_labels(chartName, position="outEnd", show_val = T)
doc <- gen_docx(chartName, paste0(docName,".docx"), paste0(srcFile,".docx"))
}
# create the chart
lion <- my_msbarchart_doc("myDocument2", "myDocument3", lion, gender_category_JOType,
interaction('Gender','JO_Type'), "count", "Category",
"Category, JO Type, and Gender", "Gender and JO Type","count")
# error msg caused by the interaction that works in the ggplot but not in mschart: x %in% names(data) is not TRUE
For the following data set, I would like to plot for each variable and color each 10th observations differently. I can do it using the R base. I want to learn how to do it using the ggplot2?
dput(mydata)
structure(list(beta0_C1 = c(5.90722120539152, 5.89025566996191,
5.88591520258904, 5.86911167649919, 5.93772460437405, 5.92985640353594,
5.89150365752453, 5.99046628686212, 5.91548006074821, 5.91571832976612,
5.88437484241154, 5.92092513223357, 5.98978050584774, 5.91152552752889,
5.91235823292462, 5.87961960044268, 5.84048698713552, 5.85484766204026,
5.94002829943904, 5.8844367778216, 5.90201348639369, 5.91220967575205,
5.90010933186624, 5.9187781795242, 5.85506764080697, 5.90103565341373,
5.88527143992961, 5.90218851192948, 5.90118162849608, 5.93147588185271
), beta1_C1 = c(0.389473200070741, 0.386495525456602, 0.401277295631578,
0.400952009358693, 0.376727640651344, 0.380365338054745, 0.393444927288697,
0.351041363714069, 0.393194356572458, 0.393448101768608, 0.398884551136789,
0.399458966787235, 0.357436746423815, 0.393782316102096, 0.387154169967002,
0.400838223362088, 0.404272252119662, 0.407427775176583, 0.379704250022161,
0.388842664781329, 0.382202010301184, 0.401354531881688, 0.391184010553641,
0.390280828053183, 0.402135923802544, 0.384344141458216, 0.405409447440106,
0.391719398951194, 0.398025625260563, 0.361822915989445), beta2_C1 = c(-0.0214886993465096,
-0.020723519439664, -0.0224612526333316, -0.0218187226687474,
-0.0200324040063121, -0.0208421378685671, -0.0218756660346625,
-0.0182499666400075, -0.0222765863213226, -0.022242845613047,
-0.0222033291270054, -0.0231570312767931, -0.0189429585905841,
-0.0221017468740293, -0.0209327798783444, -0.022409049257, -0.021698958175968,
-0.0225601087054418, -0.020928341508875, -0.0214668830626075,
-0.0205872002686706, -0.0233768022702472, -0.021755967293395,
-0.0218442145294776, -0.0222514480818199, -0.0212195394692002,
-0.0232109717283908, -0.0214814999754984, -0.0225124468437127,
-0.0187033387452614), beta0_C2 = c(6.50537199380546, 6.43626630601952,
6.44460360859128, 6.44788878017196, 6.49678676895955, 6.48474789770674,
6.5459727637079, 6.37593806532098, 6.39492158034295, 6.44497331914909,
6.3888816168562, 6.49660574813212, 6.45922901141938, 6.40080765767324,
6.37918638201668, 6.49354321098856, 6.47057962920788, 6.55699741431025,
6.56617313133218, 6.54271932949381, 6.44608000042182, 6.45333777656105,
6.67458442747556, 6.48420983182487, 6.59919337271637, 6.46645685814734,
6.46171236062657, 6.52625058117578, 6.51177045919728, 6.49897849935538
), beta1_C2 = c(-0.370455826326915, -0.338852275811034, -0.340671118342601,
-0.339888681238265, -0.36934391822867, -0.357194169746804, -0.415966150286963,
-0.349051278947586, -0.358209379291251, -0.371785518417424, -0.349725822847608,
-0.368220986471866, -0.327425879655177, -0.336993142255552, -0.328859493371605,
-0.347764105375218, -0.329761787134926, -0.37935820670654, -0.400211161919931,
-0.408699321227288, -0.357590345066542, -0.376548827126353, -0.44672514669147,
-0.353840422053319, -0.421912098450693, -0.371491468175642, -0.354864346664247,
-0.39139246919467, -0.379006372881295, -0.372492936183765), beta2_C2 = c(0.039728365796445,
0.0368393936404604, 0.0375019672690036, 0.0375019364609944, 0.0403444583999664,
0.0378627636833333, 0.0446717245407897, 0.0377538641609231, 0.039662572899695,
0.0408055348533836, 0.0386737104573771, 0.0397794302159846, 0.0352739962796708,
0.0376756204317514, 0.0370614500426065, 0.0374731659969108, 0.035366001926832,
0.0397165124506166, 0.0414814320660011, 0.0431083057931525, 0.0388672853038453,
0.0403590048367136, 0.0461540000449275, 0.0379315295246309, 0.0440664419193363,
0.0404593732981113, 0.0387390924290065, 0.0417832766420881, 0.0409598003097311,
0.0394548129358408)), row.names = c(NA, 30L), class = "data.frame")
R base code
par(mfrow=c(3,3))
col.set=c("green","blue","purple","deeppink","darkorchid","darkmagenta","black","khaki")
loop.vector=1:ncol(mydata)
for(b in loop.vector) {
x.beta<-mydata[,b]
beta <- substr(sub("^beta", '', names(mydata)[b]),1,1)
Cn <- substr(sub("^beta", '',names(mydata)[b]),3,4)
plot(x.beta, type = "n", ylab="", xlab="",
main=bquote(beta[.(beta)]~.(Cn)),
cex.main=1)
mtext("plots of betas",line=-1.5, cex=1, outer = TRUE)
for (k in 1:3){
beta_k=mydata[((nrow(mydata)/3)*k-((nrow(mydata)/3)-1)):
((nrow(mydata)/3)*k),b]
lines(((nrow(mydata)/3)*k-((nrow(mydata)/3)-1)):
((nrow(mydata)/3)*k),beta_k,
col=col.set[k])
legend("topleft", bg="transparent",inset=0.05,legend=paste0("chain_",1:3),
col=col.set, lty=1,box.lty=0, cex=0.8)
}
}
I want the same main title for each plot and one main titile for all plots.
how can I do it using the ggplot2 package?
ggplot2 works best with a long data frame containing variables for x, y, color, etc. This makes a long data frame:
library(tidyverse)
long_data = my_data %>%
mutate(n=1:nrow(my_data), chain=paste0('Chain ', rep(1:3, each=nrow(my_data)/3))) %>%
pivot_longer(cols=c(-n, -chain)) %>%
mutate(name=str_replace(name, '(\\d)_', '[\\1]~~'))
This makes the plot.
ggplot(long_data, aes(n, value, color=chain)) +
geom_line() +
facet_wrap(~name, scales='free_y', ncol=3, dir='v',
labeller=label_parsed) +
scale_color_manual('', values=c('Chain 1'='green', 'Chain 2'='blue', 'Chain 3'='purple')) +
theme_minimal()
Quite similar to #KentJohnson's answer but adding expression labelling of your facets, centered title and using scale_color_manual function to edit color labeling:
library(ggplot2)
library(dplyr)
library(tidyr)
df %>% mutate(Group = rep(c("A","B","C"), each = 10),
Position = 1:30) %>%
pivot_longer(-c(Group,Position), names_to = "Var",values_to = "val") %>%
mutate(Var = factor(Var, levels = c("beta0_C1","beta1_C1","beta2_C1","beta0_C2","beta1_C2","beta2_C2"),
labels = c(expression(beta[0]*"C1"),
expression(beta[1]*"C1"),
expression(beta[2]*"C1"),
expression(beta[0]*"C2"),
expression(beta[1]*"C2"),
expression(beta[2]*"C2")))) %>%
ggplot(aes(x = Position, y = val, color = Group))+
geom_line()+
facet_wrap(.~Var, scales = "free", labeller = label_parsed)+
labs(x = "", y ="", title = "Plots of Betas", color = "")+
scale_color_manual(values = c("green","blue","purple"), labels = c("Chain 1","Chain 2","Chain 3"))+
theme_minimal()+
theme(plot.title = element_text(hjust = 0.5))
[enter image description here][1]I am trying to create a lowry plot in R but am having difficulty debugging the errors returned. I am using the following code to create the plot:
library(ggplot2)
library(reshape)
m_xylene_data <- data.frame(
Parameter = c(
"BW", "CRE", "DS", "KM", "MPY", "Pba", "Pfaa",
"Plia", "Prpda", "Pspda", "QCC", "QfaC", "QliC",
"QPC", "QspdC", "Rurine", "Vfac", "VliC", "Vmax"),
"Main Effect" = c(
1.03E-01, 9.91E-02, 9.18E-07, 3.42E-02, 9.27E-3, 2.82E-2, 2.58E-05,
1.37E-05, 5.73E-4, 2.76E-3, 6.77E-3, 8.67E-05, 1.30E-02,
1.19E-01, 4.75E-04, 5.25E-01, 2.07E-04, 1.73E-03, 1.08E-03),
Interaction = c(
1.49E-02, 1.43E-02, 1.25E-04, 6.84E-03, 3.25E-03, 7.67E-03, 8.34E-05,
1.17E-04, 2.04E-04, 7.64E-04, 2.84E-03, 8.72E-05, 2.37E-03,
2.61E-02, 6.68E-04, 4.57E-02, 1.32E-04, 6.96E-04, 6.55E-04
)
)
fortify_lowry_data <- function(data,
param_var = "Parameter",
main_var = "Main.Effect",
inter_var = "Interaction")
{
#Convert wide to long format
mdata <- melt(data, id.vars = param_var)
#Order columns by main effect and reorder parameter levels
o <- order(data[, main_var], decreasing = TRUE)
data <- data[o, ]
data[, param_var] <- factor(
data[, param_var], levels = data[, param_var]
)
#Force main effect, interaction to be numeric
data[, main_var] <- as.numeric(data[, main_var])
data[, inter_var] <- as.numeric(data[, inter_var])
#total effect is main effect + interaction
data$.total.effect <- rowSums(data[, c(main_var, inter_var)])
#Get cumulative totals for the ribbon
data$.cumulative.main.effect <- cumsum(data[, main_var])
data$.cumulative.total.effect <- cumsum(data$.total.effect)
#A quirk of ggplot2 means we need x coords of bars
data$.numeric.param <- as.numeric(data[, param_var])
#The other upper bound
#.maximum = 1 - main effects not included
data$.maximum <- c(1 - rev(cumsum(rev(data[, main_var])))[-1], 1)
data$.valid.ymax <- with(data,
pmin(.maximum, .cumulative.total.effect)
)
mdata[, param_var] <- factor(
mdata[, param_var], levels = data[, param_var]
)
list(data = data, mdata = mdata)
}
lowry_plot <- function(data,
param_var = "Parameter",
main_var = "Main.Effect",
inter_var = "Interaction",
x_lab = "Parameters",
y_lab = "Total Effects (= Main Effects + Interactions)",
ribbon_alpha = 0.5,
x_text_angle = 25)
{
#Fortify data and dump contents into plot function environment
data_list <- fortify_lowry_data(data, param_var, main_var, inter_var)
list2env(data_list, envir = sys.frame(sys.nframe()))
p <- ggplot(data) +
geom_bar(aes_string(x = param_var, y = "value", fill = "variable"),
data = mdata) +
geom_ribbon(
aes(x = .numeric.param, ymin = .cumulative.main.effect, ymax =
.valid.ymax),
data = data,
alpha = ribbon_alpha) +
xlab(x_lab) +
ylab(y_lab) +
scale_y_continuous(labels = "percent") +
theme(axis.text.x = text(angle = x_text_angle, hjust = 1)) +
scale_fill_grey(end = 0.5) +
theme(legend.position = "top",
legend.title =blank(),
legend.direction = "horizontal"
)
p
}
m_xylene_lowry <- lowry_plot(m_xylene_data)
When I run the code, it is giving me the following error:
Error: argument "x" is missing, with no default
It is not specific enough for me to know what the issue is. What is causing the error to be displayed and how can I make error statements more verbose?
Lowry PLOT
It seems that you have more than one faulty element in your code than just the error it throws. In my experience it always helps to first check whether the code works as expected before putting it into a function. The plotting-part below should work:
p <- ggplot(data) + # no need to give data here, if you overwrite it anyway blow, but does not affect outcome...
# geom_bar does the counting but does not take y-value. Use geom_col:
geom_col(aes_string(x = param_var, y = "value", fill = "variable"),
data = mdata,
position = position_stack(reverse = TRUE)) +
geom_ribbon(
aes(x = .numeric.param, ymin = .cumulative.main.effect, ymax =
.valid.ymax),
data = data,
alpha = ribbon_alpha) +
xlab(x_lab) +
ylab(y_lab) +
# use scales::percent_format():
scale_y_continuous(labels = scales::percent_format()) +
# text is not an element you can use here, use element_text():
theme(axis.text.x = element_text(angle = x_text_angle, hjust = 1)) +
scale_fill_grey(end = 0.5) +
# use element_blank(), not just blank()
theme(legend.position = "top",
legend.title = element_blank(),
legend.direction = "horizontal"
)
This at least plots something, but I'm not sure whether it is what you expect it to do. It would help if you could show the desired output.
Edit:
Added position = position_stack(reverse = TRUE) to order according to sample plot.
I have written a function to load spatial data, extract data from an input dataset and merge this dataset with the spatial data. Then my function returns a map on which my cases get plotted.
My function works fine if I return my plot as the following:
(with fill = totalCases)
return ({
ggplot() +
geom_polygon(data = sl_adm2_Month, aes(x = long, y = lat, group = group,
fill = totalCases), colour = "white") +
geom_text(data = sl_adm2_months_names_DF, aes(label = NAME_2, x = long.1, y = lat.2, group = NAME_2), size = 3) +
# labs(title = paste("Ebola", str_sub(as.character(variable), 6, -1), "cases by district in Sierra Leone - until", format(as.Date(date), "%B %Y"))) +
xlab("") +
ylab("") +
theme_gray() +
theme(legend.position = "bottom")
})
However, my goal is to pass a parameter providing the value (= variable) for the fill parameter as you can see in my below code. But this throws the following error:
Error in eval(expr, envir, enclos) : object 'variable' not found
Here is my code:
plotMonths <- function(data, variable, date) {
# Reloading district polygons
sl_adm2_months <- readOGR("C:/Users/woba/Documents/Ordina/TFS-Projects/Ordina - Mail Analytics/Johnson/Wouter/03. GeoData map - R/Sierra Leone adm2", "SLE_adm2", verbose = TRUE, stringsAsFactors = FALSE)
sl_adm2_months_DF <- fortify(sl_adm2_months, region = "NAME_2")
# Getting the correct District names
colnames(sl_adm2_months_DF)[7] <- "District"
sl_adm2_months_DF$District <- ifelse(sl_adm2_months_DF$District == "Western Rural", "Western Area Rural", as.character(sl_adm2_months_DF$District))
sl_adm2_months_DF$District <- ifelse(sl_adm2_months_DF$District == "Western Urban", "Western Area Urban", as.character(sl_adm2_months_DF$District))
sl_adm2_months_DF$District <- as.factor(sl_adm2_months_DF$District)
#Extracting district names for plotting
sl_adm2_months_names_DF <- data.frame(long = coordinates(sl_adm2_months[, 1]), lat = coordinates(sl_adm2_months[, 2]))
sl_adm2_months_names_DF[, "ID_2"] <- sl_adm2_months#data[, "ID_2"]
sl_adm2_months_names_DF[, "NAME_2"] <- sl_adm2_months#data[, "NAME_2"]
# Subset May data
sl_Month <- data[data$Country == "Sierra Leone" & data$Date <= as.Date(date), ]
sl_Month <- droplevels(sl_Month)
sl_Month[is.na(sl_Month)] <- 0
confirmed <- ddply(sl_Month, .(Localite), function(x){max(x$cmlConfirmed.cases, na.rm = T)})
cases <- ddply(sl_Month, .(Localite), function(x){max(x$cmlCases, na.rm = T)})
deaths <- ddply(sl_Month, .(Localite), function(x){max(x$cmlDeaths, na.rm = T)})
sl_Month <- merge(cases, deaths, by = "Localite")
sl_Month <- merge(sl_Month, confirmed, by = "Localite")
sl_Month <- droplevels(sl_Month)
sl_Month <- droplevels(sl_Month)
colnames(sl_Month)<- c("District", "totalCases", "totalDeaths", "totalConfirmed")
sl_Month <- sl_Month[-which(sl_Month$District == "National"),]
# Merging Month data with District polygons
sl_adm2_Month <- merge(sl_adm2_months_DF, sl_Month, by = "District", all.x = TRUE)
sl_adm2_Month$totalCases <- as.numeric(sl_adm2_Month$totalCases)
sl_adm2_Month$totalDeaths <- as.numeric(sl_adm2_Month$totalDeaths)
sl_adm2_Month$totalConfirmed <- as.numeric(sl_adm2_Month$totalConfirmed)
#NA to 0 for values missing for districts
sl_adm2_Month[is.na(sl_adm2_Month)] <- 0
#Sorting
sl_adm2_Month <- sl_adm2_Month[order(sl_adm2_Month$District, sl_adm2_Month$order), ]
# Prints & Views
print(head(sl_Month))
View(sl_Month)
View(sl_adm2_Month)
Sys.setlocale("LC_TIME", "English")
# Plotting Cases
return ({
ggplot() +
geom_polygon(data = sl_adm2_Month, aes(x = long, y = lat, group = group,
fill = variable), colour = "white") +
geom_text(data = sl_adm2_months_names_DF, aes(label = NAME_2, x = long.1, y = lat.2, group = NAME_2), size = 3) +
# labs(title = paste("Ebola", str_sub(as.character(variable), 6, -1), "cases by district in Sierra Leone - until", format(as.Date(date), "%B %Y"))) +
xlab("") +
ylab("") +
theme_gray() +
theme(legend.position = "bottom")
})
}
# Plotting the months - variable = second input and must be IN c(totalDeaths, totalCases, totalConfirmed)
plotMonths(final_dataset, "totalCases", "2014-05-31")
I've read some similar questions on the forum but wasn't able to resolve my issue.
Any help on how to fix this is very welcome!
Using 'aes_string' instead of 'aes' solved my issue.
aes_string(x = "long", y = "lat", group = "group", fill = variable)
Explanation on the differences between aes & aes_string for the ggplot2 package can be found here:
What is the difference between aes and aes_string (ggplot2) in R
All credit goes to Axeman & Benjamin - their answers solved my issue!