I'd like to test the coverage probabilities for trimmed means, I am using the formula form Wilcox book for confidence intervals:
Confidence interval
The s_w is Winsorised variance and γ is the proportion coefficient, in my code it's denoted as alpha. The problem is, that the code, I have made outputs confidence intervals with 0 always in them, so that the coverage probability is 1. So, I think there is some error in the construction.
Code:
sample_var <- function(data, alpha){
n <- length(data)
data <- sort(data)
data_t <- data[(floor(n*alpha)+1):(n-floor(alpha*n))]
m <- length(data_t)
t_mean <- mean(data_t)
sigma <- (1/(1-2*alpha)^2)* ((1/n) *sum((data_t-t_mean)^2)+ alpha*(data_t[1]-t_mean)^2 +
alpha*(data_t[m]-t_mean)^2)
sigma
}
sample_var <- Vectorize(sample_var, vectorize.args = "alpha")
conf_int <- function(data,alpha){
a <- floor(alpha * n)
n <- length(data)
df <- n-2*a-1
data_t <- data[a:(n-a)]
t_mean <- mean(data_t)
t_quantile <- qt(p = alpha, df = df)
sw <- sample_var(data = data, alpha = alpha)
ul <- t_mean + t_quantile * sw / ((1-2*alpha)*sqrt(n))
ll <- t_mean - t_quantile * sw / ((1-2*alpha)*sqrt(n))
c(ll, ul)
}
Maybe someone sees the error?
EDIT:
Here I tried to construct the intervals using wilcox.test function, but I don't know whether it accurately constructs the interval for the trimmed mean. Furthermore, no matter which alpha I use, for the given data set, I get the same interval. So, I suppose that the subset argument is wrong.
set_seed(1)
data <- rnorm(100)
wilcox_test <- function(data, alpha){
n <- length(alpha)
a <- floor(alpha*n)+1
b <- n-floor(alpha)
wilcox.test(data, subset = data[a:b], conf.int = TRUE)
}
OK...with rnorm(100) and set.seed(1)
Close-ish...
set.seed(1) # note set.seed() is what you want here, I think.
data <- rnorm(100)
wilcox_test_out <- wilcox.test(data, subset = data[a:b], conf.int = .95)
summary(wilcox_test_out)
# Note the CI's are in wilcox_test_out$conf.int for further use should you need them
wilcox_test_out$conf.int
Related
I'm trying to run the following function mentioned below using OptimParallel in R on a certain data set. The code is as follows:
install.packages("optimParallel")
install.packages('parallel')
library(parallel)
library(optimParallel)
library(doParallel)
library(data.table)
library(Rlab)
library(HDInterval)
library(mvtnorm)
library(matrixStats)
library(dplyr)
library(cold)
## Bolus data:
data("bolus")
d1 <- bolus
d1$group <- ifelse(d1$group == "2mg",1,0)
colnames(d1) <- c("index",'group',"time","y")
d2 <- d1 %>% select(index, y, group, time)
colnames(d2) <- c('index','y','x1','x2') ### Final data
## Modification of the objective function:
## Another approach:
dpd_poi <- function(x,fixed = c(rep(FALSE,5))){
params <- fixed
dpd_1 <- function(p){
params[!fixed] <- p
alpha <- params[1]
beta_0 <- params[2]
beta_1 <- params[3]
beta_2 <- params[4]
rho <- params[5]
add_pi <- function(d){
k <- beta_0+(d[3]*beta_1)+(d[4]*beta_2)
k1 <- exp(k) ## for Poisson regression
d <- cbind(d,k1)
}
dat_split <- split(x , f = x$index)
result <- lapply(dat_split, add_pi)
result <- rbindlist(result)
result <- as.data.frame(result)
colnames(result) <- c('index','y','x1','x2','lamb')
result_split <- split(result, f = result$index)
expression <- function(d){
bin <- as.data.frame(combn(d$y , 2))
pr <- as.data.frame(combn(d$lamb , 2))
## Evaluation of the probabilities:
f_jk <- function(u,v){
dummy_func <- function(x,y){
ppois(x, lambda = y)
}
dummy_func_1 <- function(x,y){
ppois(x-1, lambda = y)
}
k <- mapply(dummy_func,u,v)
k_1 <- mapply(dummy_func_1,u,v)
inv1 <- inverseCDF(as.matrix(k), pnorm)
inv2 <- inverseCDF(as.matrix(k_1), pnorm)
mean <- rep(0,2)
lower <- inv2
upper <- inv1
corr <- diag(2)
corr[lower.tri(corr)] <- rho
corr[upper.tri(corr)] <- rho
prob <- pmvnorm(lower = lower, upper = upper, mean = mean, corr = corr)
prob <- (1+(1/alpha))*(prob^alpha)
## First expression: (changes for Poisson regression)
lam <- as.vector(t(v))
v1 <- rpois(1000, lambda = lam[1])
v2 <- rpois(1000, lambda = lam[2])
all_possib <- as.data.frame(rbind(v1,v2))
new_func <- function(u){
k <- mapply(dummy_func,u,v)
k_1 <- mapply(dummy_func_1,u,v)
inv1_1 <- inverseCDF(as.matrix(k), pnorm)
inv2_1 <- inverseCDF(as.matrix(k_1), pnorm)
mean1 <- rep(0,2)
lower1 <- inv2_1
upper1 <- inv1_1
corr1 <- diag(2)
corr1[lower.tri(corr1)] <- rho
corr1[upper.tri(corr1)] <- rho
prob1 <- pmvnorm(lower = lower1, upper = upper1, mean = mean1, corr = corr1)
prob1 <- prob1^(alpha)
}
val <- apply(all_possib, 2, new_func)
val_s <- mean(val) ## approximation
return(val_s - prob)
}
final_res <- mapply(f_jk, bin, pr)
final_value <- sum(final_res)
}
u <- sapply(result_split,expression)
return(sum(u))
}
}
## run the objective function:
cl <- makeCluster(25)
setDefaultCluster(cl=cl)
clusterExport(cl,c('d2','val'))
clusterEvalQ(cl,c(library(data.table), library(Rlab),library(HDInterval),library(mvtnorm),library(matrixStats),library(dplyr),library(cold)))
val <- dpd_poi(d2, c(0.5,FALSE,FALSE,FALSE,FALSE))
optimParallel(par = c(beta_0 =1, beta_1 =0.1 ,beta_2 = 1,rho=0.2),fn = val ,method = "L-BFGS-B",lower = c(-10,-10,-10,0),upper = c(Inf,Inf,Inf,1))
stopCluster(cl)
After running for some time, it returns the following error:
checkForRemoteErrors(val)
9 nodes produced errors; first error: missing value where TRUE/FALSE needed
However, when I make a minor change in the objective function (pick 2 random numbers from rpois instead of 1000) and run the same code using optim, it converges and gives me a proper result. This is a Monte Carlo simulation and it does not make sense to draw so few Poisson variables. I have to use optimParllel, otherwise, it takes way too long to converge. I could also run this code using simulated data.
I'm unable to figure out where the issue truly lies. I truly appreciate any help in this regard.
The following code is a reproducible example based on the Swiss dataset (datasets::swiss).
My question is that I would like to plot the betas, which are the quantile regression estimates provided by the smrq() function on the y-axis, according to the tau values (the quantiles) ranging from [0:1]; but unfortunately I am not succeeding. Many thanks for the precious help, of course I can edit my post if I have forgotten anything.
Code:
library(quantreg)
library(limma)
#Generalized Functions
minimize.logcosh <- function(par, X, y, tau) {
diff <- y-(X %*% par)
check <- (tau-0.5)*diff+(0.5/0.7)*logcosh(0.7*diff)+0.4
return(sum(check))
}
smrq <- function(X, y, tau){
p <- ncol(X)
op.result <- optim(
rep(0, p),
fn = minimize.logcosh,
method = 'BFGS',
X = X,
y = y,
tau = tau
)
beta <- op.result$par
return(beta)
}
run_smrq <- function(data, fml, response) {
x <- model.matrix(fml, data)[,-1]
y <- data[[response]]
X <- cbind(x, rep(1,nrow(x)))
n <- 99
betas <- sapply(1:n, function(i) smrq(X, y, tau=i/(n+1)))
return(betas)
}
#Callers
swiss <- datasets::swiss
smrq_models <- run_smrq(data=swiss, fml=Fertility~., response="Fertility")
#langtang's solution gives this graphical output:
Without making any comment on the "correctness" of the output of run_smrq(), you can try this:
library(dplyr)
library(tidyr)
library(ggplot2)
as.data.frame(t(smrq_models)) %>%
mutate(q=row_number()) %>%
pivot_longer(!q,names_to="beta",values_to = "coef") %>%
ggplot(aes(q,coef,color=beta)) +
geom_point()
Also, if the betas are on largely different scales, this your visualization approach may not be the most appropriate. As as starting point, you might add + facet_wrap(~beta, scales="free_y")
I have run a short simulation and want to plot the outcomes of each simulation in terms of the "running sum" over parameter k. For reference, I want to end up with a plot that looks similar to the ones in this article:
https://www.pinnacle.com/en/betting-articles/Betting-Strategy/betting-bankroll-management/VDM2GY6UX3B552BG
The following is the code for the simulation:
## Simulating returns over k bets.
odds <- 1.5
k <- 100
return <- odds - 1
edge <- 0.04
pw <- 1/(odds/(1-edge))
pl <- 1-pw
nsims <- 10000
set.seed(42)
sims <- replicate(nsims, {
x <- sample(c(-1,return), k, TRUE, prob=c(pl, pw))
})
rownames(sims) <- c(1:k)
colnames(sims) <- c(1:nsims)
If I wasn't being clear in the description let me know.
Okay so here is how you can achieve the plot of the cumulative value over bets (I set nsims <- 10 so that the plot is readable).
First I generate the data :
## Simulating returns over k bets.
odds <- 1.5
k <- 100
return <- odds - 1
edge <- 0.04
pw <- 1/(odds/(1-edge))
pl <- 1-pw
nsims <- 10
set.seed(42)
sims <- replicate(nsims, {
x <- sample(c(-1,return), k, TRUE, prob=c(pl, pw))
})
rownames(sims) <- c(1:k)
colnames(sims) <- c(1:nsims)
Then I create a dataframe containing the results of the n simulations (10 here) :
df <- as.data.frame(sims)
What we want to plot is the cumulative sum, not the result at a specific bet so we iterate through the columns (i.e. the simulations) to have that value :
for (i in colnames(df)){
df[[i]] <- cumsum(df[[i]])
}
df <- mutate(df, bets = rownames(df))
output <- melt(df, id.vars = "bets", variable.name = 'simulation')
Now we can plot our data :
ggplot(output, aes(bets,value,group=simulation)) + geom_line(aes(colour = simulation))
I have written a custom likelihood function that fits a multi-data model that integrates mark-recapture and telemetry data (sensu Royle et al. 2013 Methods in Ecology and Evolution). The likelihood function is designed to be flexible in terms of whether and how many covariates are specified for different linear models in different likelihood components which is determined by values supplied as function arguments (i.e., data matrices "detcovs" and "dencovs" in my code). The likelihood function works when I directly supply it to optimization functions (e.g., optim or nlm), but does not play nice with the mle2 function in the bbmle package. My problem is that I continually run into the following error: "some named arguments in 'start' are not arguments to the specified log-likelihood function". This is my first attempt at writing custom likelihood functions so I'm sure there are general coding conventions of which I'm unaware that make such tasks much more efficient and amendable to the mle2 function. Below is my likelihood function, code creating the staring value objects, and code calling the mle2 function. Any advice how to solve the error problem and general comments on writing cleaner functions is welcome. Many thanks in advance.
Edit: As requested, I have simplified the likelihood function and provided code to simulate reproducible data to which the model can be fit. Included in the simulation code are 2 custom functions and use of the raster function from the raster package. Hopefully, I have sufficiently simplified everything to enable others to troubleshoot. Again, many thanks for your help!
Jared
Likelihood function:
CSCR.RSF.intlik2.EXAMPLE <- function(alpha0,sigma,alphas=NULL,betas=NULL,n0,yscr=NULL,K=NULL,X=X,trapcovs=NULL,Gden=NULL,Gdet=NULL,ytel=NULL,stel=NULL,
dencovs=NULL,detcovs=NULL){
#
# this version of the code handles a covariate on log(Density). This is starting value 5
#
# start = vector of starting values
# yscr = nind x ntraps encounter matrix
# K = number of occasions
# X = trap locations
# Gden = matrix with grid cell coordinates for density raster
# Gdet = matrix with gride cell coordinates for RSF raster
# dencovs = all covariate values for all nGden pixels in density raster
# trapcovs = covariate value at trap locations
# detcovs = all covariate values for all nGrsf pixels in RSF raster
# ytel = nguys x nGdet matrix of telemetry fixes in each nGdet pixels
# stel = home range center of telemetered individuals, IF you wish to estimate it. Not necessary
# alphas = starting values for RSF/detfn coefficients excluding sigma and intercept
# alpha0 = starting values for RSF/detfn intercept
# sigma = starting value for RSF/detfn sigma
# betas = starting values for density function coefficients
# n0 = starting value for number of undetected individuals on log scale
#
n0 = exp(n0)
nGden = nrow(Gden)
D = e2dist(X,Gden)
nGdet <- nrow(Gdet)
alphas = alphas
loglam = alpha0 -(1/(2*sigma*sigma))*D*D + as.vector(trapcovs%*%alphas) # ztrap recycled over nG
psi = exp(as.vector(dencovs%*%betas))
psi = psi/sum(psi)
probcap = 1-exp(-exp(loglam))
#probcap = (exp(theta0)/(1+exp(theta0)))*exp(-theta1*D*D)
Pm = matrix(NA,nrow=nrow(probcap),ncol=ncol(probcap))
ymat = yscr
ymat = rbind(yscr,rep(0,ncol(yscr)))
lik.marg = rep(NA,nrow(ymat))
for(i in 1:nrow(ymat)){
Pm[1:length(Pm)] = (dbinom(rep(ymat[i,],nGden),rep(K,nGden),probcap[1:length(Pm)],log=TRUE))
lik.cond = exp(colSums(Pm))
lik.marg[i] = sum( lik.cond*psi )
}
nv = c(rep(1,length(lik.marg)-1),n0)
part1 = lgamma(nrow(yscr)+n0+1) - lgamma(n0+1)
part2 = sum(nv*log(lik.marg))
out = -1*(part1+ part2)
lam = t(exp(a0 - (1/(2*sigma*sigma))*t(D2)+ as.vector(detcovs%*%alphas)))# recycle zall over all ytel guys
# lam is now nGdet x nG!
denom = rowSums(lam)
probs = lam/denom # each column is the probs for a guy at column [j]
tel.loglik = -1*sum( ytel*log(probs) )
out = out + tel.loglik
out
}
Data simulation code:
library(raster)
library(bbmle)
e2dist <- function (x, y){
i <- sort(rep(1:nrow(y), nrow(x)))
dvec <- sqrt((x[, 1] - y[i, 1])^2 + (x[, 2] - y[i, 2])^2)
matrix(dvec, nrow = nrow(x), ncol = nrow(y), byrow = F)
}
spcov <- function(R) {
v <- sqrt(nrow(R))
D <- as.matrix(dist(R))
V <- exp(-D/2)
cov1 <- t(chol(V)) %*% rnorm(nrow(R))
Rd <- as.data.frame(R)
colnames(Rd) <- c("x", "y")
Rd$C <- as.numeric((cov1 - mean(cov1)) / sd(cov1))
return(Rd)
}
set.seed(1234)
co <- seq(0.3, 0.7, length=5)
X <- cbind(rep(co, each=5),
rep(co, times=5))
B <- 10
co <- seq(0, 1, length=B)
Z <- cbind(rep(co, each=B), rep(co, times=B))
dencovs <- cbind(spcov(Z),spcov(Z)[,3]) # ordered as reading raster image from left to right, bottom to top
dimnames(dencovs)[[2]][3:4] <- c("dencov1","dencov2")
denr.list <- vector("list",2)
for(i in 1:2){
denr.list[[i]] <- raster(
list(x=seq(0,1,length=10),
y=seq(0,1,length=10),
z=t(matrix(dencovs[,i+2],10,10,byrow=TRUE)))
)
}
B <- 20
co <- seq(0, 1, length=B)
Z <- cbind(rep(co, each=B), rep(co, times=B))
detcovs <- cbind(spcov(Z),spcov(Z)[,3]) # ordered as reading raster image from left to right, bottom to top
dimnames(detcovs)[[2]][3:4] <- c("detcov1","detcov2")
detcov.raster.list <- vector("list",2)
trapcovs <- matrix(0,J,2)
for(i in 1:2){
detr.list[[i]] <- raster(
list(x=seq(0,1,length=20),
y=seq(0,1,length=20),
z=t(matrix(detcovs[,i+2],20,20,byrow=TRUE)))
)
trapcovs[,i] <- extract(detr.list[[i]],X)
}
alpha0 <- -3
sigma <- 0.15
alphas <- c(1,-1)
beta0 <- 3
betas <- c(-1,1)
pixelArea <- (dencovs$y[2] - dencovs$y[1])^2
mu <- exp(beta0 + as.matrix(dencovs[,3:4])%*%betas)*pixelArea
EN <- sum(mu)
N <- rpois(1, EN)
pi <- mu/sum(mu)
s <- dencovs[sample(1:nrow(dencovs), size=N, replace=TRUE, prob=pi),1:2]
J <- nrow(X)
K <- 10
yc <- d <- p <- matrix(NA, N, J)
D <- e2dist(s,X)
loglam <- t(alpha0 - t((1/(2*sigma*sigma))*D*D) + as.vector(trapcovs%*%alphas))
p <- 1-exp(-exp(loglam))
for(i in 1:N) {
for(j in 1:J) {
yc[i,j] <- rbinom(1, K, p[i,j])
}
}
detected <- apply(yc>0, 1, any)
yscr <- yc[detected,]
ntel <- 5
nfixes <- 100
poss.tel <- which(s[,1]>0.2 & s[,1]<0.8 & s[,2]>0.2 & s[,2]<0.8)
stel.id <- sample(poss.tel,ntel)
stel <- s[stel.id,]
ytel <- matrix(NA,ntel,nrow(detcovs))
d <- e2dist(stel,detcovs[,1:2])
lam <- t(exp(1 - t((1/(2*sigma*sigma))*d*d) + as.vector(as.matrix(detcovs[,3:4])%*%alphas)))
for(i in 1:ntel){
ytel[i,] <- rmultinom(1,nfixes,lam[i,]/sum(lam[i,]))
}
Specify starting values and call mle2 function:
start1 <- list(alpha0=alpha0,sigma=sigma,alphas=alphas,betas=betas,n0=log(N-nrow(yscr)))
parnames(CSCR.RSF.intlik2.EXAMPLE) <- names(start)
out1 <- mle2(CSCR.RSF.intlik2.EXAMPLE,start=start1,method="SANN",optimizer="optim",
data=list(yscr=yscr,K=K,X=X,trapcovs=trapcovs,Gden=dencovs[,1:2],Gdet=detcovs[,1:2],
ytel=ytel,stel=stel,dencovs=as.matrix(dencovs[,3:4]),detcovs=as.matrix(detcovs[,3:4]))
)
I am just really getting into trying to write MLE commands in R that function and look similar to native R functions. In this attempt I am trying to do a simple MLE with
y=b0 + x*b1 + u
and
u~N(0,sd=s0 + z*s1)
However, even such a simple command I am having difficulty coding. I have written a similar command in Stata in a handful of lines
Here is the code I have written so far in R.
normalreg <- function (beta, sigma=NULL, data, beta0=NULL, sigma0=NULL,
con1 = T, con2 = T) {
# If a formula for sigma is not specified
# assume it is the same as the formula for the beta.
if (is.null(sigma)) sigma=beta
# Grab the call expression
mf <- match.call(expand.dots = FALSE)
# Find the position of each argument
m <- match(c("beta", "sigma", "data", "subset", "weights", "na.action",
"offset"), names(mf), 0L)
# Adjust names of mf
mf <- mf[c(1L, m)]
# Since I have two formulas I will call them both formula
names(mf)[2:3] <- "formula"
# Drop unused levels
mf$drop.unused.levels <- TRUE
# Divide mf into data1 and data2
data1 <- data2 <- mf
data1 <- mf[-3]
data2 <- mf[-2]
# Name the first elements model.frame which will be
data1[[1L]] <- data2[[1L]] <- as.name("model.frame")
data1 <- as.matrix(eval(data1, parent.frame()))
data2 <- as.matrix(eval(data2, parent.frame()))
y <- data1[,1]
data1 <- data1[,-1]
if (con1) data1 <- cbind(data1,1)
data2 <- unlist(data2[,-1])
if (con2) data2 <- cbind(data2,1)
data1 <- as.matrix(data1) # Ensure our data is read as matrix
data2 <- as.matrix(data2) # Ensure our data is read as matrix
if (!is.null(beta0)) if (length(beta0)!=ncol(data1))
stop("Length of beta0 need equal the number of ind. data2iables in the first equation")
if (!is.null(sigma0)) if (length(sigma0)!=ncol(data2))
stop("Length of beta0 need equal the number of ind. data2iables in the second equation")
# Set initial parameter estimates
if (is.null(beta0)) beta0 <- rep(1, ncol(data1))
if (is.null(sigma0)) sigma0 <- rep(1, ncol(data2))
# Define the maximization function
normMLE <- function(est=c(beta0,sigma0), data1=data1, data2=data2, y=y) {
data1est <- as.matrix(est[1:ncol(data1)], nrow=ncol(data1))
data2est <- as.matrix(est[(ncol(data1)+1):(ncol(data1)+ncol(data2))],
nrow=ncol(data1))
ps <-pnorm(y-data1%*%data1est,
sd=data2%*%data2est)
# Estimate a vector of log likelihoods based on coefficient estimates
llk <- log(ps)
-sum(llk)
}
results <- optim(c(beta0,sigma0), normMLE, hessian=T,
data1=data1, data2=data2, y=y)
results
}
x <-rnorm(10000)
z<-x^2
y <-x*2 + rnorm(10000, sd=2+z*2) + 10
normalreg(y~x, y~z)
At this point the biggest issue is finding an optimization routine that does not fail when the some of the values return NA when the standard deviation goes negative. Any suggestions? Sorry for the huge amount of code.
Francis
I include a check to see if any of the standard deviations are less than or equal to 0 and return a likelihood of 0 if that is the case. Seems to work for me. You can figure out the details of wrapping it into your function.
#y=b0 + x*b1 + u
#u~N(0,sd=s0 + z*s1)
ll <- function(par, x, z, y){
b0 <- par[1]
b1 <- par[2]
s0 <- par[3]
s1 <- par[4]
sds <- s0 + z*s1
if(any(sds <= 0)){
return(log(0))
}
preds <- b0 + x*b1
sum(dnorm(y, preds, sds, log = TRUE))
}
n <- 100
b0 <- 10
b1 <- 2
s0 <- 2
s1 <- 2
x <- rnorm(n)
z <- x^2
y <- b0 + b1*x + rnorm(n, sd = s0 + s1*z)
optim(c(1,1,1,1), ll, x=x, z=z,y=y, control = list(fnscale = -1))
With that said it probably wouldn't be a bad idea to parameterize the standard deviation in such a way that it is impossible to go negative...