How to plot stat_mean for scatterplot in R ggplot2? - r

For each treatment tmt, I want to plot the means using stat_summary in ggplot2 with different colour size. I find that the there are mulitple means being plotted over the current points. Not sure how to rectify it.
df <- data.frame(x = rnorm(12, 4,1), y = rnorm(12, 6,4), tmt = rep(c("A","B","C"), each = 4))
ggplot(aes(x = x, y = y, fill = tmt), data = df) +
geom_point(shape=21, size=5, alpha = 0.6) +
scale_fill_manual(values=c("pink","blue", "purple")) +
stat_summary(aes(fill = tmt), fun = 'mean', geom = 'point', size = 5) +
scale_fill_manual(values=c("pink","blue", "purple"))
Plot without the last two lines of code
Plot with the entire code

Using stat_summary you compute the mean of y for each pair of x and tmt. If you want the mean of x and the mean of y per tmt I would suggest to manually compute the means outside of ggplot and use a second geom_point to plot the means. In my code below I increased the size and used rectangles for the means:
df <- data.frame(x = rnorm(12, 4,1), y = rnorm(12, 6,4), tmt = rep(c("A","B","C"), each = 4))
library(ggplot2)
library(dplyr)
df_mean <- df |>
group_by(tmt) |>
summarise(across(c(x, y), mean))
ggplot(aes(x = x, y = y, fill = tmt), data = df) +
geom_point(shape=21, size=5, alpha = 0.6) +
geom_point(data = df_mean, shape=22, size=8, alpha = 0.6) +
scale_fill_manual(values=c("pink","blue", "purple"))

Related

Fit grouped curves by label in ggplot2

While making a nomogram of Remotion related to Depth and Time of sedimentation, I need to fit curves (as paraboles) to remotion labels if they are lower than its upper ten (7 ceils to 10, and 18 to 20). This is very close to what I need.
data.frame(
depth=rep(seq(0.5, 3.5, 0.5), each=8),
time=rep(seq(0, 280, 40), times=7),
ss = c(
820,369,238,164,107,66,41,33,
820,224,369,279,213,164,115,90,
820,631,476,361,287,230,180,148,
820,672,558,426,353,287,238,187,
820,713,590,492,402,344,262,230,
820,722,615,533,460,394,320,262,
820,738,656,574,492,418,360,303)
) %>%
transmute(
depth = depth,
time = time,
R = 100*(1- ss/820)
) %>%
mutate(G=factor(round(R, digits=-1))) %>%
ggplot(aes(x=time, y=depth, colour=time))+
geom_label(aes(label=round(R)))+
scale_y_continuous(trans = "reverse")+
geom_path(aes(group=G))
But it is not getting parabolical curves. How can I smooth them under the tens condition?
I'm not sure if this is what you're looking for. I separated the data and the plot and applied stat_smooth for each group. Unfortunately, the smoothed lines do not follow the color scheme. You will also see several warnings do to the method in which this creates the splines.
plt <- ggplot(df1, aes(x=time, y=depth, colour = time)) +
geom_label(aes(label=round(R))) +
scale_y_continuous(trans = "reverse") +
geom_path(aes(group=G), size = .6, alpha = .5)
lapply(1:length(unique(df1$G)),
function(i){
df2 <- df1 %>% filter(G == unique(G)[i])
plt <<- plt +
stat_smooth(data = df2, size = .5,
aes(x = time, y = depth),
se = F, method = lm, color = "darkred",
formula = y ~ splines::bs(x, knots = nrow(df2)))
})
You can extend this further with additional parameters. I'm just not sure exactly what you're expecting.
plt <- ggplot(df1, aes(x=time, y=depth, colour = time)) +
geom_label(aes(label=round(R))) +
scale_y_continuous(trans = "reverse") +
geom_path(aes(group=G), size = .6, alpha = .5)
lapply(1:length(unique(df1$G)),
function(i){
df2 <- df1 %>% filter(G == unique(G)[i])
# u <- df1 %>% {nrow(unique(.[,c(1:2)]))}
plt <<- plt +
stat_smooth(
data = df2, size = .5,
aes(x = time, y = depth),
se = F, method = lm, color = "darkred",
formula = y ~ splines::bs(x, knots = nrow(df2),
degree = ifelse(nrow(df2) <= 4,
3, nrow(df2) - 2)))
})

Overlaying histogram and density estimate [duplicate]

I am trying to make a histogram of density values and overlay that with the curve of a density function (not the density estimate).
Using a simple standard normal example, here is some data:
x <- rnorm(1000)
I can do:
q <- qplot( x, geom="histogram")
q + stat_function( fun = dnorm )
but this gives the scale of the histogram in frequencies and not densities. with ..density.. I can get the proper scale on the histogram:
q <- qplot( x,..density.., geom="histogram")
q
But now this gives an error:
q + stat_function( fun = dnorm )
Is there something I am not seeing?
Another question, is there a way to plot the curve of a function, like curve(), but then not as layer?
Here you go!
# create some data to work with
x = rnorm(1000);
# overlay histogram, empirical density and normal density
p0 = qplot(x, geom = 'blank') +
geom_line(aes(y = ..density.., colour = 'Empirical'), stat = 'density') +
stat_function(fun = dnorm, aes(colour = 'Normal')) +
geom_histogram(aes(y = ..density..), alpha = 0.4) +
scale_colour_manual(name = 'Density', values = c('red', 'blue')) +
theme(legend.position = c(0.85, 0.85))
print(p0)
A more bare-bones alternative to Ramnath's answer, passing the observed mean and standard deviation, and using ggplot instead of qplot:
df <- data.frame(x = rnorm(1000, 2, 2))
# overlay histogram and normal density
ggplot(df, aes(x)) +
geom_histogram(aes(y = after_stat(density))) +
stat_function(
fun = dnorm,
args = list(mean = mean(df$x), sd = sd(df$x)),
lwd = 2,
col = 'red'
)
What about using geom_density() from ggplot2? Like so:
df <- data.frame(x = rnorm(1000, 2, 2))
ggplot(df, aes(x)) +
geom_histogram(aes(y=..density..)) + # scale histogram y
geom_density(col = "red")
This also works for multimodal distributions, for example:
df <- data.frame(x = c(rnorm(1000, 2, 2), rnorm(1000, 12, 2), rnorm(500, -8, 2)))
ggplot(df, aes(x)) +
geom_histogram(aes(y=..density..)) + # scale histogram y
geom_density(col = "red")
I'm trying for iris data set. You should be able to see graph you need in these simple code:
ker_graph <- ggplot(iris, aes(x = Sepal.Length)) +
geom_histogram(aes(y = ..density..),
colour = 1, fill = "white") +
geom_density(lwd = 1.2,
linetype = 2,
colour = 2)

ggplot histogram and distribution same levels [duplicate]

I am trying to make a histogram of density values and overlay that with the curve of a density function (not the density estimate).
Using a simple standard normal example, here is some data:
x <- rnorm(1000)
I can do:
q <- qplot( x, geom="histogram")
q + stat_function( fun = dnorm )
but this gives the scale of the histogram in frequencies and not densities. with ..density.. I can get the proper scale on the histogram:
q <- qplot( x,..density.., geom="histogram")
q
But now this gives an error:
q + stat_function( fun = dnorm )
Is there something I am not seeing?
Another question, is there a way to plot the curve of a function, like curve(), but then not as layer?
Here you go!
# create some data to work with
x = rnorm(1000);
# overlay histogram, empirical density and normal density
p0 = qplot(x, geom = 'blank') +
geom_line(aes(y = ..density.., colour = 'Empirical'), stat = 'density') +
stat_function(fun = dnorm, aes(colour = 'Normal')) +
geom_histogram(aes(y = ..density..), alpha = 0.4) +
scale_colour_manual(name = 'Density', values = c('red', 'blue')) +
theme(legend.position = c(0.85, 0.85))
print(p0)
A more bare-bones alternative to Ramnath's answer, passing the observed mean and standard deviation, and using ggplot instead of qplot:
df <- data.frame(x = rnorm(1000, 2, 2))
# overlay histogram and normal density
ggplot(df, aes(x)) +
geom_histogram(aes(y = after_stat(density))) +
stat_function(
fun = dnorm,
args = list(mean = mean(df$x), sd = sd(df$x)),
lwd = 2,
col = 'red'
)
What about using geom_density() from ggplot2? Like so:
df <- data.frame(x = rnorm(1000, 2, 2))
ggplot(df, aes(x)) +
geom_histogram(aes(y=..density..)) + # scale histogram y
geom_density(col = "red")
This also works for multimodal distributions, for example:
df <- data.frame(x = c(rnorm(1000, 2, 2), rnorm(1000, 12, 2), rnorm(500, -8, 2)))
ggplot(df, aes(x)) +
geom_histogram(aes(y=..density..)) + # scale histogram y
geom_density(col = "red")
I'm trying for iris data set. You should be able to see graph you need in these simple code:
ker_graph <- ggplot(iris, aes(x = Sepal.Length)) +
geom_histogram(aes(y = ..density..),
colour = 1, fill = "white") +
geom_density(lwd = 1.2,
linetype = 2,
colour = 2)

Continuous colour of geom_line according to y value

If you look at this
ggplot(mtcars,aes(x=disp,y=mpg,colour=mpg))+geom_line()
you will see that the line colour varies according to the corresponding y value, which is what I want, but only section-by-section. I would like the colour to vary continuously according to the y value. Any easy way?
One possibility which comes to mind would be to use interpolation to create more x- and y-values, and thereby make the colours more continuous. I use approx to " linearly interpolate given data points". Here's an example on a simpler data set:
# original data and corresponding plot
df <- data.frame(x = 1:3, y = c(3, 1, 4))
library(ggplot2)
ggplot(data = df, aes(x = x, y = y, colour = y)) +
geom_line(size = 3)
# interpolation to make 'more values' and a smoother colour gradient
vals <- approx(x = df$x, y = df$y)
df2 <- data.frame(x = vals$x, y = vals$y)
ggplot(data = df2, aes(x = x, y = y, colour = y)) +
geom_line(size = 3)
If you wish the gradient to be even smoother, you may use the n argument in approx to adjust the number of points to be created ("interpolation takes place at n equally spaced points spanning the interval [min(x), max(x)]"). With a larger number of values, perhaps geom_point gives a smoother appearance:
vals <- approx(x = df$x, y = df$y, n = 500)
df2 <- data.frame(x = vals$x, y = vals$y)
ggplot(data = df2, aes(x = x, y = y, colour = y)) +
geom_point(size = 3)
Since ggplot2 v0.8.5 one can use geom_line or geom_path with different lineend options (right now there are three options: round, butt and square). Selection depends on the nature of the data.
round would work on sharp edges (like in given OPs data):
library(ggplot2)
ggplot(mtcars, aes(disp, mpg, color = mpg)) +
geom_line(size = 3, lineend = "round")
square would work on a more continuous variable:
df <- data.frame(x = seq(0, 100, 10), y = seq(0, 100, 10) ^ 2)
ggplot(data = df, aes(x = x, y = y, colour = y)) +
geom_path(size = 3, lineend = "square")
Maybe this will work for you:
library(dplyr)
library(ggplot2)
my_mtcars <-
mtcars %>%
mutate(my_colors = cut(disp, breaks = c(0, 130, 200, 400, Inf)))
ggplot(my_mtcars, aes(x = disp, y = mpg, col = mpg)) +
geom_line() + facet_wrap(~ my_colors, scales = 'free_x')

ggplot2: histogram with normal curve

I've been trying to superimpose a normal curve over my histogram with ggplot 2.
My formula:
data <- read.csv (path...)
ggplot(data, aes(V2)) +
geom_histogram(alpha=0.3, fill='white', colour='black', binwidth=.04)
I tried several things:
+ stat_function(fun=dnorm)
....didn't change anything
+ stat_density(geom = "line", colour = "red")
...gave me a straight red line on the x-axis.
+ geom_density()
doesn't work for me because I want to keep my frequency values on the y-axis, and want no density values.
Any suggestions?
Solution found!
+geom_density(aes(y=0.045*..count..), colour="black", adjust=4)
Think I got it:
library(ggplot2)
set.seed(1)
df <- data.frame(PF = 10*rnorm(1000))
ggplot(df, aes(x = PF)) +
geom_histogram(aes(y =..density..),
breaks = seq(-50, 50, by = 10),
colour = "black",
fill = "white") +
stat_function(fun = dnorm, args = list(mean = mean(df$PF), sd = sd(df$PF)))
This has been answered here and partially here.
The area under a density curve equals 1, and the area under the histogram equals the width of the bars times the sum of their height ie. the binwidth times the total number of non-missing observations. To fit both on the same graph, one or other needs to be rescaled so that their areas match.
If you want the y-axis to have frequency counts, there are a number of options:
First simulate some data.
library(ggplot2)
set.seed(1)
dat_hist <- data.frame(
group = c(rep("A", 200), rep("B",150)),
value = c(rnorm(200, 20, 5), rnorm(150,25,10)))
# Set desired binwidth and number of non-missing obs
bw = 2
n_obs = sum(!is.na(dat_hist$value))
Option 1: Plot both histogram and density curve as density and then rescale the y axis
This is perhaps the easiest approach for a single histogram.
Using the approach suggested by Carlos, plot both histogram and density curve as density
g <- ggplot(dat_hist, aes(value)) +
geom_histogram(aes(y = ..density..), binwidth = bw, colour = "black") +
stat_function(fun = dnorm, args = list(mean = mean(dat_hist$value), sd = sd(dat_hist$value)))
And then rescale the y axis.
ybreaks = seq(0,50,5)
## On primary axis
g + scale_y_continuous("Counts", breaks = round(ybreaks / (bw * n_obs),3), labels = ybreaks)
## Or on secondary axis
g + scale_y_continuous("Density", sec.axis = sec_axis(
trans = ~ . * bw * n_obs, name = "Counts", breaks = ybreaks))
Option 2: Rescale the density curve using stat_function
With code tidied as per PatrickT's answer.
ggplot(dat_hist, aes(value)) +
geom_histogram(colour = "black", binwidth = bw) +
stat_function(fun = function(x)
dnorm(x, mean = mean(dat_hist$value), sd = sd(dat_hist$value)) * bw * n_obs)
Option 3: Create an external dataset and plot using geom_line.
Unlike the above options, this one works with facets. (EDITED to provide dplyr rather than plyr based solution). Note, the summarised dataset is being used as the primary, and the raw passed in for the histogram only.
library(tidyverse)
dat_hist %>%
group_by(group) %>%
nest(data = c(value)) %>%
mutate(y = map(data, ~ dnorm(
.$value, mean = mean(.$value), sd = sd(.$value)
) * bw * sum(!is.na(.$value)))) %>%
unnest(c(data,y)) %>%
ggplot(aes(x = value)) +
geom_histogram(data = dat_hist, binwidth = bw, colour = "black") +
geom_line(aes(y = y)) +
facet_wrap(~ group)
Option 4: Create external functions to edit the data on the fly
A bit over the top perhaps, but might be useful for someone?
## Function to create scaled dnorm data along full x axis range
dnorm_scaled <- function(data, x = NULL, binwidth = 1, xlim = NULL) {
.x <- na.omit(data[,x])
if(is.null(xlim))
xlim = c(min(.x), max(.x))
x_range = seq(xlim[1], xlim[2], length.out = 101)
setNames(
data.frame(
x = x_range,
y = dnorm(x_range, mean = mean(.x), sd = sd(.x)) * length(.x) * binwidth),
c(x, "y"))
}
## Function to apply over groups
dnorm_scaled_group <- function(data, x = NULL, group = NULL, binwidth = NULL, xlim = NULL) {
dat_hists <- lapply(
split(data, data[, group]), dnorm_scaled,
x = x, binwidth = binwidth, xlim = xlim)
for(g in names(dat_hists))
dat_hists[[g]][, "group"] <- g
setNames(do.call(rbind, dat_hists), c(x, "y", group))
}
## Single histogram
ggplot(dat_hist, aes(value)) +
geom_histogram(binwidth = bw, colour = "black") +
geom_line(data = ~ dnorm_scaled(., "value", binwidth = bw),
aes(y = y))
## With a single faceting variable
ggplot(dat_hist, aes(value)) +
geom_histogram(binwidth = 2, colour = "black") +
geom_line(data = ~ dnorm_scaled_group(
., x = "value", group = "group", binwidth = 2, xlim = c(0,50)),
aes(y = y)) +
facet_wrap(~ group)
This is an extended comment on JWilliman's answer. I found J's answer very useful. While playing around I discovered a way to simplify the code. I'm not saying it is a better way, but I thought I would mention it.
Note that JWilliman's answer provides the count on the y-axis and a "hack" to scale the corresponding density normal approximation (which otherwise would cover a total area of 1 and have therefore a much lower peak).
Main point of this comment: simpler syntax inside stat_function, by passing the needed parameters to the aesthetics function, e.g.
aes(x = x, mean = 0, sd = 1, binwidth = 0.3, n = 1000)
This avoids having to pass args = to stat_function and is therefore more user-friendly. Okay, it's not very different, but hopefully someone will find it interesting.
# parameters that will be passed to ``stat_function``
n = 1000
mean = 0
sd = 1
binwidth = 0.3 # passed to geom_histogram and stat_function
set.seed(1)
df <- data.frame(x = rnorm(n, mean, sd))
ggplot(df, aes(x = x, mean = mean, sd = sd, binwidth = binwidth, n = n)) +
theme_bw() +
geom_histogram(binwidth = binwidth,
colour = "white", fill = "cornflowerblue", size = 0.1) +
stat_function(fun = function(x) dnorm(x, mean = mean, sd = sd) * n * binwidth,
color = "darkred", size = 1)
This code should do it:
set.seed(1)
z <- rnorm(1000)
qplot(z, geom = "blank") +
geom_histogram(aes(y = ..density..)) +
stat_density(geom = "line", aes(colour = "bla")) +
stat_function(fun = dnorm, aes(x = z, colour = "blabla")) +
scale_colour_manual(name = "", values = c("red", "green"),
breaks = c("bla", "blabla"),
labels = c("kernel_est", "norm_curv")) +
theme(legend.position = "bottom", legend.direction = "horizontal")
Note: I used qplot but you can use the more versatile ggplot.
Here's a tidyverse informed version:
Setup
library(tidyverse)
Some data
d <- read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/openintro/speed_gender_height.csv")
Preparing data
We'll use a "total" histogram for the whole sample, to that end, we'll need to remove the grouping information from the data.
d2 <-
d |>
select(-gender)
Here's a data set with summary data:
d_summary <-
d %>%
group_by(gender) %>%
summarise(height_m = mean(height, na.rm = T),
height_sd = sd(height, na.rm = T))
d_summary
Plot it
d %>%
ggplot() +
aes() +
geom_histogram(aes(y = ..density.., x = height, fill = gender)) +
facet_wrap(~ gender) +
geom_histogram(data = d2, aes(y = ..density.., x = height),
alpha = .5) +
stat_function(data = d_summary %>% filter(gender == "female"),
fun = dnorm,
#color = "red",
args = list(mean = filter(d_summary,
gender == "female")$height_m,
sd = filter(d_summary,
gender == "female")$height_sd)) +
stat_function(data = d_summary %>% filter(gender == "male"),
fun = dnorm,
#color = "red",
args = list(mean = filter(d_summary,
gender == "male")$height_m,
sd = filter(d_summary,
gender == "male")$height_sd)) +
theme(legend.position = "none",
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank()) +
labs(title = "Facetted histograms with overlaid normal curves",
caption = "The grey histograms shows the whole distribution (over) both groups, i.e. females and men") +
scale_fill_brewer(type = "qual", palette = "Set1")

Resources