can't convert month number to month date in R [duplicate] - r

This question already has answers here:
How can I use name of a month in x-axis in ggplot2
(2 answers)
Closed 7 months ago.
I would like to create a ggplot with different tree types in Spain.
I used that code
library(dplyr)
library(reshape)
set.seed(123)
library(ggplot2)
library(tidyr)
df_long <- pivot_longer(df7,
cols = c(Birch, Palm, Oak),
values_to = "m3",
names_to = "Trees")
# Plot
ggplot(df_long,
aes(
x = Month,
y = Integral,
color = Trees
)) +
geom_line() +
ggtitle("trees in Spain") +
xlab("Month") + scale_x_continuous(breaks = seq(1, 12, by = 1), limits = c(1,12)) +
ylab(" m3")
But unfortunately the month names are not shown, just the number but I would like to have the month name

If your months are integers you can use the built in constants month.abb and month.name
library(dplyr)
df <- data.frame(month_nums = 1:12)
df |>
mutate(
month_abb = month.abb[month_nums],
month_full = month.name[month_nums]
)
# MONTH month_abb month_full
# 1 1 Jan January
# 2 2 Feb February
# 3 3 Mar March
# 4 4 Apr April
# 5 5 May May
# 6 6 Jun June
# 7 7 Jul July
# 8 8 Aug August
# 9 9 Sep September
# 10 10 Oct October
# 11 11 Nov November
# 12 12 Dec December
If they are dates you can use format():
df <- data.frame(
month = seq(from = as.Date("2020-01-01"), to = as.Date("2020-12-31"), by = "month")
)
df |>
mutate(
month_abb = format(month, "%b"),
month_full = format(month, "%B")
)
# month month_abb month_full
# 1 2020-01-01 Jan January
# 2 2020-02-01 Feb February
# 3 2020-03-01 Mar March
# 4 2020-04-01 Apr April
# 5 2020-05-01 May May
# 6 2020-06-01 Jun June
# 7 2020-07-01 Jul July
# 8 2020-08-01 Aug August
# 9 2020-09-01 Sep September
# 10 2020-10-01 Oct October
# 11 2020-11-01 Nov November
# 12 2020-12-01 Dec December

Related

How to convert monthly data as.date type variable in R?

I have monthly data and want to convert period columns as.date in r.
In addition, rows are not ordered according to time in data frame
df <- data.frame (period = c("March 2019", "February 2019", "January 2019", "May 2019","April 2019","August 2019","June 2019","July 2019","November 2019","September 2019","October 2019","December 2019"),sales = rnorm(12))
period sales
1 March 2019 1.841711557
2 February 2019 0.403043685
3 January 2019 0.524417978
4 May 2019 0.236378511
5 April 2019 -0.099441313
6 August 2019 0.001731664
7 June 2019 0.792067260
8 July 2019 -0.352379347
9 November 2019 1.174681909
10 September 2019 0.075480279
11 October 2019 -0.258695621
12 December 2019 -1.775315927
Using as.Date with appropriate format on pasted 1 to period, then order.
transform(dat, period=as.Date(paste(1, period), '%d %b %Y')) |>
{\(.) .[order(.$period), ]}()
# period sales
# 1 2019-01-01 0.25542882
# 5 2019-02-01 0.11748736
# 10 2019-03-01 0.98889173
# 6 2019-04-01 0.47499708
# 2 2019-05-01 0.46229282
# 8 2019-06-01 0.90403139
# 12 2019-07-01 0.08243756
# 7 2019-08-01 0.56033275
# 4 2019-09-01 0.97822643
# 9 2019-10-01 0.13871017
# 11 2019-11-01 0.94666823
# 3 2019-12-01 0.94001452
Data:
set.seed(42)
dat <- data.frame(period=sample(paste(month.name, 2019)),
sales=runif(12))

Filling missing date months in a time series by Item

I am fairly new to R and I am trying to do the following task:
I have the following dataset:
df1 <- data.frame(ITEM = c("A","A","A","A","A","B","B","B","B","B"),
Date = c("Jan-2020","Feb-2020","May-2020","Jun-2020","Jul-2020","Jan-2020","Apr-2020","Jun-2020","Jul-2020","Aug-2020"))
Here is an image:
I have used the library "zoo" to change the date column into yearmon and I am trying to create rows for the missing "yearmon" dates. So something like this:
Anyone has any idea how I can do this?
Thank you
You can create a sequence of yearmon objects for each ITEM and use it in complete.
library(dplyr)
library(zoo)
library(tidyr)
df1 %>%
mutate(Date = as.yearmon(Date, '%b-%Y')) %>%
group_by(ITEM) %>%
complete(Date = seq(min(Date), max(Date), 1/12)) %>%
ungroup
# ITEM Date
# <chr> <yearmon>
# 1 A Jan 2020
# 2 A Feb 2020
# 3 A Mar 2020
# 4 A Apr 2020
# 5 A May 2020
# 6 A Jun 2020
# 7 A Jul 2020
# 8 B Jan 2020
# 9 B Feb 2020
#10 B Mar 2020
#11 B Apr 2020
#12 B May 2020
#13 B Jun 2020
#14 B Jul 2020
#15 B Aug 2020
If you want a sequence of date objects you can use :
df1 %>%
mutate(Date = as.Date(as.yearmon(Date, '%b-%Y'))) %>%
group_by(ITEM) %>%
complete(Date = seq(min(Date), max(Date), 'month')) %>%
ungroup()

Create dataframe with month start and end in R

I want to create a dataframe from a given start and end date:
start_date <- as.Date("2020-05-17")
end_date <- as.Date("2020-06-23")
For each row in this dataframe, I should have the start day and end day of the month, so the expected output is:
start end month year
2020-05-17 2020-05-31 May 2020
2020-06-01 2020-06-23 June 2020
I have tried to create a sequence, but I'm stuck on what to do next:
day_seq <- seq(start_date, end_date, 1)
Please, a base R or tidyverse solution will be greatly appreciated.
1) yearmon Using start_date and end_date from the question create a yearmon sequence and then each of the desired columns is a simple one line computation. The stringAsFactors line can be omitted under R 4.0 onwards as that is the default there.
library(zoo)
ym <- seq(as.yearmon(start_date), as.yearmon(end_date), 1/12)
data.frame(start = pmax(start_date, as.Date(ym)),
end = pmin(end_date, as.Date(ym, frac = 1)),
month = month.name[cycle(ym)],
year = as.integer(ym),
stringsAsFactors = FALSE)
giving:
start end month year
1 2020-05-17 2020-05-31 May 2020
2 2020-06-01 2020-06-23 June 2020
2) Base R This follows similar logic and gives the same answer. We first define a function month1 which given a Date class vector x returns a Date vector the same length but for the first of the month.
month1 <- function(x) as.Date(cut(x, "month"))
months <- seq(month1(start_date), month1(end_date), "month")
data.frame(start = pmax(start_date, months),
end = pmin(end_date, month1(months + 31) - 1),
month = format(months, "%B"),
year = as.numeric(format(months, "%Y")),
stringsAsFactors = FALSE)
A while ago that I used the tidyverse, but here is my go at things..
sample data
different sample data to tagckle some problems wher the year changes..
start_date <- as.Date("2020-05-17")
end_date <- as.Date("2021-06-23")
code
library( tidyverse )
library( lubridate )
#create a sequence of days from start to end
tibble( date = seq( start_date, end_date, by = "1 day" ) ) %>%
mutate( month = lubridate::month( date ),
year = lubridate::year( date ),
end = as.Date( paste( year, month, lubridate::days_in_month(date), sep = "-" ) ) ) %>%
#the end of the last group is now always larger than tghe maximum date... repair!
mutate( end = if_else( end > max(date), max(date), end ) ) %>%
group_by( year, month ) %>%
summarise( start = min( date ),
end = max( end ) ) %>%
select( start, end, month, year )
output
# # A tibble: 14 x 4
# # Groups: year [2]
# start end month year
# <date> <date> <dbl> <dbl>
# 1 2020-05-17 2020-05-31 5 2020
# 2 2020-06-01 2020-06-30 6 2020
# 3 2020-07-01 2020-07-31 7 2020
# 4 2020-08-01 2020-08-31 8 2020
# 5 2020-09-01 2020-09-30 9 2020
# 6 2020-10-01 2020-10-31 10 2020
# 7 2020-11-01 2020-11-30 11 2020
# 8 2020-12-01 2020-12-31 12 2020
# 9 2021-01-01 2021-01-31 1 2021
# 10 2021-02-01 2021-02-28 2 2021
# 11 2021-03-01 2021-03-31 3 2021
# 12 2021-04-01 2021-04-30 4 2021
# 13 2021-05-01 2021-05-31 5 2021
# 14 2021-06-01 2021-06-23 6 2021
For the specific period in your question, you may use:
library(lubridate)
start_date <- as.Date("2020-05-17")
end_date <- as.Date("2020-06-23")
start <- c(start_date, floor_date(end_date, unit = 'months'))
end <- c(ceiling_date(start_date, unit = 'months'), end_date)
month <- c(as.character(month(start[1], label = TRUE)),
as.character(month(start[2], label = TRUE)))
year <- c(year(start[1]), year(start[2]))
data.frame(start, end, month, year, stringsAsFactors = FALSE)
Here is one approach using intervals with lubridate. You would create a full interval between the 2 dates of interest, and then intersect with monthly ranges for each month (first to last day each month).
library(tidyverse)
library(lubridate)
start_date <- as.Date("2020-05-17")
end_date <- as.Date("2021-08-23")
full_int <- interval(start_date, end_date)
month_seq = seq(start_date, end_date, by = "month")
month_int = interval(floor_date(month_seq, "month"), ceiling_date(month_seq, "month") - days(1))
data.frame(interval = intersect(full_int, month_int)) %>%
mutate(start = int_start(interval),
end = int_end(interval),
month = month.abb[month(start)],
year = year(start)) %>%
select(-interval)
Output
start end month year
1 2020-05-17 2020-05-31 May 2020
2 2020-06-01 2020-06-30 Jun 2020
3 2020-07-01 2020-07-31 Jul 2020
4 2020-08-01 2020-08-31 Aug 2020
5 2020-09-01 2020-09-30 Sep 2020
6 2020-10-01 2020-10-31 Oct 2020
7 2020-11-01 2020-11-30 Nov 2020
8 2020-12-01 2020-12-31 Dec 2020
9 2021-01-01 2021-01-31 Jan 2021
10 2021-02-01 2021-02-28 Feb 2021
11 2021-03-01 2021-03-31 Mar 2021
12 2021-04-01 2021-04-30 Apr 2021
13 2021-05-01 2021-05-31 May 2021
14 2021-06-01 2021-06-30 Jun 2021
15 2021-07-01 2021-07-31 Jul 2021
16 2021-08-01 2021-08-23 Aug 2021

Long string date to short date R

I have a df with dates formatted in the following way.
Date Year
<chr> <dbl>
Sunday, Jul 27 2008
Tuesday, Jul 29 2008
Wednesday, July 31 (1) 2008
Wednesday, July 31 (2) 2008
Is there a simple way to achieve the following format of columns and values? I'd also like to remove the (1) and (2) notations on the two July 31 dates.
Date Year Month Day Day_of_Week
2008-07-27 2008 07 27 Sunday
With base R, you can do:
dat <- data.frame(
Date = c("Sunday, Jul 27" ,"Tuesday, Jul 29", "Wednesday, July 31", "Wednesday, July 31"),
Year = rep(2008, 4),
stringsAsFactors = FALSE
)
dts <- as.POSIXlt(paste(dat$Year, dat$Date), format = "%Y %A, %B %d")
POSIXlt provides a list-based reference for the date/time. To see them, try unclass(dts[1]).
From here it can be rather academic:
dat$Month = 1 + dts$mon # months are 0-based in POSIXlt
dat$Day = dts$mday
dat$Day_of_Week = weekdays(dts)
dat
# Date Year Month Day Day_of_Week
# 1 Sunday, Jul 27 2008 7 27 Sunday
# 2 Tuesday, Jul 29 2008 7 29 Tuesday
# 3 Wednesday, July 31 2008 7 31 Thursday
# 4 Wednesday, July 31 2008 7 31 Thursday
library(dplyr)
library(lubridate)
dat = data_frame(date = c('Sunday, Jul 27','Tuesday, Jul 29', 'Wednesday, July
31 (1)','Wednesday, July 31 (2)'), year=rep(2008,4))
dat %>%
mutate(date = gsub("\\s*\\([^\\)]+\\)","",as.character(date)),
date = parse_date_time(date,'A, b! d ')) -> dat1
year(dat1$date) <- dat1$year
# A tibble: 4 × 2
date year
<dttm> <dbl>
1 2008-07-27 2008
2 2008-07-29 2008
3 2008-07-31 2008
4 2008-07-31 2008

Date formatting MMM-YYYY

I have a dataset with dates in following format:
Initial:
Jan-2015 Apr-2013 Jun-2014 Jan-2015 Jan-2016 Jan-2015 Jan-2016 Jan-2015 Apr-2012 Nov-2012 Jun-2013 Sep-2013
Final:
Feb-2014 Jan-2013 Sep-2014 Apr-2013 Sep-2014 Mar-2013 Aug-2012 Apr-2012 Oct-2012 Oct-2013 Jun-2014 Oct-2013
I would like to perform these steps:
create dummy variables for Month and Year
Subtract these dates from another dates to find out duration (final- initials) in months
I would like to do these in R?
You could use as.yearmon from the zoo package for this.
library(zoo)
12 * (as.yearmon("Jan-2015", "%b-%Y") - as.yearmon("Feb-2014", "%b-%Y"))
# result
# [1] 11
To expand on #neilfws answer, you can use the month and year functions from the lubridate package to create your dummy variables with the month and year in your data frame.
Here is the code:
library(lubridate)
library(zoo)
df <- data.frame(Initial = c("Jan-2015", "Apr-2013", "Jun-2014", "Jan-2015", "Jan-2016", "Jan-2015",
"Jan-2016", "Jan-2015", "Apr-2012", "Nov-2012", "Jun-2013", "Sep-2013"),
Final = c("Feb-2014", "Jan-2013", "Sep-2014", "Apr-2013", "Sep-2014", "Mar-2013",
"Aug-2012", "Apr-2012", "Oct-2012", "Oct-2013", "Jun-2014", "Oct-2013"))
df$Initial <- as.character(df$Initial)
df$Final <- as.character(df$Final)
df$Initial <- as.yearmon(df$Initial, "%b-%Y")
df$Final <- as.yearmon(df$Final, "%b-%Y")
df$month_initial <- month(df$Initial)
df$year_intial <- year(df$Initial)
df$month_final <- month(df$Final)
df$year_final <- year(df$Final)
df$Difference <- 12*(df$Initial-df$Final)
And here is the final data.frame:
> head(df)
Initial Final month_initial year_intial month_final year_final Difference
1 Jan 2015 Feb 2014 1 2015 2 2014 11
2 Apr 2013 Jan 2013 4 2013 1 2013 3
3 Jun 2014 Sep 2014 6 2014 9 2014 -3
4 Jan 2015 Apr 2013 1 2015 4 2013 21
5 Jan 2016 Sep 2014 1 2016 9 2014 16
6 Jan 2015 Mar 2013 1 2015 3 2013 22
Hope this helps!

Resources