Scaling a bezier graph to starting and ending points - math

I have a graph like this:
And I want to be able to convert the position of P1 aka the ball you can drag around to scale with different starting and ending points on my screen.
I esentially want to make it so that the curve dot is around the same position no matter where the starting and ending positions are for the curve
So if I had a different points on my screen it would look the same as the graph
This is what I tried to do but it didn't work
function bezier.scale(startingPosition : Vector2, endingPosition : Vector2)
local screenSize = workspace.CurrentCamera.ViewportSize
local lengthX = (endingPosition.X - startingPosition.X)
local lengthY = (endingPosition.Y - startingPosition.Y)
local screenRelativeX = (screenSize.X - startingPosition.X) + lengthX
local screenRelativeY = (screenSize.Y - startingPosition.Y) + lengthY
local scaleX = (screenRelativeX / graphBackground.Size.X.Offset)
local scaleY = (screenRelativeY / graphBackground.Size.Y.Offset)
local x = (bezierPoint.Position.X.Offset * scaleX)
local y = (bezierPoint.Position.Y.Offset * scaleY)
return Vector2.new(x, y)
end

so your input is 4 2D points ... first 2 points p0,p1 are constant refer to your BEZIER start and end points and the next 2 q0,q1 are start and end point for your animation. So you want affine transform mapping between the two pairs. For that you need rotation and scale and offset...
Scale
is Easy its just ratio between line sizes so:
scale = |q1-q0| / |p1-p0|
Rotation
you can exploit dot product:
ang = acos( dot(p1-p0,q1-q0)/(|p1-p0|*|q1-q0|) )
the sign can be determined by 3D cross product (using z=0) for example:
if (cross(p1-p0,q1-q0).z >=0 ) ang=-ang;
however note that >=0 or <=0 depends on yoru coordinate system and rotation formula so it might be reversed in your case.
offset
simply apply the #1,#2 on p0 lets call the result P0 then the offset is easy:
offset = p0-P0
Putting all toghether
so transforming point p=(x,y) will be:
// #1 apply scale
x' = x*scale
y' = y*scale
// #2 apply rotation
x = x'*cos(ang) + y'*sin(ang)
y =-x'*sin(ang) + y'*cos(ang)
// #3 apply offset
x = x + offset.x
y = y + offset.y
Do not forget to use temp variables x',y' for the rotation! You might also construct 3x3 transform matrix for this instead.
For more info about transform matrices and vector math (dot and cross product included) see:
Understanding 4x4 homogenous transform matrices

Related

3D Projection Modification - Encode Z/W into Z

This is a little tricky to explain, so bare with me. I'm attempting to design a 2D projection matrix that takes 2D pixel coordinates along with a custom world-space depth value, and converts to clip-space.
The idea is that it would allow drawing elements based on screen coordinates, but at specific depths, so that these elements would interact on the depth buffer with normal 3D elements. However, I want x and y coordinates to remain the same scale at every depth. I only want depth to influence the depth buffer, and not coordinates or scale.
After the vertex shader, the GPU sets depth_buffer=z/w. However, it also scales x/w and y/w, which creates the depth scaling I want to avoid. This means I must make sure my final clip-space w coordinate ends up being 1.0, to avoid those things. I think I could also adopt to scale x and y by w, to cancel out the divide, but I would rather do the former, if possible.
This is the process that my 3D projection matrix uses to convert depth into clip space (d = depth, n = near distance, f = far distance)
z = f/(f-n) * d + f/(f-n) * -n;
w = d;
This is how I would like to setup my 2D projection matrix. Compared to the 3D version, it would divide both attributes by the input depth. This would simulate having z/w encoded into just the z value.
z = ( f/(f-n) * d + f/(f-n) * -n ) / d;
w = d / d;
I think this turns into something like..
r = f/(f-n); // for less crazy math
z = r + ( r * -n ) / d;
w = 1.0;
However, I can't seem to wrap my math around the values that I would need to plug into my matrix to get this result. It looks like I would need to set my matrix up to perform a division by depth. Is that even possible? Can anyone help me figure out the values I need to plug into my matrix at m[2][2] and m[3][2] (m._33 and m._43) to make something like this happen?
Note my 3D projection matrix uses the following properties to generate the final z value:
m._33 = f / (f-n); // depth scale
m._43 = -(f / (f-n)) * n; // depth offset
Edit: After thinking about this a little more, I realized that the rate of change of the depth buffer is not linear, and I'm pretty sure a matrix can only perform linear change when its input is linear. If that is the case, then what I'm trying to do wouldn't be possible. However, I'm still open to any ideas that are in the same ball park, if anyone has one. I know that I can get what I want by simply doing pos.z /= pos.w; pos.w = 1; in the vertex shader, but I was really hoping to make it all happen in the projection matrix, if possible.
In case anyone is attempting to do this, it cannot be done. Without black magic, there is apparently no way to divide values with a matrix, unless of course the diviser is a constant or etc, where you can swap out a scaler with 1/x. I resorted to performing the operation in the shader in the end.

Calculate point on a circle in 3D space

i am scratching my head for some time now how to do this.
I have two defined vectors in 3d space. Say vector X at (0,0,0) and vector Y at (3,3,3). I will get a random point on a line between those two vectors. And around this point i want to form a circle ( some amount of points ) perpendicular to the line between the X and Y at given radius.
Hopefuly its clear what i am looking for. I have looked through many similar questions, but just cant figure it out based on those. Thanks for any help.
Edit:
(Couldnt put everything into comment so adding it here)
#WillyWonka
Hi, thanks for your reply, i had some moderate success with implementing your solution, but has some trouble with it. It works most of the time, except for specific scenarios when Y point would be at positions like (20,20,20). If it sits directly on any axis its fine.
But as soon as it gets into diagonal the distance between perpendicular point and origin gets smaller for some reason and at very specific diagonal positions it kinda flips the perpendicular points.
IMAGE
Here is the code for you to look at
public Vector3 X = new Vector3(0,0,0);
public Vector3 Y = new Vector3(0,0,20);
Vector3 A;
Vector3 B;
List<Vector3> points = new List<Vector3>();
void FindPerpendicular(Vector3 x, Vector3 y)
{
Vector3 direction = (x-y);
Vector3 normalized = (x-y).normalized;
float dotProduct1 = Vector3.Dot(normalized, Vector3.left);
float dotProduct2 = Vector3.Dot(normalized, Vector3.forward);
float dotProduct3 = Vector3.Dot(normalized, Vector3.up);
Vector3 dotVector = ((1.0f - Mathf.Abs(dotProduct1)) * Vector3.right) +
((1.0f - Mathf.Abs(dotProduct2)) * Vector3.forward) +
((1.0f - Mathf.Abs(dotProduct3)) * Vector3.up);
A = Vector3.Cross(normalized, dotVector.normalized);
B = Vector3.Cross(A, normalized);
}
What you want to do first is to find the two orthogonal basis vectors of the plane perpendicular to the line XY, passing through the point you choose.
You first need to find a vector which is perpendicular to XY. To do this:
Normalize the vector XY first
Dot XY with the X-axis
If this is very small (for numerical stability let's say < 0.1) then it must be parallel/anti-parallel to the X-axis. We choose the Y axis.
If not then we choose the X-axis
For whichever chosen axis, cross it with XY to get one of the basis vectors; cross this with XY again to get the second vector.
Normalize them (not strictly necessary but very useful)
You now have two basis vectors to calculate your circle coordinates, call them A and B. Call the point you chose P.
Then any point on the circle can be parametrically calculated by
Q(r, t) = P + r * (A * cos(t) + B * sin(t))
where t is an angle (between 0 and 2π), and r is the circle's radius.

What's a simple way of warping an image with a given set of points?

I'd like to implement image morphing, for which I need to be able to deform the image with given set of points and their destination positions (where they will be "dragged"). I am looking for a simple and easy solution that gets the job done, it doesn't have to look great or be extremely fast.
This is an example what I need:
Let's say I have an image and a set of only one deforming point [0.5,0.5] which will have its destination at [0.6,0.5] (or we can say its movement vector is [0.1,0.0]). This means I want to move the very center pixel of the image by 0.1 to the right. Neighboring pixels in some given radius r need to of course be "dragged along" a little with this pixel.
My idea was to do it like this:
I'll make a function mapping the source image positions to destination positions depending on the deformation point set provided.
I will then have to find the inverse function of this function, because I have to perform the transformation by going through destination pixels and seeing "where the point had to come from to come to this position".
My function from step 1 looked like this:
p2 = p1 + ( 1 / ( (distance(p1,p0) / r)^2 + 1 ) ) * s
where
p0 ([x,y] vector) is the deformation point position.
p1 ([x,y] vector) is any given point in the source image.
p2 ([x,y] vector) is the position, to where p1 will be moved.
s ([x,y] vector) is movement vector of deformation point and says in which direction and how far p0 will be dragged.
r (scalar) is the radius, just some number.
I have problem with step number 2. The calculation of the inverse function seems a little too complex to me and so I wonder:
If there is an easy solution for finding the inverse function, or
if there is a better function for which finding the inverse function is simple, or
if there is an entirely different way of doing all this that is simple?
Here's the solution in Python - I did what Yves Daoust recommended and simply tried to use the forward function as the inverse function (switching the source and destination). I also altered the function slightly, changing exponents and other values produces different results. Here's the code:
from PIL import Image
import math
def vector_length(vector):
return math.sqrt(vector[0] ** 2 + vector[1] ** 2)
def points_distance(point1, point2):
return vector_length((point1[0] - point2[0],point1[1] - point2[1]))
def clamp(value, minimum, maximum):
return max(min(value,maximum),minimum)
## Warps an image accoording to given points and shift vectors.
#
# #param image input image
# #param points list of (x, y, dx, dy) tuples
# #return warped image
def warp(image, points):
result = img = Image.new("RGB",image.size,"black")
image_pixels = image.load()
result_pixels = result.load()
for y in range(image.size[1]):
for x in range(image.size[0]):
offset = [0,0]
for point in points:
point_position = (point[0] + point[2],point[1] + point[3])
shift_vector = (point[2],point[3])
helper = 1.0 / (3 * (points_distance((x,y),point_position) / vector_length(shift_vector)) ** 4 + 1)
offset[0] -= helper * shift_vector[0]
offset[1] -= helper * shift_vector[1]
coords = (clamp(x + int(offset[0]),0,image.size[0] - 1),clamp(y + int(offset[1]),0,image.size[1] - 1))
result_pixels[x,y] = image_pixels[coords[0],coords[1]]
return result
image = Image.open("test.png")
image = warp(image,[(210,296,100,0), (101,97,-30,-10), (77,473,50,-100)])
image.save("output.png","PNG")
You don't need to construct the direct function and invert it. Directly compute the inverse function, by swapping the roles of the source and destination points.
You need some form of bivariate interpolation, have a look at radial basis function interpolation. It requires to solve a linear system of equations.
Inverse distance weighting (similar to your proposal) is the easiest to implement but I am afraid it will give disappointing results.
https://en.wikipedia.org/wiki/Multivariate_interpolation#Irregular_grid_.28scattered_data.29

Generating a 'natural path' along a spline

I need a way to get an orientation (local x/y/z axes) at any point along a spline... where the z-axis is always the spline tangent and x/y are perpendicular to each other and z.
One common technique is to calculate one axis vector as the rate of change of the tangent, i.e. x(t) = z(t) X z(t+dt)
Then y is simply x X z.
However I am not sure this gives what I'd call the 'natural' orientation path. What I mean by that is, imagine I have a rigid steel rod which is bend into some set of curls and I then advance a flexible hose along this rod. If friction is neglible, the 'natural' path would mean the hose ends up with minimum torque at any point, as it would 'untwist' itself to get a lower-energy state.
Is there any way to do this which doesn't mean traversing the spline's length from 0-t to find the transform at a given point t?
It seems that you are looking for Frenet frame - moving trihedron with unit tangent, normal and binormal vectors
Addition.
simple example:
X = 2*t^2-t+5
Y = t^3+t^2+2*t - 1
Z = -t^3 - 2*Sin(t)
X'(t) = 4*t-1; X'' = 4
Y'=3*t^2 + 2*t + 2; Y'' = 6*t+2
Z'= -3*t^2-2*Cos(t); Z'' = -6*t+2*Sin(t)
At parameter t = 0:
X' = -1; Y' = 2; Z' = -2; |R'| = Sqrt(1 + 4 + 4) = 3
T = (-1/3, 2/3, - 2/3)
and so on...

How can I turn a ray-plane intersection point into barycentric coordinates?

My problem:
How can I take two 3D points and lock them to a single axis? For instance, so that both their z-axes are 0.
What I'm trying to do:
I have a set of 3D coordinates in a scene, representing a a box with a pyramid on it. I also have a camera, represented by another 3D coordinate. I subtract the camera coordinate from the scene coordinate and normalize it, returning a vector that points to the camera. I then do ray-plane intersection with a plane that is behind the camera point.
O + tD
Where O (origin) is the camera position, D is the direction from the scene point to the camera and t is time it takes for the ray to intersect the plane from the camera point.
If that doesn't make sense, here's a crude drawing:
I've searched far and wide, and as far as I can tell, this is called using a "pinhole camera".
The problem is not my camera rotation, I've eliminated that. The trouble is in translating the intersection point to barycentric (uv) coordinates.
The translation on the x-axis looks like this:
uaxis.x = -a_PlaneNormal.y;
uaxis.y = a_PlaneNormal.x;
uaxis.z = a_PlaneNormal.z;
point vaxis = uaxis.CopyCrossProduct(a_PlaneNormal);
point2d.x = intersection.DotProduct(uaxis);
point2d.y = intersection.DotProduct(vaxis);
return point2d;
While the translation on the z-axis looks like this:
uaxis.x = -a_PlaneNormal.z;
uaxis.y = a_PlaneNormal.y;
uaxis.z = a_PlaneNormal.x;
point vaxis = uaxis.CopyCrossProduct(a_PlaneNormal);
point2d.x = intersection.DotProduct(uaxis);
point2d.y = intersection.DotProduct(vaxis);
return point2d;
My question is: how can I turn a ray plane intersection point to barycentric coordinates on both the x and the z axis?
The usual formula for points (p) on a line, starting at (p0) with vector direction (v) is:
p = p0 + t*v
The criterion for a point (p) on a plane containing (p1) and with normal (n) is:
(p - p1).n = 0
So, plug&chug:
(p0 + t*v - p1).n = (p0-p1).n + t*(v.n) = 0
-> t = (p1-p0).n / v.n
-> p = p0 + ((p1-p0).n / v.n)*v
To check:
(p - p1).n = (p0-p1).n + ((p1-p0).n / v.n)*(v.n)
= (p0-p1).n + (p1-p0).n
= 0
If you want to fix the Z coordinate at a particular value, you need to choose a normal along the Z axis (which will define a plane parallel to XY plane).
Then, you have:
n = (0,0,1)
-> p = p0 + ((p1.z-p0.z)/v.z) * v
-> x and y offsets from p0 = ((p1.z-p0.z)/v.z) * (v.x,v.y)
Finally, if you're trying to build a virtual "camera" for 3D computer graphics, the standard way to do this kind of thing is homogeneous coordinates. Ultimately, working with homogeneous coordinates is simpler (and usually faster) than the kind of ad hoc 3D vector algebra I have written above.

Resources