I have 3 forecast plots that are combined together by plotly::subplot. The next step is draw a transparent box (or 3 separate boxes) with red dashed lines around the forecast line of each plot so that they stand out to the reader.
How can I do this ?
Desired Output:
Data (df):
structure(list(year = 1980:2021, AvgTMean = c(24.2700686838937,
23.8852956598276, 25.094446596092, 24.1561175050287, 24.157183605977,
24.3047482638362, 24.7899738481466, 24.5756232655603, 24.5833086228592,
24.7344695534483, 25.3094451071121, 25.2100615173707, 24.3651692293534,
24.5423890611494, 25.2492166633908, 24.7005097837931, 24.2491591827443,
25.0912281781322, 25.0779264303305, 24.403294248319, 24.4983991453592,
24.4292324356466, 24.8179824927011, 24.7243948463075, 24.5086534543966,
24.2818632071983, 24.4567195220259, 24.8402224356034, 24.6574465515086,
24.5440715673563, 23.482670620977, 24.9979594684914, 24.5452453980747,
24.9271462811494, 24.7443215819253, 25.8929839790805, 25.1801908261063,
25.2079308058908, 25.0722425561207, 25.4554644289799, 25.4548979078736,
25.0756772250287), AvgTMin = c(19.6018663372126, 18.9935718486724,
20.8351710187356, 19.7723002680316, 19.8097384811782, 19.7280847671034,
20.2907499842098, 20.1950373662931, 20.1812715311494, 20.1808865070833,
21.0320272801006, 21.1252427976293, 20.1712830368678, 20.407655174727,
21.5430646243391, 20.6760574525862, 20.0822658237356, 21.0735574619397,
21.0871494406322, 20.1311178414224, 20.3191250001149, 20.3474683732557,
20.668169553204, 20.3772270269296, 20.2330157893678, 19.9486551337931,
20.1114496908333, 20.5816350393966, 20.4033879191236, 20.1582514856897,
19.2288879223678, 20.8451063140805, 20.4878865041092, 21.0259712576437,
20.5510100674138, 22.0143793370977, 21.3529094881753, 21.1688506012213,
21.040550304569, 21.4923981385632, 21.6580430460057, 21.2433069288506
), AvgTMax = c(28.9392198638937, 28.778245693046, 29.3549223685201,
28.5411393752011, 28.5058118063649, 28.8825532046983, 29.2903534709195,
28.9574051835776, 28.9865201368247, 29.2891997662069, 29.5881379007328,
29.2960976760201, 28.5602557685057, 28.6782844806753, 28.9566034394684,
28.7262054694971, 28.4171896994397, 29.1100747038649, 29.0698836095546,
28.6766350461063, 28.6788764437787, 28.5122026355891, 28.9690143596839,
29.0727844759914, 28.7854971337931, 28.6163189712069, 28.8032270024138,
29.1000460207471, 28.9127356101149, 28.9310646744109, 27.7376810545833,
29.1520129070402, 28.6037845089512, 28.8295359311638, 28.9388276133764,
29.7726939654598, 29.0086407880029, 29.2482097613937, 29.1050890698132,
29.4187571974569, 29.2519238543247, 28.9081913630029)), class = "data.frame", row.names = c(NA,
-42L))
Code
library(tidyverse)
library(plotly)
AvgTMeanYearFP = ggplot(df, aes(year, AvgTMean)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
labs(y = "Avg. Mean T (C)", x = "Year") +
geom_text(aes(x = 2000 , y = 25.5, label = "Historic Trend")) +
geom_text(aes(x = 2025 , y = 25.5, label = "Forecast Trend"))
AvgTMinYearFP = ggplot(df, aes(year, AvgTMin)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(18, 23) +
labs(y = "Avg. Min. T (C)", x = "Year")
AvgTMaxYearFP = ggplot(df, aes(year, AvgTMax)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(27, 30) +
labs(y = "Avg. Max. T (C)", x = "Year")
# Combine plots
subplot(AvgTMeanYearFP, AvgTMinYearFP, AvgTMaxYearFP, titleY = TRUE, shareX = TRUE, nrows = 3) %>%
layout(title ="Historic Average Temperature And Future Temperature Projection")
I actually like one box over all plots more aesthetically. Had a hard time doing this, because there seems to be a known issue with using ggplotly and the layout() function. That's why the shapes are put in p$x$layout$shapes like this.
# Combine plots
p <- subplot(AvgTMeanYearFP, AvgTMinYearFP, AvgTMaxYearFP, titleY = TRUE, shareX = TRUE, nrows = 3) %>%
layout(title ="Historic Average Temperature And Future Temperature Projection")
p$x$layout$shapes <- list(type = "rect",
line = list(color = "red",
dash = 'dash'),
x0 = 2021,
x1 = 2030,
xref = "x",
y0 = 0,
y1 = 1,
yref = "paper")
p
An alternative to a dashed box could be using the opacity.
list(type = "rect",
fillcolor = "red",
opacity = 0.1,
x0 = 2021,
x1 = 2030,
xref = "x",
y0 = 0,
y1 = 1,
yref = "paper")
I can also get you some of the way there - by making a red box in each figure, but putting a single box across the whole plot is going to be more challenging.
library(tidyverse)
library(plotly)
add_box <- function(p, start=2022, stop=NULL, prop_in=.05, ...){
pb <- ggplot_build(p)
rgy <- pb$layout$panel_params[[1]]$y.range
rgx <- pb$layout$panel_params[[1]]$x.range
px1 <- diff(rgx)*prop_in
py1 <- diff(rgy)*prop_in
rgx <- c(1,-1)*px1 + rgx
rgy <- c(1,-1)*py1 + rgy
rgx[1] <- start
if(!is.null(stop)){
rgx[2] <- stop
}
boxdf <- data.frame(x = rgx[c(1,2,2,1,1)],
y=rgy[c(1,1,2,2,1)])
p + geom_path(data=boxdf,
aes(x=x,
y=y),
col="red",
linetype=2)
}
AvgTMeanYearFP = ggplot(df, aes(year, AvgTMean)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
labs(y = "Avg. Mean T (C)", x = "Year") +
geom_text(aes(x = 2000 , y = 25.5, label = "Historic Trend")) +
geom_text(aes(x = 2025 , y = 25.5, label = "Forecast Trend"))
AvgTMinYearFP = ggplot(df, aes(year, AvgTMin)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(18, 23) +
labs(y = "Avg. Min. T (C)", x = "Year")
AvgTMaxYearFP = ggplot(df, aes(year, AvgTMax)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(27, 30) +
labs(y = "Avg. Max. T (C)", x = "Year")
# Combine plots
subplot(AvgTMeanYearFP %>% add_box(stop=2030, prop_in=.05),
AvgTMinYearFP %>% add_box(stop=2030, prop_in=.05),
AvgTMaxYearFP %>% add_box(stop=2030, prop_in=.05),
titleY = TRUE, shareX = TRUE, nrows = 3) %>%
layout(title ="Historic Average Temperature And Future Temperature Projection")
The add_box() function does a few different things. First, it builds your plot so I can grab the ranges of the x and y axes. If you try to plot the box all the way to the end of the range, the top, bottom and right side lines don't print. So, I have it pull the those edges prop_in toward the interior of the plot. I found that .05 is about the smallest that worked. Then, I change the rgx and rgy objects accordingly. Then, I replace the first and optionally second value of rgx with the start and stop arguments from the function call. I take the range values and make them into a data frame that will be amenable to plot with geom_path() and then I add the appropriate geom_path() function to your existing plot.
Related
Based on the code below how can I adjust the title such that it does not get trimmed.
Data (df):
structure(list(year = 1980:2021, AvgTMean = c(24.2700686838937,
23.8852956598276, 25.094446596092, 24.1561175050287, 24.157183605977,
24.3047482638362, 24.7899738481466, 24.5756232655603, 24.5833086228592,
24.7344695534483, 25.3094451071121, 25.2100615173707, 24.3651692293534,
24.5423890611494, 25.2492166633908, 24.7005097837931, 24.2491591827443,
25.0912281781322, 25.0779264303305, 24.403294248319, 24.4983991453592,
24.4292324356466, 24.8179824927011, 24.7243948463075, 24.5086534543966,
24.2818632071983, 24.4567195220259, 24.8402224356034, 24.6574465515086,
24.5440715673563, 23.482670620977, 24.9979594684914, 24.5452453980747,
24.9271462811494, 24.7443215819253, 25.8929839790805, 25.1801908261063,
25.2079308058908, 25.0722425561207, 25.4554644289799, 25.4548979078736,
25.0756772250287), AvgTMin = c(19.6018663372126, 18.9935718486724,
20.8351710187356, 19.7723002680316, 19.8097384811782, 19.7280847671034,
20.2907499842098, 20.1950373662931, 20.1812715311494, 20.1808865070833,
21.0320272801006, 21.1252427976293, 20.1712830368678, 20.407655174727,
21.5430646243391, 20.6760574525862, 20.0822658237356, 21.0735574619397,
21.0871494406322, 20.1311178414224, 20.3191250001149, 20.3474683732557,
20.668169553204, 20.3772270269296, 20.2330157893678, 19.9486551337931,
20.1114496908333, 20.5816350393966, 20.4033879191236, 20.1582514856897,
19.2288879223678, 20.8451063140805, 20.4878865041092, 21.0259712576437,
20.5510100674138, 22.0143793370977, 21.3529094881753, 21.1688506012213,
21.040550304569, 21.4923981385632, 21.6580430460057, 21.2433069288506
), AvgTMax = c(28.9392198638937, 28.778245693046, 29.3549223685201,
28.5411393752011, 28.5058118063649, 28.8825532046983, 29.2903534709195,
28.9574051835776, 28.9865201368247, 29.2891997662069, 29.5881379007328,
29.2960976760201, 28.5602557685057, 28.6782844806753, 28.9566034394684,
28.7262054694971, 28.4171896994397, 29.1100747038649, 29.0698836095546,
28.6766350461063, 28.6788764437787, 28.5122026355891, 28.9690143596839,
29.0727844759914, 28.7854971337931, 28.6163189712069, 28.8032270024138,
29.1000460207471, 28.9127356101149, 28.9310646744109, 27.7376810545833,
29.1520129070402, 28.6037845089512, 28.8295359311638, 28.9388276133764,
29.7726939654598, 29.0086407880029, 29.2482097613937, 29.1050890698132,
29.4187571974569, 29.2519238543247, 28.9081913630029)), class = "data.frame", row.names = c(NA,
-42L))
Code:
library(tidyverse)
library(plotly)
AvgTMeanYearFP = ggplot(df, aes(year, AvgTMean)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
labs(y = "Avg. Mean T (C)", x = "Year") +
geom_text(aes(x = 2000 , y = 25.5, label = "Historic Trend")) +
geom_text(aes(x = 2025 , y = 25.5, label = "Forecast Trend"))
AvgTMinYearFP = ggplot(df, aes(year, AvgTMin)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(18, 23) +
labs(y = "Avg. Min. T (C)", x = "Year")
AvgTMaxYearFP = ggplot(df, aes(year, AvgTMax)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(27, 30) +
labs(y = "Avg. Max. T (C)", x = "Year")
# Combine plots
p = subplot(AvgTMeanYearFP, AvgTMinYearFP, AvgTMaxYearFP, titleY = TRUE, shareX = TRUE, nrows = 3) %>%
layout(title ="Historic Average Temperature And Future Temperature Projection")
# Add a box around the forecast trend
p$x$layout$shapes = list(type = "rect",
fillcolor = "red",
opacity = 0.1,
x0 = 2021,
x1 = 2030,
xref = "x",
y0 = 0,
y1 = 1,
yref = "paper")
p
Current output:
You can add margin to the layout, so e.g.
p = subplot(AvgTMeanYearFP, AvgTMinYearFP, AvgTMaxYearFP, titleY = TRUE, shareX = TRUE, nrows = 3) %>%
layout(title ="Historic Average Temperature And Future Temperature Projection",margin = list(t = 50))
with the t standing for top.
I have dataframe which represents sales by model within 2 different years. 'change' column stands for absolute change by models from 2020 to 2021 while 'chng.percent' measures this change in percentages.
However, I am struggling to apply the given Code of slope plot to my data.
df <- data.frame (model = c("A", "A", "B","B"),
year = c(2020,2021,2020,2021),
sale =c(105,190,110,180),
chang = c(85,NA,70,NA),
chng.percent = c(80.9,NA, 63.6,NA))
Expected outcome (Like this)
Here's a way to do it all within ggplot using your existing data:
ggplot(df, aes(year, sale, color = model)) +
geom_line(arrow = arrow(type = "closed", angle = 20),
key_glyph = draw_key_point) +
geom_vline(aes(xintercept = year)) +
geom_text(aes(label = sale, hjust = ifelse(year == 2020, 1.3, -0.3)),
color = "black",
size = 6) +
geom_text(aes(x = min(df$year) + 0.25, y = 105,
label = paste0("+", chang[1], "; ", chng.percent[1], "%"),
color = "A"), size = 5) +
geom_text(aes(x = max(df$year) - 0.25, y = 150,
label = paste0("+", chang[3], "; ", chng.percent[3], "%"),
color = "B"), size = 5) +
theme_void(base_size = 16) +
coord_cartesian(clip = "off") +
scale_x_continuous(breaks = c(2020, 2021)) +
guides(color = guide_legend(override.aes = list(size = 5))) +
scale_color_brewer(palette = "Set1") +
theme(plot.margin = margin(30, 30, 30, 30),
aspect.ratio = 1.5,
axis.text.x = element_text(size = 20))
you can try something like this :
df <- data.frame(model = c("A", "B"),
sale_2020 =c(105,110),
sale_2021 =c(190,180),
chang = c(85,70),
chng.percent = c(80.9, 63.6))
df %>%
ggplot() +
geom_segment(aes(x = 1, xend = 2,
y = sale_2020,
yend = sale_2021,
group = model,
col = model),
size = 1.2) +
# set the colors
scale_color_manual(values = c("#468189", "#9DBEBB"), guide = "none") +
# remove all axis stuff
theme_classic() +
theme(axis.line = element_blank(),
axis.text = element_blank(),
axis.title = element_blank(),
axis.ticks = element_blank()) +
geom_text(aes(x = x, y = y, label = label),
data = data.frame(x = 1:2,
y = 10 + max(df$sale_2021),
label = c("2020", "2021")),
col = "grey30",
size = 6) +
# add vertical lines that act as axis for 2020
geom_segment(x = 1, xend = 1,
y = min(df$sale_2020) -10,
yend = max(df$sale_2020) + 81,
col = "grey70", size = 1.5) +
# add vertical lines that act as axis for 2021
geom_segment(x = 2, xend = 2,
y = min(df$sale_2021) - 80,
yend = max(df$sale_2021) + 1,
col = "grey70", size = 1.5) +
# add the success rate next to each point on 2021 axis
geom_text(aes(x = 2 + 0.08,
y = sale_2021,
label = paste0(round(sale_2021, 1))),
col = "grey30") +
# add the success rate next to each point on 2021 axis
geom_text(aes(x = 1 - 0.08,
y = sale_2020,
label = paste0(round(sale_2020, 1))),
col = "grey30") +
# add the success rate next to each point on 2020 axis
geom_text(aes(x = 2 - 0.5,
y = c(156, 135),
label = paste0(round(chng.percent, 1), "%")),
col = "grey30")
I am trying to draw a box on top of the plot on a specific x = Date and y = Price.
I have multiple Date entries stored in specificDates, but even though the code can be ran and doesn't output any errors, the box doesn't show on the plot.
dataDate <- as.Date(c("2015-01-01","2016-03-01","2018-06-01","2020-08-01"))
dataPrice <- c(170, 320, 7000,8000)
dummyData <- data.frame(dataDate, dataPrice)
specificDates <- as.Date(c("2016-07-15", "2020-05-20"))
plot_linPrice <- ggplot(data = dummyData,
mapping = aes(x = dataDate, y = dataPrice)) +
geom_line() +
scale_y_log10() +
geom_vline(xintercept = as.numeric(specificDates), color = "blue", lwd = .5) #+ #uncommenting + brings up error
geom_rect(aes(xmin = "2015-01-01", xmax = "2015-06-01", ymin = 5000, ymax = 8000), fill = "blue")
print(plot_linPrice)
Try with this:
library(ggplot2)
#Data
dataDate <- as.Date(c("2015-01-01","2016-03-01","2018-06-01","2020-08-01"))
dataPrice <- c(170, 320, 7000,8000)
dummyData <- data.frame(dataDate, dataPrice)
specificDates <- as.Date(c("2016-07-15", "2020-05-20"))
#Code
ggplot(data = dummyData,
mapping = aes(x = dataDate, y = dataPrice)) +
geom_line() +
scale_y_log10() +
geom_vline(xintercept = as.numeric(specificDates), color = "blue", lwd = .5)+
geom_rect(aes(xmin = as.Date("2015-01-01"), xmax = as.Date("2015-06-01"), ymin = 5000, ymax = 8000), fill = "blue")
Output:
I'm fairly new to stackoverflow.
I want to plot rectangles instead of lineranges because I want a black border. Actually my professor wants a black border but that is not an issue for stackoverflow.
Load library and create dummy dataset
library(tidyverse)
mydat <- tibble(
mymsmt = rep(c("bio", "bio", "den", "den"), 2),
mylvl = c("NT", "till", "NT", "till", "no", "yes", "no", "yes"),
mytrt = c(rep("tillage", 4), rep("herbicides", 4)),
est = c(-60, -13, -65, -40, -16, -24, -49, -50),
cilow = c(-85, -48, -78, -56, -61, -60, -68, -64),
ciup = c(8, 45, -44, -18, 79, 42, -20, -31)) %>%
# Dummy code mylvls as numeric
mutate(mylvln = rep(c(1, 2), 4))
If I plot with just the linerange, it works (I'm not allowed to embed images yet)
ggplot(mydat, aes(est, mylvl)) +
geom_linerangeh(aes(xmin = cilow, xmax = ciup), color = "blue", size = 5) +
# geom_rect(aes(xmin = cilow, xmax = ciup,
# ymin = mylvln - 0.2, ymax = mylvln + 0.2),
# fill = "red", color = "black") +
geom_point() +
facet_grid(mytrt ~ mymsmt, scales = "free")
Plot with just rectangles, fails, with
Error: Discrete value supplied to continuous scale
ggplot(mydat, aes(est, mylvl)) +
#geom_linerangeh(aes(xmin = cilow, xmax = ciup), color = "blue", size = 5) +
geom_rect(aes(xmin = cilow, xmax = ciup,
ymin = mylvln - 0.2, ymax = mylvln + 0.2),
fill = "red", color = "black") +
geom_point() +
facet_grid(mytrt ~ mymsmt, scales = "free")
Plot with linerange, covered by rectangles, works,
You can see the lineranges in the background
ggplot(mydat, aes(est, mylvl)) +
geom_linerangeh(aes(xmin = cilow, xmax = ciup), color = "blue", size = 5) +
geom_rect(aes(xmin = cilow, xmax = ciup,
ymin = mylvln - 0.2, ymax = mylvln + 0.2),
fill = "red", color = "black", alpha = 0.5) +
geom_point() +
facet_grid(mytrt ~ mymsmt, scales = "free")
Why? It works, I get the figure I want, but I don't know why. Thanks for your help!
You can also use geom_tile in place of geom_rect:
ggplot(mydat, aes(est, mylvl)) +
geom_tile(aes(width = ciup-cilow, height=0.1), fill="red", color="black") +
geom_point() +
facet_grid(mytrt ~ mymsmt, scales = "free")
I am trying to plot some data in a ggplotly plot.
The x-axis contains dates. Ggplotly doesn't work well with dates as when I hover over a point, the date is displayed as a number.
I solved this by setting a tooltip like below.
Some sample data:
x <- data.frame(Date = as.Date(seq(Sys.Date(), Sys.Date() + 29, by = "days")), Amount = seq(-10000, 19000, by = 1000),
stringsAsFactors = FALSE)
The plot:
ggplotly(ggplot(x, aes(x = Date, y = Amount, group = 1, text = paste("Date: ", Date, "<br>Amount: ", Amount))) + geom_line() + geom_point()
, tooltip = "text")
Now I want to use geom_rect() to get some background colors depending on the value of the y-axis. This gives me problems as the rectangles seem to be placed on top of the geom_line(). Also, the rectangles are labeled by ggplotly too, which I don't want either.
Here is the code I tried (the background coloring works fine when I am not using a custom tooltip, but then the problem with the dates in the labels occurs):
ggplotly(ggplot(x, aes(x = Date, y = Amount, group = 1, text = paste("Date: ", Date, "<br>Amount: ", Amount))) + geom_line() + geom_point()
+
geom_rect(aes(xmin = as.Date(Sys.Date()),
xmax = as.Date(Sys.Date() + 30),
ymin = 10000, ymax = max(max(x$Amount) + 1000, 11000), fill = "1")) +
geom_rect(aes(xmin = as.Date(Sys.Date()),
xmax = as.Date(Sys.Date() + 30),
ymin = 0, ymax = 10000, fill = "2")) +
geom_rect(aes(xmin = as.Date(Sys.Date()),
xmax = as.Date(Sys.Date() + 30),
ymin = min(min(x$Amount) - 1000, 0), ymax = 0, fill = "3"))
+
scale_fill_manual(values = alpha(c("green", "orange", "red"), 0.2))
, tooltip = "text")
Result
Any help would be appreciated, thanks!
EDIT:
The following code results in working geom_rect():
ggplotly(ggplot(x, aes(x = Date, y = Amount)) + geom_line() + geom_point()
+
geom_rect(aes(xmin = as.Date(Sys.Date()),
xmax = as.Date(Sys.Date() + 30),
ymin = 10000, ymax = max(max(x$Amount) + 1000, 11000), fill = "1")) +
geom_rect(aes(xmin = as.Date(Sys.Date()),
xmax = as.Date(Sys.Date() + 30),
ymin = 0, ymax = 10000, fill = "2")) +
geom_rect(aes(xmin = as.Date(Sys.Date()),
xmax = as.Date(Sys.Date() + 30),
ymin = min(min(x$Amount) - 1000, 0), ymax = 0, fill = "3"))
+
scale_fill_manual(values = alpha(c("green", "orange", "red"), 0.2)))
Result
You could try this:
ggplotly(ggplot() +
geom_rect(data = x, aes(xmin = as.Date(Sys.Date()),
xmax = as.Date(Sys.Date() + 30),
ymin = 10000, ymax = max(max(x$Amount) + 1000, 11000), fill = "1")) +
geom_rect(data = x, aes(xmin = as.Date(Sys.Date()),
xmax = as.Date(Sys.Date() + 30),
ymin = 0, ymax = 10000, fill = "2")) +
geom_rect(data = x, aes(xmin = as.Date(Sys.Date()),
xmax = as.Date(Sys.Date() + 30),
ymin = min(min(x$Amount) - 1000, 0), ymax = 0, fill = "3")) +
geom_line(data = x, aes(x = Date, y = Amount, group = 1, text = paste("Date: ", Date, "<br>Amount: ", Amount))) +
geom_point(data = x, aes(x = Date, y = Amount, text = paste("Date: ", Date, "<br>Amount: ", Amount))) +
scale_fill_manual(values = alpha(c("green", "orange", "red"), 0.2))
, tooltip = "text")