Fetching top 10 records without using scan in DynamoDB - amazon-dynamodb

I have a DynamoDB table containing:
productID (PK), name, description, url, createTimestamp, <constant>
I'm trying to retrieve the latest 10 products by createTimestamp (unix timestamp).
In SQL, I would probably pull out the data like:
select * from [table] order by createTimestamp desc limit 10;
Q: How can I achieve the same result using DynamoDB without using scan?
The table can be pretty large and data will be accessed often (e.g., whenever user access the e-commerce website) so using scan wouldn't be optimal. I'm thinking of creating a GSI using a constant value as PK (because there isn't any other attribute we could use to narrow the results) and sort key as createTimestamp but this is considered anti-pattern. Is there a better alternative?

That’s the way to go, with a GSI having a singular PK and the timestamps in the SK.
If your write rate will exceed 1,000 write units per second then you’ll want to shard the PK value to one of N many randomly chosen values to increase throughout to N,000 writes per second.
That means you’ll need to do N many Query calls to get your unified answer but each Query will be highly efficient and index optimized.
This is a common design pattern.

Related

Can I avoid a Scan Operation when trying to retrieve all items in a specific date range in dynamoDB?

I have a simple table which contains one unique partition key id and a bunch of other attributes including a date attribute.
I now want to get all records in a specific time range however as far as I understood, the only way to do this is to use a scan.
I tried to use a GSI on date but then I can not use BETWEEN in the KeyConditionExpression.
Is there any other option?
Q: Are you providing one-and-only-one Partition Key value?
A: If YES, then you can query. If NO, it's a scan.
You are currently in scan territory, because you need to search over multiple ids.
To get to the promised land of queries, consider DynamoDB's design pattern for time series data. One implementation would be to add a GSI with a compound Primary Key representing the date. Split the date between a PK and SK. Your PK could be YYYY-MM, for instance, depending on your query patterns. The SK would get the leftover bits of the date (e.g. DD). Covering a date range would mean executing one or several queries on the GSI.
This pattern has many variants. If scale is a challenge and you are mostly querying a known subset of recent days, for instance, you could consider replicating records to a separate reporting table configured with the above keys and a TTL field to expire old records. As always, the set of "good" DynamoDB solutions is determined by your query patterns and scale.

How to query on more than 2 attributes in DynamoDB using GSI?

I have a use-case where i have to query on more than 2 attributes on dynamoDB table. As far as I know, we can only query for upto 2 attributes(partition key, sort key) on DDB table using GSI. is there anything which allows us to query on multiple attribute(say invoiceId, clientId, invoiceStatus) using GSI.
Yes, this is possible, but you need to take into account every access pattern you want to support when you design your table.
This topic has been discussed at re:Invent multiple times. Here is an video from a few years ago https://youtu.be/HaEPXoXVf2k?t=2102 but similar talks have been given on the topic every year.
Two main options are using composite keys or query filters.
Composite keys are very powerful and boil down to making new 'synthetic' keys that simply concatenate other fields that you have in your record and then using these in your GSI.
For example, if you have a client where you want to be able to get all of their open invoice but also want to be able to get an individual invoice you could use clientId as the partition key and concatenate invoiceStatus and invoiceId together as the sort key. You can then use begins_with to only have certain invoice status returned. In this example, you'd get the have to know the invoiceStatus and invoiceId making this not the best example.
The composite key pattern is also useful for dates as you can use greater than or less than to search certain time ranges. However, it is also possible just to directly get the records with the concatenation.
An alternative design is using query filters. This is less efficient as DynamoDB will have to scan every record that matches the partition and sort key. However, the filter can be applied to any attribute and reduces the amount of data transmitted from DynamoDB to your application. This is useful when your main keys are mostly selective, but multiple matches are possible and the filter gets you the rest of the way there.
The other aspect of using a GSI that can help reduce cost is projecting only the attributes you care about. When a record is updated the GSI only updates if one of the projected attributes is updated. By keeping the GSI skinny it makes the previously listed strategies more cost effective.

Would using a substring of a GUID in CosmosDB as partitionkey be a bad idea?

I'm doing some R&D to move a product catalog into CosmosDB.
In it's simplest terms a Product document will have:
Product Id (GUID)
Product Name
Manufacturer
A manufacturer will log into this system and will only be able to query their own data so there will always be a ManufacturerId = SINGLE_VALUE filter on every query.
When reviewing the cosmos docs, re: chosing the correct partition strategy, there seems to be 2 main points.
- Choose a partition key with a high cardinality
- Choose a partition key that gives an even distribution of data.
In my scenario above, chosing product Id as the PartitionKey would be pretty extreme... 1 document per logical partition.
On the other hand chosing Manufactuer wouldn't be great either since that won't result in an even distribution (some manufacturers have 10 products, others have 100,000)
One way to ensure an even distribution would be to take the first 4 characters of the GUID and use that as a PartitionKey. (so max 4096 partitions). Based on the existing dataset i have, this does result in an even distribution of data. but I'm wondering are there any downsides to doing this.
Are there any downsides to just using the entire productId as the PartitionKey (1 doc per partition) as they seem to indicate that's a valid approach for a system that stores user profiles. Would this approach have implications for searching for multiple products in the same search.
Using a key that is unique per-document is a good way to ensure even distribution to support high performance - so that makes the full product id a great choice. I don't believe you would gain any advantage from using a substring of a full guid as a partition key - and you would be limiting your maximum number of usable partitions.
So why not always use a unique identifier as the partition key?
First, if you add a partition key to a query, you do not need to enable cross-partition query and you will have a lower overall query cost (RU/s). So if you can design your partition key to reduce your need for cross-partition queries it could save RU/s. I don't think a 'substring of a guid' helps you there, because the random nature of the guid would not distribute documents in a way you could take advantage of for efficient querying.
Second, only documents with the same partition key are guaranteed to all be available on the same partition if you need to involve them in a transactional stored procedure. A 'substring of a guid' also doesn't help with this case.
I almost always use 'identifier' based partition keys such as your product id. This doesn't always correspond to the 'id' of the document itself. Sometimes I have multiple documents with content related to the same thing. For example, if I have some product information synced from another system, that sync job can be most efficient if it uses upsert - but due to current lack of partial update support in CosmosDB (see user voice) the whole document needs to be upserted. So in this case I have one document for the synced information, and a separate document for other information. This could look something like:
{
"id": "12345:myinfo",
"productid":"12345",
"info":{}
"type":"myinfotype"
},
{
"id": "12345:vendorsync",
"productid":"12345",
"syncedinfo":{},
"type":"vendorsync"
}
Here the product id is the partition key, and I have a couple of different documents related to that product that I know will reside on the same partition so I can query them efficiently or involve them in a transaction.
I have also used this pattern when implementing a revision system, so that all revisions of the same logical document are guaranteed to be placed on the same partition. In that case the document has a "documentid" that is the same for all revisions, and the actual "id" of the document is the document id with the revision number added.
Please also review 'Design for Partitioning' here if you haven't already:
https://learn.microsoft.com/en-us/azure/cosmos-db/partition-data
Depending on the size of your docs and the overall number of docs for a manufacturer, I would probably go with ManufacturerID as your PartitionKey.
Would it be unbalanced, yes. But as long as the biggest manufacturer can stay under the partition limit (12.5GB as of this writing) then you would have very efficient querying. If you chose the GUID field, then you would always have to utilize a cross-partition query, which means higher RUs are needed and thus more costly and slower. The assumption I'm making here are that the larger manufacturers will probably execute more queries.
If you do think you'll bump up against that partition limit, some other ideas would be partition into a sub-category for each manufacturer if that's possible. Example: Manufacturer = General Motors, Category = SUVs, and then partition on a custom string field that represents Manufacturer_Category. This composite partition key is the best compromise of read/write speeds, and partition balancing.
-FYI: No need to use substring of a GUID as a partitionKey because CosmosDB will hash your values automatically for you into the appropriate partition key ranges for the number of physical partitions you have.

What's the recommended index schema for dynamo for a typical crud application?

I've been reading some DynamoDB index docs and they've left me more confused than anything. Let's clear the air with a concrete example.
I have a simple calendar application, where I have an events table. Here are the columns I have:
id: guid,
name: string,
startTimestamp: integer,
calendarId: guid (foreign key in a traditional RDBMS model)
ownerId: guid (foreign key in a traditional RDBMS model)
I'd like to perform queries such as:
Get an event by ID
Get all events where calendarId = x and ownerId = y
Get all events where startTimestamp is between x and y and calendarId = z
DynamoDB docs seem to heavily suggest avoiding using the event's ID as a partition/sort key here, so what's the recommended schema?
This is a problem that everyone wrestles with when they start with (and indeed when they are experienced with) DynamoDB.
Pricing and throughput
Let's start with how DynamoDB is priced (its related - honestly). Ignoring the free tier for a moment, you pay $0.25 per GB per month for data at rest. You also pay $0.47 per Write Capacity Unit (WCU) per month and $0.09 per Read Capacity Unit (RCU) per month. Throughput is the number of WCUs and RCUs on your table. You have to specify throughput up front on your table - the volume of writes and reads you can perform on your table is limited by your throughput provision. Pay more money and you can do more reads and writes per second. The exact details of how DynamoDB partitions tables can be found in this answer.
Keys
Now we need to consider table partitioning. Tables must have a primary key. A primary key must have a hash key (aka a partition key) and may optionally have a sort key (aka a range key). DynamoDB creates partitions based on your hash key values. Within a partition key value the data is sorted by range key, if you have specified one.
Data Access
If you have the exact primary key (hash key and range key if there is one), you can instantly access an item using GetItem. If you have multiple items to get, you can use BatchGetItem.
DynamoDB can only 'search' data in two ways. A Query can only take data from one partition in one call, because it uses the partition key (and optionally a sort key) it is quick. A Scan always evaluates every item in table, so its typically slow and doesn't scale well on large tables.
Throughput distribution
This is where is gets interesting. DynamoDB takes all the throughput you have purchased and evenly spreads it over all of you table partitions. Imagine you have 10 WCUs and 10 RCUs on your table, and 5 partitions, that means you have 2 WCUs and 2 RCUs per partition. That's fine if you access each partition evenly, you get to use all of your purchased throughput. But imagine you only ever access one partition. Now you've purchased 10 WCUs and RCUs but you are only using 2. Your table is going to be much slower than you thought. One option is to just buy more throughput, that will work, but its probably not very satisfactory to most engineers.
Uniform Access v Natural Access
Based on the above we know we want to design a table where each partition gets accessed evenly. However, in my experience people get too hung up about this, which is not surprising if you read the article I just linked (which you also linked).
Remember that partition keys is what we use in a Query to get our data fast, and avoid regular Scans. Some people get too focussed making their partition access perfectly uniform, and end up with a table they can't query quickly.
The answer
I like to refer to Best Practices for Tables guide. And particularly the table where it says User ID is a good partition key so long many user access your application regularly. (It actually says where you have many users - which is not correct, the size of the table is irrelevant).
Its a balance between uniform access and being able to use intuitive, natural queries for your application, but what I am saying is, if you are new to DyanmoDB, the right answer probably is to design your table based on intuitive access. After you've done that successfully, have a think about uniform access and hot partitions, but just remember access doesn't have to be perfectly uniform. There are various design patterns to achieve both intuitive and uniform access, but these can be complicated for those starting out and in many cases can probably discourage people using DynamoDB if they get too focussed on the uniform access idea.
Tips
Most applications will have users. For most queries, in most applications, the most common query you will do is get data for a user. So the first option for most application's primary partition key will often be a user id. That's fine, as long as you don't have a few very high hitting users and many users that never log in.
Another tip. If your table is called vegetables, your primary partition key will probably be vegetable id. If your table is called shoes, your primary partition key will probably be shoe id.
Most applications will have many items for each user (or vegetable or shoe). The primary key has to be unique. A good option often is to add a date range (sort) key - perhaps the datetime the item was created. This then orders the items within the user partition by creation date, and also gives each item a unique composite primary key (i.e. hash key + range key). It's also fine to use a generated UUID as a range key, you wont use the ordering it gives you, but you can then have many items per user and still use the Query function.
Indexes are not a solution
Aha! But I can just make my partition key totally random, then apply an index with a partition key of the attribute I really want to query on. That way I get uniform access AND fast intutive queries.
Sadly not. Indexes have their own throughput and partitioning, separate to the table the index is built on. Just imagine indexes as a whole new table - that's basically what they are. Indexes are not a work around to uneven partition access.
Finally - your schema
Primary Key
Hash Key: Event ID
Range Key: None
Global Secondary index
Hash Key: Calendar ID
Range Key: startTimestamp
Assuming Event ID is uniformly accessed, it would be a great hash key. You would really need to describe how your data is distributed to discuss this much more. Other things that come in to play are how fast you want queries to work and how much you are willing to pay (e.g. secondary indexes are expensive).
And your queries:
Get an event by ID
GetItem using Event ID
Get all events where calendarId = x and ownerId = y
Query by GSI parition key, add a condition on ownerId
Get all events where startTimestamp is between x and y and calendarId = z
Query by GSI parition key, add a condition on range key
I just want to add something to the accepted anwser:
Get all events where calendarId = x and ownerId = y
Query by GSI parition key, add a condition on ownerId
This method is not reliable. I guess that when you say "add a condition on ownerId", you mean "add a Filter expression on ownerId" (Definition by Alex DeBrie)
But the 1MB read limit by DynamoDB makes it unreliable.
It is better explained in the link above, but here is the sumup:
If you calendar has a lot of events, that represent data with size over 1MB, the results on which you apply the condition ownerId==X will be truncated to the first 1MB, excluding the rest of the data.

Query dynamoDB by date range

I am developing an application that allows users to read books. I am using DynamoDB for storing details of the books that user reads and I plan to use the data stored in DynamoDB for calculating statistics, such as trending books, authors, etc.
My current schema looks like this:
user_id | timestamp | book_id | author_id
user_id is the partition key, and timestamp is the sort key.
The problem I am having is that, with this schema I am only able to query
the details of the books that a single user (partition key) has read. That is one of the requirements for me.
The other requirement is to query all the records that has been created in a certain date range, eg: records created in the past 7 days. With this schema, I am unable to run this query.
I have looked into so many other options, and haven't figured out a way to create a schema that would allow me to run both queries.
Retrieve the records of the books read by a single user (Can be done).
Retrieve the records of books read by all the users in last x days (Unable to do it).
I do not want to run a scan, since It will be expensive and I looked into the option of using GSI for timestamp, but it requires me to specify a hash key, and therefore I cannot query all the records created between 2 dates.
One naive solution would be to create a GSI with a constant hash key across all books and timestamp as a range key. This will allow you to perform your type of queries.
The problem with this approach is that it is likely to become a scaling bottleneck, as same hash key means same node. One workaround for this problem is to do sharding: create a set of hash keys (ex: from 1 to 10) and assign random key from this set to every book. Then when you make a query you will need to make 10 queries and merge results. You can even make this set size dynamic, so that it scales with your data.
I would also suggest looking into other tools (not DynamoDB) for this use case, as DDB is not the best tool for data analysis. You might, for example, feed DynamoDB data into CloudSearch or ElasticSearch and do your analysis there.
One solution could be using GSI and including two more columns, when ever you ingest a record kindly ingest date as a primary key e.g 2017-07-02 and timestamp as range key 04:22:33:000.
Maintain one table for checkpoint which would contain the process name and timestamp of the table, Everytime you read from the table you can update the checkpoint table to get incremental data. if you want to get last 7 day data change timestamp to past 7 date and get data between last 7 day and current time.
You can use query spec for the same by passing date as a partition and using between keywords for timestamp which is range condition.
Date diff you will to calculate from checkpoint table and current date and so day wise you get the data.

Resources