Is it possible calculated stock using R?
The formula is stock+purchase-sold. In this case first stock (row1) is 0, rg first result stockB1= 12 - 3 = 9 the second (row1) 9+0-5=4.
df=read.table(text="
AB1 XB1 AB2 XB2 AB3 XB3
12 3 0 5 3 7
11 35 1 7 2 8
0 10 5 16 5 3",h=T)
stock = read.table(text="
AB1 XB1 STB1 AB2 XB2 STB2 AB3 XB3 STB3
12 3 9 5 3 11 3 7 7
11 35 24 1 7 18 2 8 12
11 10 1 5 16 -10 5 3 -2",h=T)
Where STB is my request, I not need the total but the partial for each. It can be also in another dataframe.
I'm not sure what form of output you're looking for, but here's an approach that assumes each PB column is a purchase and each SB column is a sale.
My first step is to track the original row for later. Then I reshape the data long, splitting the column into two components after the 2nd character, the first component being PB/SB, the second component being the number of trade. I count PB as increases and SB as reductions, and take the cumulative total for each transaction.
library(tidyverse)
df %>%
mutate(row = row_number()) %>%
pivot_longer(-row, names_to = c("type", "num"), names_sep = 2) %>%
mutate(net = value * if_else(type == "SB", -1, 1)) %>%
group_by(row) %>%
mutate(cuml = cumsum(net)) %>%
ungroup()
## A tibble: 18 × 6
# row type num value net cuml
# <int> <chr> <chr> <int> <dbl> <dbl>
# 1 1 PB 1 12 12 12
# 2 1 SB 1 3 -3 9
# 3 1 PB 2 0 0 9
# 4 1 SB 2 5 -5 4
# 5 1 PB 3 3 3 7
# 6 1 SB 3 7 -7 0
# 7 2 PB 1 11 11 11
# 8 2 SB 1 35 -35 -24
# 9 2 PB 2 1 1 -23
#10 2 SB 2 7 -7 -30
#11 2 PB 3 2 2 -28
#12 2 SB 3 8 -8 -36
#13 3 PB 1 11 11 11
#14 3 SB 1 10 -10 1
#15 3 PB 2 5 5 6
#16 3 SB 2 16 -16 -10
#17 3 PB 3 5 5 -5
#18 3 SB 3 3 -3 -8
This is almost certainly not the final format you want, but we could use this to create a few outputs.
For instance, we might add
... %>%
select(row, num, cuml) %>%
pivot_wider(names_from = num, names_prefix = "trades_", values_from = cuml)
to get something like the original, but just showing the total stock after each pair of trades:
# A tibble: 3 × 4
row trades_1 trades_2 trades_3
<int> <dbl> <dbl> <dbl>
1 1 9 4 0
2 2 -24 -30 -36
3 3 1 -10 -8
library(tidyverse)
df=read.table(text="
PB1 SB1 PB2 SB2 PB3 SB3
12 3 0 5 3 7
11 35 1 7 2 8
11 10 5 16 5 3",h=T)
df %>%
rowwise() %>%
mutate(total = sum(c_across(everything())*c(1,-1)))
#> # A tibble: 3 × 7
#> # Rowwise:
#> PB1 SB1 PB2 SB2 PB3 SB3 total
#> <int> <int> <int> <int> <int> <int> <dbl>
#> 1 12 3 0 5 3 7 0
#> 2 11 35 1 7 2 8 -36
#> 3 11 10 5 16 5 3 -8
Edit 1:
The following pipeline might be what you are looking for:
library(tidyverse)
df=read.table(text="
PB1 SB1 PB2 SB2 PB3 SB3
12 3 0 5 3 7
11 35 1 7 2 8
11 10 5 16 5 3",h=T)
df %>%
as_tibble() %>%
mutate(stock = row_number()) %>%
pivot_longer(
cols = -stock,
names_to = c("type", "tr_num"),
names_pattern = "([P|S]B)([0-9]*)"
) %>%
group_by(stock) %>%
mutate(csum = cumsum(if_else(type == "PB", as.double(value), -1 * value))) %>%
group_by(stock, tr_num) %>%
group_modify(~ add_row(.x, type = "ST")) %>%
mutate(value = if_else(type == "ST", lag(csum), as.double(value))) %>%
ungroup() %>%
select(-csum) %>%
unite("header", c(type, tr_num), sep = "") %>%
pivot_wider(names_from = header, values_from = value) %>%
select(-stock)
#> # A tibble: 3 × 9
#> PB1 SB1 ST1 PB2 SB2 ST2 PB3 SB3 ST3
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 12 3 9 0 5 4 3 7 0
#> 2 11 35 -24 1 7 -30 2 8 -36
#> 3 11 10 1 5 16 -10 5 3 -8
Related
I have data that takes the format:
have <- structure(list(V1 = c(4L, 28L, 2L),
V2 = c("[{\"group\":1,\"topic\":\"A\"},{\"group\":1,\"topic\":\"B\"},{\"group\":2,\"topic\":\"C\"},{\"group\":2,\"topic\":\"T\"},{\"group\":2,\"topic\":\"U\"},{\"group\":3,\"topic\":\"V\"},{\"group\":3,\"topic\":\"D\"},{\"group\":3,\"topic\":\"R\"},{\"group\":4,\"topic\":\"A\"},{\"group\":4,\"topic\":\"Q\"},{\"group\":4,\"topic\":\"S\"},{\"group\":4,\"topic\":\"W\"},{\"group\":6,\"topic\":\"O\"},{\"group\":6,\"topic\":\"P\"},{\"group\":6,\"topic\":\"E\"},{\"group\":6,\"topic\":\"F\"},{\"group\":6,\"topic\":\"G\"},{\"group\":6,\"topic\":\"H\"},{\"group\":6,\"topic\":\"I\"},{\"group\":6,\"topic\":\"J\"},{\"group\":6,\"topic\":\"K\"},{\"group\":6,\"topic\":\"L\"},{\"group\":6,\"topic\":\"M\"},{\"group\":6,\"topic\":\"N\"}]",
"[]",
"[{\"group\":2,\"topic\":\"C\"},{\"group\":3,\"topic\":\"D\"},{\"group\":6,\"topic\":\"O\"},{\"group\":6,\"topic\":\"P\"},{\"group\":6,\"topic\":\"E\"},{\"group\":6,\"topic\":\"G\"},{\"group\":6,\"topic\":\"M\"}]")
),
row.names = c(NA, 3L),
class = "data.frame")
The contents of V2 are nested groupings for each row like [{"group":1,"topic":"A"},{"group":1,"topic":"B"}...]
I want to get a wide dataframe that has an indicator (1/0) for each combination of group+topic (see also_have) for each row. Something like this:
# A tibble: 3 x 4
id topic_id_1 topic_id_2 topic_id_3 topic_id_4 ...
<dbl> <dbl> <dbl> <dbl>
1 4 1 1 0
2 28 0 0 0
3 2 0 0 0
The first step is to parse the json.
I can use purrr::map(have$V2, jsonlite::fromJSON) to unnest into a list, but I'm not sure how to bind the V1 column (that we might rename to id) to each element of the resulting list (note that list element two is empty because V1==28 is empty). Here's a snippet of what the first element might look like with the id (V1) added.
[[1]]
group topic id
1 1 A 4
2 1 B 4
3 2 C 4
4 2 T 4
...
Alternatively, I think purrr::map_df(have$V2, jsonlite::fromJSON) would get me closer to what I ultimately need, but here too I'm not sure how to add the row id (V1).
df <- purrr::map_df(have$V2, jsonlite::fromJSON)
df
What I get:
group topic
1 1 A
2 1 B
3 2 C
4 2 T
...
What I want (notice `V1==28` does not appear):
group topic id
1 1 A 4
2 1 B 4
3 2 C 4
4 2 T 4
5 2 U 4
6 3 V 4
7 3 D 4
8 3 R 4
9 4 A 4
10 4 Q 4
11 4 S 4
12 4 W 4
13 6 O 4
14 6 P 4
15 6 E 4
16 6 F 4
17 6 G 4
18 6 H 4
19 6 I 4
20 6 J 4
21 6 K 4
22 6 L 4
23 6 M 4
24 6 N 4
25 2 C 2
26 3 D 2
27 6 O 2
28 6 P 2
29 6 E 2
30 6 G 2
31 6 M 2
STOP.
I think if I can get the above dataframe with id I can get the rest of the way. The ultimate goal is to join this info with also_have and then pivot wide.
# join
also_have <- expand_grid(c(1:6), c(LETTERS)) %>%
mutate(topic_id = 1:n()) %>%
magrittr::set_colnames(c("group", "topic", "topic_id")) %>%
select(topic_id, group, topic)
# pivot wide
# A tibble: 3 x 4
id topic_id_1 topic_id_2 topic_id_3 topic_id_4 ...
<dbl> <dbl> <dbl> <dbl>
1 4 1 1 0
2 28 0 0 0
3 2 0 0 0
Update:
Applying #akrun's solution:
purrr::map_dfr(setNames(have$V2, have$V1),
jsonlite::fromJSON,
.id = 'V1') %>%
rename(id = V1) %>%
left_join(also_have, by=c("group", "topic")) %>%
select(-group, -topic) %>%
mutate(value = 1) %>%
pivot_wider(id_cols = id,
names_from = topic_id,
names_prefix = "topic_id",
values_from = value,
values_fill = 0
) %>%
full_join(tibble(id = as.character(have$V1))) %>%
replace(is.na(.), 0)
# A tibble: 3 x 25
id topic_id1 topic_id2 topic_id29 topic_id46 topic_id47 topic_id74 topic_id56
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 4 1 1 1 1 1 1 1
2 2 0 0 1 0 0 0 1
3 28 0 0 0 0 0 0 0
# … with 17 more variables: topic_id70 <dbl>, topic_id79 <dbl>, topic_id95 <dbl>,
# topic_id97 <dbl>, topic_id101 <dbl>, topic_id145 <dbl>, topic_id146 <dbl>,
# topic_id135 <dbl>, topic_id136 <dbl>, topic_id137 <dbl>, topic_id138 <dbl>,
# topic_id139 <dbl>, topic_id140 <dbl>, topic_id141 <dbl>, topic_id142 <dbl>,
# topic_id143 <dbl>, topic_id144 <dbl>
We could pass a named vector and then use .id in map_dfr
purrr::map_dfr(setNames(have$V2, have$V1), jsonlite::fromJSON, .id = 'id')
-output
id group topic
1 4 1 A
2 4 1 B
3 4 2 C
4 4 2 T
5 4 2 U
6 4 3 V
7 4 3 D
8 4 3 R
9 4 4 A
10 4 4 Q
11 4 4 S
12 4 4 W
...
Or this can be done within in dplyr framework itself after using rowwise
library(tidyr)
have %>%
rowwise %>%
transmute(ID = V1, V2 = list(fromJSON(V2))) %>%
ungroup %>%
unnest(c(V2), keep_empty = TRUE) %>%
select(-V2)
# A tibble: 32 x 3
ID group topic
<int> <int> <chr>
1 4 1 A
2 4 1 B
3 4 2 C
4 4 2 T
5 4 2 U
6 4 3 V
7 4 3 D
8 4 3 R
9 4 4 A
10 4 4 Q
# … with 22 more rows
For the second step do a join
out <- have %>%
rowwise %>%
transmute(ID = V1, V2 = list(fromJSON(V2))) %>%
ungroup %>%
unnest(c(V2), keep_empty = TRUE) %>%
select(-V2) %>% right_join(also_have)
out
Joining, by = c("group", "topic")
# A tibble: 163 x 4
ID group topic topic_id
<int> <int> <chr> <int>
1 4 1 A 1
2 4 1 B 2
3 4 2 C 29
4 4 2 T 46
5 4 2 U 47
6 4 3 V 74
7 4 3 D 56
8 4 3 R 70
9 4 4 A 79
10 4 4 Q 95
# … with 153 more rows
I have a dataframe like this:
df = data.frame(
x = 1:100,
y = rep(1:10, times = 10, each = 10)
) %>%
group_by(y)
And I would like to compute the sum of x from the 3rd to the 6th row of each group of y.
I think this should be easy, but I just can not figure it out at the moment.
In pseudocode I imagine something like this:
df %>%
mutate(
sum(x, ifelse(between(row_number(), 3,6)))
)
But this of course does not work. I would like to solve it with some dplyr-function, but also in base R I cannot think of a fast solution.
For the first group the sum would be 3+4+5+6....
One option could be:
df %>%
group_by(y) %>%
mutate(z = sum(x[row_number() %in% 3:6]))
x y z
<int> <int> <int>
1 1 1 18
2 2 1 18
3 3 1 18
4 4 1 18
5 5 1 18
6 6 1 18
7 7 1 18
8 8 1 18
9 9 1 18
10 10 1 18
You could also do this with filter() and summarise() and obtain a group-wise summary:
df %>%
group_by(y) %>%
mutate(rn = 1:n()) %>%
filter(rn %in% 3:6) %>%
summarise(x_sum = sum(x))
# A tibble: 10 x 2
y x_sum
<int> <int>
1 1 18
2 2 58
3 3 98
4 4 138
5 5 178
6 6 218
7 7 258
8 8 298
9 9 338
10 10 378
Update: If you want to sum multiple sequences from x then you can sum by index:
df %>%
group_by(y) %>%
mutate(sum_row3to6 = sum(x[3:6]),
sum_row1to4 = sum(x[1:4])
)
Output:
x y sum_row3to6 sum_row1to4
<int> <int> <int> <int>
1 1 1 18 10
2 2 1 18 10
3 3 1 18 10
4 4 1 18 10
5 5 1 18 10
6 6 1 18 10
7 7 1 18 10
8 8 1 18 10
9 9 1 18 10
10 10 1 18 10
First answer:
We could use slice summarise
library(dplyr)
df %>%
group_by(y) %>%
slice(3:6) %>%
summarise(sum = sum(x))
Output:
y sum
<int> <int>
1 1 18
2 2 58
3 3 98
4 4 138
5 5 178
6 6 218
7 7 258
8 8 298
9 9 338
10 10 378
data.table
library(data.table)
df = data.frame(
x = 1:100,
y = rep(1:10, times = 10, each = 10)
)
setDT(df)[rowid(y) %in% 3:6, list(sum_x = sum(x)), by = y][]
#> y sum_x
#> 1: 1 18
#> 2: 2 58
#> 3: 3 98
#> 4: 4 138
#> 5: 5 178
#> 6: 6 218
#> 7: 7 258
#> 8: 8 298
#> 9: 9 338
#> 10: 10 378
Created on 2021-05-21 by the reprex package (v2.0.0)
set.seed(3)
library(dplyr)
dat <- tibble(Measure = c("Height","Weight","Width","Length"),
AD1_1= rpois(4,10),
AD1_2= rpois(4,9),
AD2_1= rpois(4,10),
AD2_2= rpois(4,9),
AD3_1= rpois(4,10),
AD3_2= rpois(4,9),
AD4_1= rpois(4,10),
AD4_2= rpois(4,9),
AD5_1= rpois(4,10),
AD5_2= rpois(4,9),
AD6_1= rpois(4,10),
AD6_2= rpois(4,9))
Suppose I have data that looks like this. I wish to calculate the difference for each AD, paired with underscored number, i.e., AD1diff, AD2diff,AD3diff.
Instead of writing
dat %>%
mutate(AD1diff = AD1_1 - AD1_2,
AD2diff = AD2_1 - AD2_2,
...)
what would be an efficient way to write this?
One dplyr option could be:
dat %>%
mutate(across(ends_with("_1"), .names = "{col}_diff") - across(ends_with("_2"))) %>%
rename_with(~ sub("_\\d+", "", .), ends_with("_diff"))
Measure AD1_1 AD1_2 AD2_1 AD2_2 AD3_1 AD3_2 AD4_1 AD4_2 AD5_1 AD5_2 AD6_1 AD6_2 AD1_diff AD2_diff AD3_diff AD4_diff AD5_diff AD6_diff
<chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
1 Height 6 10 10 3 12 8 7 5 7 5 8 9 -4 7 4 2 2 -1
2 Weight 8 9 13 6 14 7 8 7 13 11 10 9 -1 7 7 1 2 1
3 Width 10 9 11 5 12 8 7 11 9 5 5 6 1 6 4 -4 4 -1
4 Length 8 9 8 7 8 13 8 7 6 11 14 6 -1 1 -5 1 -5 8
The "tidy" way to do this would be to convert your data from wide to long, do a grouped subtraction, and then go back to wide format:
library(tidyr)
dat_long = dat %>% pivot_longer(
cols = starts_with("AD"),
names_sep = "_",
names_to = c("group", "obs")
)
dat_long %>% head
# # A tibble: 48 x 4
# Measure group obs value
# <chr> <chr> <chr> <int>
# 1 Height AD1 1 6
# 2 Height AD1 2 10
# 3 Height AD2 1 10
# 4 Height AD2 2 3
# 5 Height AD3 1 12
# 6 Height AD3 2 8
dat_long %>%
group_by(Measure, group) %>%
summarize(diff = value[obs == 1] - value[obs == 2]) %>%
pivot_wider(names_from = "group", values_from = "diff") %>%
rename_with(.fn = ~ paste0(., "diff"), .cols = starts_with("AD"))
# # A tibble: 4 x 7
# # Groups: Measure [4]
# Measure AD1diff AD2diff AD3diff AD4diff AD5diff AD6diff
# <chr> <int> <int> <int> <int> <int> <int>
# 1 Height -4 7 4 2 2 -1
# 2 Length -1 1 -5 1 -5 8
# 3 Weight -1 7 7 1 2 1
# 4 Width 1 6 4 -4 4 -1
Here is a data.table option
setDT(dat)[
,
paste0(
unique(gsub("_\\d+", "", names(dat)[-1])),
"diff"
) := lapply(
split.default(.SD[, -1], gsub("_\\d+", "", names(dat)[-1])),
function(x) do.call("-", x)
)
]
which gives
> dat
Measure AD1_1 AD1_2 AD2_1 AD2_2 AD3_1 AD3_2 AD4_1 AD4_2 AD5_1 AD5_2 AD6_1
1: Height 6 10 10 3 12 8 7 5 7 5 8
2: Weight 8 9 13 6 14 7 8 7 13 11 10
3: Width 10 9 11 5 12 8 7 11 9 5 5
4: Length 8 9 8 7 8 13 8 7 6 11 14
AD6_2 AD1diff AD2diff AD3diff AD4diff AD5diff AD6diff
1: 9 -4 7 4 2 2 -1
2: 9 -1 7 7 1 2 1
3: 6 1 6 4 -4 4 -1
4: 6 -1 1 -5 1 -5 8
or
setDT(dat)[
,
c(.(Measure = Measure), setNames(lapply(
split.default(.SD[, -1], gsub("_\\d+", "", names(dat)[-1])),
function(x) do.call("-", x)
), paste0(
unique(gsub("_\\d+", "", names(dat)[-1])),
"diff"
)))
]
gives
Measure AD1diff AD2diff AD3diff AD4diff AD5diff AD6diff
1: Height -4 7 4 2 2 -1
2: Weight -1 7 7 1 2 1
3: Width 1 6 4 -4 4 -1
4: Length -1 1 -5 1 -5 8
Use tidyverse package tidyr to rearrange your data before mutating
require(dplyr)
require(tidyr)
#> Loading required package: tidyr
First, tidyr::pivot_longer the data frame so that there's a separate row for every column:
new_dat <-
pivot_longer(dat, cols = starts_with("AD"), # For columns whose names start with 'AD'...
names_sep = "_", # separate columns using '_' in colname
names_to = c("AD_number", "observation")) %>%
arrange(AD_number, Measure, observation)
head(new_dat, 9)
#> # A tibble: 9 x 4
#> Measure AD_number observation value
#> <chr> <chr> <chr> <int>
#> 1 Height AD1 1 6
#> 2 Height AD1 2 10
#> 3 Length AD1 1 8
#> 4 Length AD1 2 9
#> 5 Weight AD1 1 8
#> 6 Weight AD1 2 9
#> 7 Width AD1 1 10
#> 8 Width AD1 2 9
#> 9 Height AD2 1 10
Then, use tidyr::pivot_wider (the functional opposite of pivot_longer) to make a separate column for each value in observation. This will be very compatible with the upcoming mutate operation.
new_dat <-
pivot_wider(new_dat,
names_from = observation,
values_from = value,
names_prefix = "value_")
head(new_dat, 5)
#> # A tibble: 5 x 4
#> Measure AD_number value_1 value_2
#> <chr> <chr> <int> <int>
#> 1 Height AD1 6 10
#> 2 Length AD1 8 9
#> 3 Weight AD1 8 9
#> 4 Width AD1 10 9
#> 5 Height AD2 10 3
Finally, mutate the data:
new_dat <-
mutate(new_dat, diff = value_1 - value_2)
head(new_dat, 4)
#> # A tibble: 4 x 5
#> Measure AD_number value_1 value_2 diff
#> <chr> <chr> <int> <int> <int>
#> 1 Height AD1 6 10 -4
#> 2 Length AD1 8 9 -1
#> 3 Weight AD1 8 9 -1
#> 4 Width AD1 10 9 1
Created on 2021-01-22 by the reprex package (v0.3.0)
Getting back to your original data format is possible, but it might not make the data any easier to work with:
rename(new_dat,
c(`1` = "value_1", `2` = "value_2")) %>%
pivot_wider(names_from = AD_number,
values_from = c(`1`, `2`, diff),
names_glue = "{AD_number}_{.value}") %>%
{.[,order(names(.))]} %>%
relocate(Measure)
My data looks like this:
id = c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)
time=c(20,30,1100,40,31,32,33,1005,22,23,1001,24,12,13,14,1002)
test <- data.frame(id,time)
I am now trying to count the rows until time > 1000grouped by id . So far I got
library(dplyr)
test %>%
group_by(id, idx = cumsum(time >= 1000))
%>%
mutate(trip_count = row_number()) %>%
ungroup %>%
select(-idx)
This works so far but instead of 1 when time > 1000 I want the count to go one further and starting with 1again at the next column. Is this somehow possible?
Since each group has 4 rows in your data, we can use this:
> test %>% left_join(test %>% filter(time < 1000) %>% group_by(id) %>% mutate(trip_count = row_number())) %>% group_by(id) %>%
+ mutate(trip_count = replace_na(trip_count, 4))
Joining, by = c("id", "time")
# A tibble: 16 x 3
# Groups: id [4]
id time trip_count
<dbl> <dbl> <dbl>
1 1 20 1
2 1 30 2
3 1 40 3
4 1 1100 4
5 2 31 1
6 2 32 2
7 2 33 3
8 2 1005 4
9 3 22 1
10 3 23 2
11 3 24 3
12 3 1001 4
13 4 12 1
14 4 13 2
15 4 14 3
16 4 1002 4
>
If your data doesn't have 4 rows per group, can use this:
> id = c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,4)
> time=c(20,30,40,1100,31,32,33,1005,22,23,24,1001,12,13,14,15,1002)
> test <- data.frame(id,time)
> test %>% left_join(test %>% filter(time < 1000) %>% group_by(id) %>% mutate(trip_count = row_number())) %>% group_by(id) %>%
+ mutate(across(trip_count, ~ replace(., is.na(.), n())))
Joining, by = c("id", "time")
# A tibble: 17 x 3
# Groups: id [4]
id time trip_count
<dbl> <dbl> <int>
1 1 20 1
2 1 30 2
3 1 40 3
4 1 1100 4
5 2 31 1
6 2 32 2
7 2 33 3
8 2 1005 4
9 3 22 1
10 3 23 2
11 3 24 3
12 3 1001 4
13 4 12 1
14 4 13 2
15 4 14 3
16 4 15 4
17 4 1002 5
>
I added additional row to group 4.
Based on new data as shared by OP:
> test %>%
+ left_join(test %>% group_by(id) %>% filter(row_number() < which(time >= 1000)) %>%
+ mutate(trip_count = row_number())) %>%
+ left_join(test %>% group_by(id) %>% filter(row_number() > which(time >= 1000)) %>% mutate(trip_count1 = row_number())) %>%
+ mutate(trip_count = coalesce(trip_count, trip_count1)) %>% select(-trip_count1) %>% group_by(id) %>%
+ mutate(rowid = row_number()) %>% rowwise() %>% mutate(trip_count = replace_na(trip_count, rowid)) %>% select(-rowid)
Joining, by = c("id", "time")
Joining, by = c("id", "time")
# A tibble: 16 x 3
# Rowwise: id
id time trip_count
<dbl> <dbl> <int>
1 1 20 1
2 1 30 2
3 1 1100 3
4 1 40 1
5 2 31 1
6 2 32 2
7 2 33 3
8 2 1005 4
9 3 22 1
10 3 23 2
11 3 1001 3
12 3 24 1
13 4 12 1
14 4 13 2
15 4 14 3
16 4 1002 4
>
You could use the lag:
library(dplyr)
test %>%
group_by(id, idx = cumsum(lag(time, default = 0) >= 1000)) %>%
mutate(trip_count = row_number()) %>%
ungroup %>%
select(-idx)
Output:
# A tibble: 16 x 3
id time trip_count
<dbl> <dbl> <int>
1 1 20 1
2 1 30 2
3 1 40 3
4 1 1100 4
5 2 31 1
6 2 32 2
7 2 33 3
8 2 1005 4
9 3 22 1
10 3 23 2
11 3 24 3
12 3 1001 4
13 4 12 1
14 4 13 2
15 4 14 3
16 4 1002 4
I have a data.frame which specifies linear intervals (along chromosomes), where each interval is assigned to a group:
df <- data.frame(chr = c(rep("1",5),rep("2",4),rep("3",5)),
start = c(seq(1,50,10),seq(1,40,10),seq(1,50,10)),
end = c(seq(10,50,10),seq(10,40,10),seq(10,50,10)),
group = c(c("g1.1","g1.1","g1.2","g1.3","g1.1"),c("g2.1","g2.2","g2.3","g2.2"),c("g3.1","g3.2","g3.2","g3.2","g3.3")),
stringsAsFactors = F)
I'm looking for a fast way to collapse df by chr and by group such that consecutive intervals along a chr that are assigned to the same group are combined and their start and end coordinates are modified accordingly.
Here's the desired outcome for this example:
res.df <- data.frame(chr = c(rep("1",4),rep("2",4),rep("3",3)),
start = c(c(1,21,31,41),c(1,11,21,31),c(1,11,41)),
end = c(c(20,30,40,50),c(10,20,30,40),c(10,40,50)),
group = c("g1.1","g1.2","g1.3","g1.1","g2.1","g2.2","g2.3","g2.2","g3.1","g3.2","g3.3"),
stringsAsFactors = F)
Edit: To account for the consecutive requirement you can use the same approach as earlier but add an extra grouping variable based on consecutive values.
library(dplyr)
df %>%
group_by(chr, group, temp.grp = with(rle(group), rep(seq_along(lengths), lengths))) %>%
summarise(start = min(start),
end = max(end)) %>%
arrange(chr, start) %>%
select(chr, start, end, group)
# A tibble: 11 x 4
# Groups: chr, group [9]
chr start end group
<chr> <dbl> <dbl> <chr>
1 1 1 20 g1.1
2 1 21 30 g1.2
3 1 31 40 g1.3
4 1 41 50 g1.1
5 2 1 10 g2.1
6 2 11 20 g2.2
7 2 21 30 g2.3
8 2 31 40 g2.2
9 3 1 10 g3.1
10 3 11 40 g3.2
11 3 41 50 g3.3
A different tidyverse approach could be:
df %>%
gather(var, val, -c(chr, group)) %>%
group_by(chr, group) %>%
filter(val == min(val) | val == max(val)) %>%
spread(var, val)
chr group end start
<chr> <chr> <dbl> <dbl>
1 1 g1.1 20 1
2 1 g1.2 30 21
3 1 g1.3 50 31
4 2 g2.1 10 1
5 2 g2.2 20 11
6 2 g2.3 40 21
7 3 g3.1 10 1
8 3 g3.2 40 11
9 3 g3.3 50 41
Or:
df %>%
group_by(chr, group) %>%
summarise_all(funs(min, max)) %>%
select(-end_min, -start_max)
chr group start_min end_max
<chr> <chr> <dbl> <dbl>
1 1 g1.1 1 20
2 1 g1.2 21 30
3 1 g1.3 31 50
4 2 g2.1 1 10
5 2 g2.2 11 20
6 2 g2.3 21 40
7 3 g3.1 1 10
8 3 g3.2 11 40
9 3 g3.3 41 50
A solution, using also rleid() from data.table, to the updated post could be:
df %>%
group_by(chr, group, group2 = rleid(group)) %>%
summarise_all(funs(min, max)) %>%
select(-end_min, -start_max)
chr group group2 start_min end_max
<chr> <chr> <int> <dbl> <dbl>
1 1 g1.1 1 1 20
2 1 g1.1 4 41 50
3 1 g1.2 2 21 30
4 1 g1.3 3 31 40
5 2 g2.1 5 1 10
6 2 g2.2 6 11 20
7 2 g2.2 8 31 40
8 2 g2.3 7 21 30
9 3 g3.1 9 1 10
10 3 g3.2 10 11 40
11 3 g3.3 11 41 50