Convert from spatialpixeldataframe to estUD - r

In short: I have a spatialpixeldataframe of a utilization distribution of an animal across a grid (udspdf) which I need to convert to estUD-class.
Background to how I got there: After calculating the KDE of a single animal, I then need to convert the estUD-class object to a spatialpixeldataframe in order to remove non-habitat cells, and rescale the utilisation distribution of the habitat-cells to 1. I then need to convert the spatialpixeldataframe back to an estUD class file so that I can run kerneloverlaphr() on it.
I have the following code, which converts it to an estUDm-class. But I need it in estUD-class, as there is only one animal.
re <- lapply(1:ncol(udspdf), function(i) {
so <- new("estUD", udspdf[,i])
so#h <- list(h=0, meth="specified") # specify dummy h values: they are only required to recreate the estUDm
so#vol <- FALSE
return(so)
})
names(re) <- names(udspdf)
class(re) <- "estUDm"
image(re)
If I just change
class(re) <- "estUD"
This seems to work, but then I can see there is an issue because
image(re)
renders the following error: Error in is(x, "GridTopology") :
trying to get slot "grid" from an object (class "estUD") that is not an S4 object
I am sorry I do not know how to provide a reproducible example for such an example as the data is quite complex. I hope that a general code exists.
Any pointers appreciated!
> str(re)
List of 1
$ ud:Formal class 'estUD' [package "adehabitatHR"] with 9 slots
.. ..# h :List of 2
.. .. ..$ h : num 0
.. .. ..$ meth: chr "specified"
.. ..# vol : logi FALSE
.. ..# data :'data.frame': 4400000 obs. of 1 variable:
.. .. ..$ ud: num [1:4400000] 0 0 0 0 0 0 0 0 0 0 ...
.. ..# coords.nrs : num(0)
.. ..# grid :Formal class 'GridTopology' [package "sp"] with 3 slots
.. .. .. ..# cellcentre.offset: Named num [1:2] -70 -60
.. .. .. .. ..- attr(*, "names")= chr [1:2] "Var2" "Var1"
.. .. .. ..# cellsize : Named num [1:2] 0.01 0.01
.. .. .. .. ..- attr(*, "names")= chr [1:2] "Var2" "Var1"
.. .. .. ..# cells.dim : Named int [1:2] 2000 2200
.. .. .. .. ..- attr(*, "names")= chr [1:2] "Var2" "Var1"
.. ..# grid.index : int [1:4400000] 1 2 3 4 5 6 7 8 9 10 ...
.. ..# coords : num [1:4400000, 1:2] -70 -70 -70 -70 -70 ...
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : NULL
.. .. .. ..$ : chr [1:2] "Var2" "Var1"
.. ..# bbox : num [1:2, 1:2] -70 -60 -50 -38
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:2] "Var2" "Var1"
.. .. .. ..$ : chr [1:2] "min" "max"
.. ..# proj4string:Formal class 'CRS' [package "sp"] with 1 slot
.. .. .. ..# projargs: chr "+proj=longlat +datum=WGS84 +no_defs"
- attr(*, "class")= chr "estUDm"
my code for kerneloverlaphr(), which works with the outputs stright from kernelUD() (estUD-class) is as follows:
NWI15b, BCI15b and BCI15i are my individual animals
library(adehabitatHR)
# convert list of KDEs (estUDs) to class estUDm
tot <- list(NWI15b=NWI15b, BCI15b=BCI15b, BCI15i=BCI15i)
class(tot) <- "estUDm"
#calculate overlap using kerneloverlaphr
kerneloverlaphr(tot, method = c("BA"), percent = 95, conditional = FALSE)
dput(head(as.data.frame.estUD(re), n = 10))
Error in h(simpleError(msg, call)) :
error in evaluating the argument 'x' in selecting a method for function 'head': no method or default for coercing “estUDm” to “SpatialPixelsDataFrame”
> unique(re#data$ud)
Error in h(simpleError(msg, call)) :
error in evaluating the argument 'x' in selecting a method for function 'unique': trying to get slot "data" from an object (class "estUDm") that is not an S4 object
structure of object fed to kernelUD
str(track_sp)
Formal class 'SpatialPoints' [package "sp"] with 3 slots
..# coords : num [1:9790, 1:2] -59.2 -59.2 -59.2 -59.2 -59.2 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:9790] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:2] "x" "y"
..# bbox : num [1:2, 1:2] -65.8 -55.6 -56.1 -52.2
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "x" "y"
.. .. ..$ : chr [1:2] "min" "max"
..# proj4string:Formal class 'CRS' [package "sp"] with 1 slot
.. .. ..# projargs: chr "+proj=longlat +datum=WGS84 +no_defs"

Where we have
re <- lapply(1:ncol(udspdf), function(i) {
so <- new("estUD", udspdf[,i])
so#h <- list(h=0, meth="specified") # specify dummy h values: they are only required to recreate the estUDm
so#vol <- FALSE
return(so)
})
> names(re) <- names(udspdf)
> class(re) <- "estUDm"
> image(re)
We then need to simply add this:
colonyA <- re[[1]]
#and then do the same after running the code for the next colony
colonyB<- re[[1]]

Related

How can I add a class name to numeric raster values in a terra SpatRaster?

I'm working with the Circumpolar Arctic Vegetation map. Stored as a SpatRaster with terra, the raster has 21 land cover classes.
> str(lc_2003)
Formal class 'SpatRaster' [package "terra"] with 1 slot
..# ptr:Reference class 'Rcpp_SpatRaster' [package "terra"] with 17 fields
.. ..$ depth : num 0
.. ..$ extent :Reference class 'Rcpp_SpatExtent' [package "terra"] with 2 fields
.. .. ..$ valid : logi TRUE
.. .. ..$ vector: num [1:4] 3946387 7965081 2200504 5681579
.. .. ..and 27 methods, of which 13 are possibly relevant:
.. .. .. align, as.points, ceil, compare, finalize, floor, initialize, intersect, round, sample,
.. .. .. sampleRandom, sampleRegular, union
.. ..$ filenames: chr ""
.. ..$ hasRange : logi TRUE
.. ..$ hasTime : logi FALSE
.. ..$ hasValues: logi TRUE
.. ..$ inMemory : logi TRUE
.. ..$ messages :Reference class 'Rcpp_SpatMessages' [package "terra"] with 2 fields
.. .. ..$ has_error : logi FALSE
.. .. ..$ has_warning: logi FALSE
.. .. ..and 18 methods, of which 4 are possibly relevant:
.. .. .. finalize, getError, getWarnings, initialize
.. ..$ names : chr "PHYSIOG"
.. ..$ origin : num [1:2] 102.7 91.3
.. ..$ range_max: num 21
.. ..$ range_min: num 1
.. ..$ res : num [1:2] 5172 3881
.. ..$ rgb : logi FALSE
.. ..$ time : num 0
.. ..$ timestep : chr "seconds"
.. ..$ units : chr ""
However, I would like to associate each value in the layer PHYSIOG with it's actual landcover class name. This would be useful to me for viewing the file in ArcGis, as well as for assessing which habitat type certain survey plots fall in.
landcover_classes <- data.frame(lc_code = 1:21,
lc_class = c(
"Cryptogam, herb barren",
"Rush/grass, forb, cryptogam tundra",
"Cryptogam barren complex (bedrock)",
"Prostrate dwarf-shrub, herb tundra",
"Graminoid, prostrate dwarf-shrub, forb tundra",
"Prostrate/Hemiprostrate dwarf-shrub tundra",
"Nontussock sedge, dwarf-shrub, moss tundra",
"Tussock-sedge, dwarf-shrub, moss tundra",
"Erect dwarf-shrub tundra",
"Low-shrub tundra",
"Missing (Cryprogram dwarf-shrub?)",
"Sedge/grass, moss wetland",
"Sedge, moss, dwarf-shrub wetland",
"Sedge, moss, low-shrub wetland",
"Noncarbonate mountain complex",
"Carbonate mountain complex",
"Nunatak complex",
"Glaciers",
"Water",
"Lagoon",
"Non-Arctic areas"))
How could I add this data to the SpatRaster?
(I'm not sure how to make a reproducible example of a SpatRaster. I'm going to ask this in a separate question)
You should be able to do
levels(lc_2003) <- landcover_classes
And see the results with
plot(lc_2003)
See the examples in ?terra::levels.

Extract S4 object from list vector monitoR

I have a list vector containing S4 correlation templates from the monitoR::makeCorTemplate function.
temps_0 <- vector(mode = 'list',length=length(tru_files_info_0$species_id))
for (j in 1: length(tru_files_info_0$species_id)) {
temps_0[j] <- MonitoR::makeCorTemplate(paste0('tru_tp_files','/',paste0(tru_files_info_0$recording_id[j],'',
'.wav')), t.lim =c(tru_files_info_0$t_min[j], tru_files_info_0$t_max[j]),
frq.lim = c(tru_files_info_0$f_min[j]/1000, tru_files_info_0$f_max[j]/1000),
select = 'auto', dens =1, score.cutoff = 0.2, name = tru_files_info_0$new_name[j])
+ }```
Resulting object
Formal class 'corTemplateList' [package "monitoR"] with 1 slot
..# templates:List of 1
.. ..$ 00d442df7_0:Formal class 'corTemplate' [package "monitoR"] with 15 slots
.. .. .. ..# clip.path : chr "tru_tp_files/00d442df7.wav"
.. .. .. ..# samp.rate : int 48000
.. .. .. ..# pts : num [1:1924, 1:3] 1 1 1 1 1 1 1 1 1 1 ...
.. .. .. .. ..- attr(*, "dimnames")=List of 2
.. .. .. .. .. ..$ : NULL
.. .. .. .. .. ..$ : chr [1:3] "t" "frq" "amp"
.. .. .. ..# t.step : num 0.0107
.. .. .. ..# frq.step : num 0.0938
.. .. .. ..# n.t.bins : int 73
.. .. .. ..# first.t.bin : num 19.4
.. .. .. ..# n.frq.bins : int 25
.. .. .. ..# duration : num 0.779
.. .. .. ..# frq.lim : num [1:2] 5.91 8.25
.. .. .. ..# wl : int 512
.. .. .. ..# ovlp : int 0
.. .. .. ..# wn : chr "hanning"
.. .. .. ..# score.cutoff: num 0.2
.. .. .. ..# comment : chr ""
The next processing step is to combine these 10 templates via combineCorTemplates:
> ctemps_0 <- monitoR::combineCorTemplates(temps_0[[1]], temps_0[[2]], temps_0[[3]], temps_0[[4]], temps_0[[5]], temps_0[[6]], temps_0[[7]], temps_0[[8]], temps_0[[9]], temps_0[[10]])
> ctemps_0
Object of class "corTemplateList"
containing 10 templates
original.recording sample.rate lower.frequency
00d442df7_0 tru_tp_files/00d442df7.wav 48000 5.906
0ea8ea68a_0 tru_tp_files/0ea8ea68a.wav 48000 5.906
2e40b2294_0 tru_tp_files/2e40b2294.wav 48000 5.906
45c356538_0 tru_tp_files/45c356538.wav 48000 5.906
My question, how to extract the S4 from the list vector without writing out
each list element as combineCorTemplates(temps_0[[1]], temps_0[[2]], & etc
as this is error prone.
We could use do.call
c_temps_0 <- do.call(monitoR::combineCorTemplates, temps_0)
-testing
c_temps_1 <- combineCorTemplates(temps_0[[1]], temps_0[[2]],
temps_0[[3]], temps_0[[4]])
identical(c_temps_0, c_temps_1)
#[1] TRUE
NOTE: The reproducible example is created from ?combineCorTemplates

Plotting realisations of random Gaussian fields using RandomFields package results in blank graph. Why?

For some reason when I try to using the plot() function to visualise the output of the RFsimulate() function in the RandomFields package, the output is always an empty plot.
I am just using the example code included in the help file:
## first let us look at the list of implemented models
RFgetModelNames(type="positive definite", domain="single variable",
iso="isotropic")
## our choice is the exponential model;
## the model includes nugget effect and the mean:
model <- RMexp(var=5, scale=10) + # with variance 4 and scale 10
RMnugget(var=1) + # nugget
RMtrend(mean=0.5) # and mean
## define the locations:
from <- 0
to <- 20
x.seq <- seq(from, to, length=200)
y.seq <- seq(from, to, length=200)
simu <- RFsimulate(model=model, x=x.seq, y=y.seq)
str(simu)
Which gives:
Formal class 'RFspatialGridDataFrame' [package ""] with 5 slots
..# .RFparams :List of 5
.. ..$ n : num 1
.. ..$ vdim : int 1
.. ..$ T : num(0)
.. ..$ coordunits: NULL
.. ..$ varunits : NULL
..# data :'data.frame': 441 obs. of 1 variable:
.. ..$ variable1: num [1:441] 4.511 2.653 3.951 0.771 2.718 ...
..# grid :Formal class 'GridTopology' [package "sp"] with 3 slots
.. .. ..# cellcentre.offset: Named num [1:2] 0 0
.. .. .. ..- attr(*, "names")= chr [1:2] "coords.x1" "coords.x2"
.. .. ..# cellsize : Named num [1:2] 1 1
.. .. .. ..- attr(*, "names")= chr [1:2] "coords.x1" "coords.x2"
.. .. ..# cells.dim : int [1:2] 21 21
..# bbox : num [1:2, 1:2] -0.5 -0.5 20.5 20.5
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "coords.x1" "coords.x2"
.. .. ..$ : chr [1:2] "min" "max"
..# proj4string:Formal class 'CRS' [package "sp"] with 1 slot
.. .. ..# projargs: chr NA
... so data has been simulated, but when I call
plot(simu)
I end up with something like this:
e.g. Empty plot
Can anyone tell what going on here?!
I would coerce the object back to an sp SpatialGridDataFrame and plot that, as RandomFields creates a wrapper around this S4 class:
sgdf = sp::SpatialGridDataFrame(simu#grid, simu#data, simu#proj4string)
sp::plot(sgdf)
Also, you can coerce to matrix and plot using the standard graphics library:
graphics::image(as.matrix(simu))
The strange thing is that converting it to a SpatialGridDataFrame requires a flip and transpose before plotting:
graphics::image(t(apply(as.matrix(sgdf), 1, rev)))
Apparently, they are a bit internally inconsistent. The simplest solution is to convert simu to raster and plot:
r = raster::raster(simu)
raster::plot(r)

no method for coercing this S4 class to a vector for utilization of mclust

I'm trying to use the mclust method on an .FCS format file (which is a flow cytometry format file) and I read this file into R as flowFrame object.
install.packages("openCyto") # since the old version sefaulted my R session
library( openCyto )
library( flowCore)
library( mclust)
trial1=read.FCS("export_Alcina TregMAIT_AV 10-1974 P1_CD4.fcs")
a=as.matrix(trial1)
Editors note: some of these are Bioconductor packages and you should install according to the help pages for that environment.
However, mclust does not accept the .fcs file as a matrix & I tried to convert it to a matrix with the function as.matrix, and I get this error:
Error in as.vector(data) :
no method for coercing this S4 class to a vector
I've found similar questions where they explain you have to add importMethodsFrom(S4Vectors,as.matrix) into the NAMESPACE of mclust, which I did. I also did importMethodsFrom(BiocGenerics,as.vector) in the NAMESPACE of mclust. However, I'm still not able to use mclust.
P.S. any advice or reading would be appreciated!
If, anyone knows other clustering methods that use GMM model that could accept .FCS format without converting, I'd be very happy.
I've edited your question to show what you should have done originally and also didn't do later (instead of including code in a comment you should have responded by then editing the question as was specifically suggested.) My response is based on the first example in flowCore::read.FCS (since you also did not include a pointer to the dataset you were loading from disk) so rather than "trial1" I will be referring to the "samp" object I get running that code.
The "samp" object is now returns this from class and str:
> class(samp)
[1] "flowFrame"
attr(,"package")
[1] "flowCore"
str(samp)
Formal class 'flowFrame' [package "flowCore"] with 3 slots
..# exprs : num [1:10000, 1:8] 382 628 1023 373 1023 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : Named chr [1:8] "FSC-H" "SSC-H" "FL1-H" "FL2-H" ...
.. .. .. ..- attr(*, "names")= chr [1:8] "$P1N" "$P2N" "$P3N" "$P4N" ...
.. ..- attr(*, "ranges")= num [1:8] 1023 1023 10000 10000 10000 ...
..# parameters :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots
.. .. ..# varMetadata :'data.frame': 5 obs. of 1 variable:
.. .. .. ..$ labelDescription: chr [1:5] "Name of Parameter" "Description of Parameter" "Range of Parameter" "Minimum Parameter Value after Transforamtion" ...
.. .. ..# data :'data.frame': 8 obs. of 5 variables:
.. .. .. ..$ name :Class 'AsIs' Named chr [1:8] "FSC-H" "SSC-H" "FL1-H" "FL2-H" ...
.. .. .. .. .. ..- attr(*, "names")= chr [1:8] "$P1N" "$P2N" "$P3N" "$P4N" ...
.. .. .. ..$ desc :Class 'AsIs' Named chr [1:8] "FSC-H" "SSC-H" NA NA ...
.. .. .. .. .. ..- attr(*, "names")= chr [1:8] "$P1S" "$P2S" "$P3S" "$P4S" ...
.. .. .. ..$ range : num [1:8] 1024 1024 1024 1024 1024 ...
.. .. .. ..$ minRange: num [1:8] 0 0 1 1 1 0 1 0
.. .. .. ..$ maxRange: num [1:8] 1023 1023 10000 10000 10000 ...
.. .. ..# dimLabels : chr [1:2] "rowNames" "columnNames"
.. .. ..# .__classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slot
.. .. .. .. ..# .Data:List of 1
.. .. .. .. .. ..$ : int [1:3] 1 1 0
..# description:List of 164
.. ..$ FCSversion : chr "2"
.. ..$ $BYTEORD : chr "4,3,2,1"
.. ..$ $DATATYPE : chr "F"
#----- output truncated -----------
So "samp" is not a rectangular objects in any sense but rather a complex list with lots of the associated information in attributes. My guess is that you want the information in the # exprs node which is a matrix.
A further difficulty is that there is no function mamed mclust in the mclust package, although looking at ?mclust we do see an example demonstrating the use of an Mclust function. R is unforgiving in its insistence on correct capitalization of function names.
Mclust(exprs(samp)[1:100,])
#-----------
'Mclust' model object:
best model: ellipsoidal, equal orientation (VVE) with 4 components

How to find out which index is out of bounds in object in R

Although I understand OOP, I've only just encountered them in R
I am using a package from Bioconductor to churn through some genomic data.
The object it creates is called readCounts and typing this into the command gives the following.
QDNAseqReadCounts (storageMode: lockedEnvironment)
assayData: 206391 features, 1 samples
element names: counts
protocolData: none
phenoData
sampleNames: SLX-10457.FastSeqA.BloodDMets_11AF_-AHMMH.s_1.r_1.fq.gz
varLabels: name total.reads used.reads expected.variance
varMetadata: labelDescription
featureData
featureNames: 1:825001-840000 1:840001-855000 ... 22:51165001-51180000 (168063 total)
fvarLabels: chromosome start ... use (9 total)
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:
I am trying to plot readcounts on a simple xy graph as follows:
plot(readCounts, logTransform=TRUE, ylim=c(-1000, binSize * 15))
However when I do so I get the following error:
Error in sort.int(x, partial = unique(c(lo, hi))) :
index 180 outside bounds
with the traceback() showing:
6: sort.int(x, partial = unique(c(lo, hi)))
5: FUN(newX[, i], ...)
4: apply(copynumber, 2, sdFUN, na.rm = TRUE)
3: .local(x, y, ...)
2: plot(readCounts, logTransform = TRUE, ylim = c(-1000, binSize *
15))
1: plot(readCounts, logTransform = TRUE, ylim = c(-1000, binSize *
15))
so having googled I thought it might be a missing values problem so I tried na.omit(readCounts) but got the same error again but this time setting the out of bounds index as being 207.
I have tried to inspect the data but I can't find anything wrong at row 207 although I'm not really sure which slot this refers to. I really don't know how to debug this. I'm happy to give more info regarding what I'm trying to do but I don't really know how to determine what the problem is with this error in a R object.
When I do str(readCounts) I get:
Formal class 'QDNAseqReadCounts' [package "QDNAseq"] with 7 slots
..# assayData :<environment: 0x13a99ed90>
..# phenoData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots
.. .. ..# varMetadata :'data.frame': 4 obs. of 1 variable:
.. .. .. ..$ labelDescription: chr [1:4] NA NA NA NA
.. .. ..# data :'data.frame': 1 obs. of 4 variables:
.. .. .. ..$ name : chr "SLX-10457.FastSeqA.BloodDMets_11AF_-AHMMH.s_1.r_1.fq.gz"
.. .. .. ..$ total.reads : num 0
.. .. .. ..$ used.reads : num 0
.. .. .. ..$ expected.variance: num Inf
.. .. ..# dimLabels : chr [1:2] "sampleNames" "sampleColumns"
.. .. ..# .__classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slot
.. .. .. .. ..# .Data:List of 1
.. .. .. .. .. ..$ : int [1:3] 1 1 0
..# featureData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots
.. .. ..# varMetadata :'data.frame': 9 obs. of 1 variable:
.. .. .. ..$ labelDescription: chr [1:9] "Chromosome name" "Base pair start position" "Base pair end position" "Percentage of non-N nucleotides (of full bin size)" ...
.. .. ..# data :'data.frame': 168063 obs. of 9 variables:
.. .. .. ..$ chromosome : chr [1:168063] "1" "1" "1" "1" ...
.. .. .. ..$ start : num [1:168063] 825001 840001 855001 870001 885001 ...
.. .. .. ..$ end : num [1:168063] 840000 855000 870000 885000 900000 915000 930000 945000 960000 975000 ...
.. .. .. ..$ bases : num [1:168063] 100 100 100 100 100 100 100 100 100 100 ...
.. .. .. ..$ gc : num [1:168063] 48 61.8 65.1 65.5 62.6 ...
.. .. .. ..$ mappability: num [1:168063] 58.6 91.5 94.1 93.2 93.9 ...
.. .. .. ..$ blacklist : num [1:168063] 0.727 0 0 0 0 ...
.. .. .. ..$ residual : num [1:168063] -0.0627 0.05036 0.09384 0.00541 -0.00588 ...
.. .. .. ..$ use : logi [1:168063] TRUE TRUE TRUE TRUE TRUE TRUE ...
.. .. .. ..- attr(*, "na.action")=Class 'omit' Named int [1:38328] 1 2 3 4 5 6 7 8 9 10 ...
.. .. .. .. .. ..- attr(*, "names")= chr [1:38328] "1:1-15000" "1:15001-30000" "1:30001-45000" "1:45001-60000" ...
.. .. ..# dimLabels : chr [1:2] "featureNames" "featureColumns"
.. .. ..# .__classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slot
.. .. .. .. ..# .Data:List of 1
.. .. .. .. .. ..$ : int [1:3] 1 1 0
..# experimentData :Formal class 'MIAME' [package "Biobase"] with 13 slots
.. .. ..# name : chr ""
.. .. ..# lab : chr ""
.. .. ..# contact : chr ""
.. .. ..# title : chr ""
.. .. ..# abstract : chr ""
.. .. ..# url : chr ""
.. .. ..# pubMedIds : chr ""
.. .. ..# samples : list()
.. .. ..# hybridizations : list()
.. .. ..# normControls : list()
.. .. ..# preprocessing : list()
.. .. ..# other : list()
.. .. ..# .__classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slot
.. .. .. .. ..# .Data:List of 2
.. .. .. .. .. ..$ : int [1:3] 1 0 0
.. .. .. .. .. ..$ : int [1:3] 1 1 0
..# annotation : chr(0)
..# protocolData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots
.. .. ..# varMetadata :'data.frame': 0 obs. of 1 variable:
.. .. .. ..$ labelDescription: chr(0)
.. .. ..# data :'data.frame': 1 obs. of 0 variables
.. .. ..# dimLabels : chr [1:2] "sampleNames" "sampleColumns"
.. .. ..# .__classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slot
.. .. .. .. ..# .Data:List of 1
.. .. .. .. .. ..$ : int [1:3] 1 1 0
..# .__classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slot
.. .. ..# .Data:List of 4
.. .. .. ..$ : int [1:3] 3 1 2
.. .. .. ..$ : int [1:3] 2 26 0
.. .. .. ..$ : int [1:3] 1 3 0
.. .. .. ..$ : int [1:3] 1 2 4

Resources