RSA Algorithm 1 Mod Phi = 1? - encryption

On this website it states for the calculation of "d" you must use the formula e.d = 1 Mod Phi. I don't quite understand as I believed 1 Mod anything will result in 1 (or 0 in case 1 Mod 1). This simplifies the formula to e.d = 1 which clearly is not correct with the given test values :
e = 17 , Phi = 3120 , d = 2753.
I would appreciate some clarification on how the RSA calculates the decryption key.

Wikipedia says this is a Modular multiplicative inverse. The formula should be read as e * d equals 1, when the result is expressed modulo Phi, or (e*d) % Phi == 1 in pseudocode.

Related

RSA private key calculate [MADLIB]

How can I calculate the private key(d)?
The problem is that d(private key) has to be an int number but I keep getting d=0.0000152585.. Help please?
p=92092076805892533739724722602668675840671093008520241548191914215399824020372076186460768206814914423802230398410980218741906960527104568970225804374404612617736579286959865287226538692911376507934256844456333236362669879347073756238894784951597211105734179388300051579994253565459304743059533646753003894559
q=97846775312392801037224396977012615848433199640105786119757047098757998273009741128821931277074555731813289423891389911801250326299324018557072727051765547115514791337578758859803890173153277252326496062476389498019821358465433398338364421624871010292162533041884897182597065662521825095949253625730631876637
e=65537
n=9010912747277787249738727439840427055736519196538871349093408340706668231808840540195374015916168031416186859836416053338250477003776576736854137538279810042409758765948034443613881324504120707334213544491046703922409406729564516371394804946909037646047891880347940067132730874804943893719672960932378043325067514786209219718314429979032869544980643978919561908707109629612202311323626173343456843249212057093980583352634168733656443959925428846968193413110401346035535595817965624054783296380268863401241570313602685481219583686719199499297832165308522137209299081956650614940546284136240753995440003473611843518083
ϕ(n)=9010912747277787249738727439840427055736519196538871349093408340706668231808840540195374015916168031416186859836416053338250477003776576736854137538279810042409758765948034443613881324504120707334213544491046703922409406729564516371394804946909037646047891880347940067132730874804943893719672960932378043324975422709403327184574705256430200869139972885911041667158917715396802487303254097156996075042397142670178352954223188514914536999398324277997967608735996733417799016531005758767556757687357486893307313469146352244856913807372125743058937380356924926103564902568350563360552030570781449252380469826858839623524
So with the formula:
d=e-1 mod ϕ(n)
I keep getting 0.0000152585. Any ideas?
You need to use the Modular Multiplicative Inverse, not the inverse.
Here is an example in python using the cryptography module.
from cryptography.hazmat.primitives.asymmetric.rsa import _modinv
p=92092076805892533739724722602668675840671093008520241548191914215399824020372076186460768206814914423802230398410980218741906960527104568970225804374404612617736579286959865287226538692911376507934256844456333236362669879347073756238894784951597211105734179388300051579994253565459304743059533646753003894559
q=97846775312392801037224396977012615848433199640105786119757047098757998273009741128821931277074555731813289423891389911801250326299324018557072727051765547115514791337578758859803890173153277252326496062476389498019821358465433398338364421624871010292162533041884897182597065662521825095949253625730631876637
e=65537
phi = (p-1) * (q-1)
d = _modinv(e, phi)
print(d) # 1405046269503207469140791548403639533127416416214210694972085079171787580463776820425965898174272870486015739516125786182821637006600742140682552321645503743280670839819078749092730110549881891271317396450158021688253989767145578723458252769465545504142139663476747479225923933192421405464414574786272963741656223941750084051228611576708609346787101088759062724389874160693008783334605903142528824559223515203978707969795087506678894006628296743079886244349469131831225757926844843554897638786146036869572653204735650843186722732736888918789379054050122205253165705085538743651258400390580971043144644984654914856729
print((e * d) % phi) # 1
You can find the implementation of _modinv() here.
By fips.186-4 standard, you have to use λ not φ in RSA;
λ(n)=lcm(p−1,q−1)
to calculate d= e-1 mod λ(n) you must use extendedGCD algorithm.
find x and y that satisfify Bezout Identity
e x + λ(n) y = gcd(e,λ(n))
e x -1 = (-y)λ(n)
take mod λ(n)
e x ≡ 1 mod λ(n)

How to find d, given p, q, and e in RSA?

I know I need to use the extended euclidean algorithm, but I'm not sure exactly what calculations I need to do. I have huge numbers. Thanks
Well, d is chosen such that d * e == 1 modulo (p-1)(q-1), so you could use the Euclidean algorithm for that (finding the modular multiplicative inverse).
If you are not interested in understanding the algorithm, you can just call BigInteger#modInverse directly.
d = e.modInverse(p_1.multiply(q_1))
Given that, p=11, q=7, e =17, n=77, φ (n) = 60 and d=?
First substitute values from the formula:-
ed mod φ (n) =1
17 d mod 60 = 1
The next step: – take the totient of n, which is 60 to your left hand side and [e] to your right hand side.
60 = 17
3rd step: – ask how many times 17 goes to 60. That is 3.5….. Ignore the remainder and take 3.
60 = 3(17)
Step 4: – now you need to balance this equation 60 = 3(17) such that left hand side equals to right hand side. How?
60 = 3(17) + 9 <== if you multiply 3 by 17 you get 51 then plus 9, that is 60. Which means both sides are now equal.
Step 5: – Now take 17 to your left hand side and 9 to your right hand side.
17 = 9
Step 6:- ask how many times 9 goes to 17. That is 1.8…….
17 = 1(9)
Step 7:- Step 4: – now you need to balance this 17 = 1(9)
17 = 1(9) + 8 <== if you multiply 1 by 9 you get 9 then plus 8, that is 17. Which means both sides are now equal.
Step 8:- again take 9 to your left hand side and 8 to your right hand side.
9 = 1(8)
9 = 1(8) + 1 <== once you reached +1 to balance your equation, you may stop and start doing back substitution.
Step A:-Last equation in step 8 which is 9 = 1(8) + 1 can be written as follows:
1.= 9 – 1(8)
Step B:-We know what is (8) by simple saying 8 = 17 – 1(9) from step 7. Now we can re-write step A as:-
1=9 -1(17 – 1(9)) <== here since 9=1(9) we can re-write as:-
1=1(9)-1(17) +1(9) <== group similar terms. In this case you add 1(9) with 1(9) – that is 2(9).
1=2(9)-1(17)
Step C: – We know what is (9) by simple saying 9 = 60 – 3(17) from step 4. Now we can re-write step B as:-
1=2(60-3(17) -1(17)
1=2(60)-6(17) -1(17) <== group similar terms. In this case you add 6(17) with 1(17) – that is 7(17).
1=2(60)-7(17) <== at this stage we can stop, nothing more to substitute, therefore take the value next 17. That is 7. Subtract it with the totient.
60-7=d
Then therefore the value of d= 53.
I just want to augment the Sidudozo's answer and clarify some important points.
First of all, what should we pass to Extended Euclidean Algorthim to compute d ?
Remember that ed mod φ(n) = 1 and cgd(e, φ(n)) = 1.
Knowing that the Extended Euclidean Algorthim is based on the formula cgd(a,b) = as + bt, hence cgd(e, φ(n)) = es + φ(n)t = 1, where d should be equal to s + φ(n) in order to satisfy the
ed mod φ(n) = 1 condition.
So, given the e=17 and φ(n)=60 (borrowed from the Sidudozo's answer), we substitute the corresponding values in the formula mentioned above:
cgd(e, φ(n)) = es + φ(n)t = 1 ⇔ 17s + 60t = 1.
At the end of the Sidudozo's answer we obtain s = -7. Thus d = s + φ(n) ⇔ d = -7 + 60 ⇒ d = 53.
Let's verify the results. The condition was ed mod φ(n) = 1.
Look 17 * 53 mod 60 = 1. Correct!
The approved answer by Thilo is incorrect as it uses Euler's totient function instead of Carmichael's totient function to find d. While the original method of RSA key generation uses Euler's function, d is typically derived using Carmichael's function instead for reasons I won't get into. The math needed to find the private exponent d given p q and e without any fancy notation would be as follows:
d = e^-1*mod(((p-1)/GCD(p-1,q-1))(q-1))
Why is this? Because d is defined in the relationship
de = 1*mod(λ(n))
Where λ(n) is Carmichael's function which is
λ(n)=lcm(p-1,q-1)
Which can be expanded to
λ(n)=((p-1)/GCD(p-1,q-1))(q-1)
So inserting this into the original expression that defines d we get
de = 1*mod(((p-1)/GCD(p-1,q-1))(q-1))
And just rearrange that to the final formula
d = e^-1*mod(((p-1)/GCD(p-1,q-1))(q-1))
More related information can be found here.
Here's the code for it, in python:
def inverse(a, n):
t, newt = 0, 1
r, newr = n, a
while newr:
quotient = r // newr # floor division
t, newt = newt, t - quotient * newt
r, newr = newr, r - quotient * newr
if r > 1:
return None # there's no solution
if t < 0:
t = t + n
return t
inverse(17, 60) # returns 53
adapted from pseudocode found in wiki: https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Pseudocode
Simply use this formula,
d = (1+K(phi))/e. (Very useful when e and phi are small numbers)
Lets say, e = 3 and phi = 40
we assume K = 0, 1, 2... until your d value is not a decimal
assume K = 0, then
d = (1+0(40))/3 = 0. (if it is a decimal increase the K value, don't bother finding the exact value of the decimal)
assume K = 2, then
d = (1+2(40)/3) = 81/3 = 27
d = 27.
Assuming K will become exponentially easy with practice.
Taken the values p=7, q=11 and e=17.
then the value of n=p*q=77 and f(n)=(p-1)(q-1)=60.
Therefore, our public key pair is,(e,n)=(7,77)
Now for calvulating the value of d we have the constraint,
e*d == 1 mod (f(n)), [here "==" represents the **congruent symbol**].
17*d == 1 mod 60
(17*53)*d == 53 mod 60, [7*53=901, which gives modulus value 1]
1*d == 53 mod 60
hence,this gives the value of d=53.
Therefore our private key pair will be, (d,n)=(53,77).
Hope this help. Thank you!

Modulus Decryption Function

Let's say we have a encryption function like this :
f(x) = x^5 mod 21
How can I get the plain text from the encrypted text which generated by this function? How can I denote the decryption function?
Is this homework? If so, you should tag it homework, and accept answers on some of your past questions.
This looks like RSA, where the modulus is the product of two primes (i.e. n = p*q). Just follow the steps of the algorithm.In this case, n = 21 = 7*3. This tells you phi(n) = (6*2) = 12.
If 5 is the encrypting exponent (e), and phi(n) = 12, then to calculate the decrypting exponent, you need to find d such that e*d = 1 (mod phi(n)). Written another way, e-1 = d (mod phi(n)). You can do this with the PowerMod function in Mathematica: PowerMod[5, -1, 12].
Once you know the modular inverse, the rest becomes easy:
c = (m)^5 mod 21
m = (c)^d mod 21

Formulating Linear Programming Problem

This may be quite a basic question for someone who knows linear programming.
In most of the problems that I saw on LP has somewhat similar to following format
max 3x+4y
subject to 4x-5y = -34
3x-5y = 10 (and similar other constraints)
So in other words, we have same number of unknown in objective and constraint functions.
My problem is that I have one unknown variable in objective function and 3 unknowns in constraint functions.
The problem is like this
Objective function: min w1
subject to:
w1 + 0.1676x + 0.1692y >= 0.1666
w1 - 0.1676x - 0.1692y >= -0.1666
w1 + 0.3039x + 0.3058y >= 0.3
w1 - 0.3039x - 0.3058y >= -0.3
x + y = 1
x >= 0
y >= 0
As can be seen, the objective function has only one unknown i.e. w1 and constraint functions have 3 (or lets say 2) unknown i.e w1, x and y.
Can somebody please guide me how to solve this problem, especially using R or MATLAB linear programming toolbox.
Your objective only involves w1 but you can still view it as a function of w1,x,y, where the coefficient of w1 is 1, and the coeffs of x,y are zero:
min w1*1 + x*0 + y*0
Once you see this you can formulate it in the usual way as a "standard" LP.
Prasad is correct. The number of unknowns in the objective function does not matter. You can view unknowns that are not present as having a zero coefficient.
This LP is easily solved using Matlab's linprog function. For more
details on linprog see the documentation here.
% We lay out the variables as X = [w1; x; y]
c = [1; 0; 0]; % The objective is w1 = c'*X
% Construct the constraint matrix
% Inequality constraints will be written as Ain*X <= bin
% w1 x y
Ain = [ -1 -0.1676 -0.1692;
-1 0.1676 0.1692;
-1 -0.3039 -0.3058;
-1 0.3039 0.3058;
];
bin = [ -0.166; 0.166; -0.3; 0.3];
% Construct equality constraints Aeq*X == beq
Aeq = [ 0 1 1];
beq = 1;
%Construct lower and upper bounds l <= X <= u
l = [ -inf; 0; 0];
u = inf(3,1);
% Solve the LP using linprog
[X, optval] = linprog(c,Ain,bin,Aeq,beq,l,u);
% Extract the solution
w1 = X(1);
x = X(2);
y = X(3);

How to implement c=m^e mod n for enormous numbers?

I'm trying to figure out how to implement RSA crypto from scratch (just for the intellectual exercise), and i'm stuck on this point:
For encryption, c = me mod n
Now, e is normally 65537. m and n are 1024-bit integers (eg 128-byte arrays). This is obviously too big for standard methods. How would you implement this?
I've been reading a bit about exponentiation here but it just isn't clicking for me:
Wikipedia-Exponentiation by squaring
This Chapter (see section 14.85)
Thanks.
edit: Also found this - is this more what i should be looking at? Wikipedia- Modular Exponentiation
Exponentiation by squaring:
Let's take an example. You want to find 1723. Note that 23 is 10111 in binary. Let's try to build it up from left to right.
// a exponent in binary
a = 17 //17^1 1
a = a * a //17^2 10
a = a * a //17^4 100
a = a * 17 //17^5 101
a = a * a //17^10 1010
a = a * 17 //17^11 1011
a = a * a //17^22 10110
a = a * 17 //17^23 10111
When you square, you double the exponent (shift left by 1 bit). When you multiply by m, you add 1 to the exponent.
If you want to reduce modulo n, you can do it after each multiplication (rather than leaving it to the end, which would make the numbers get very large).
65537 is 10000000000000001 in binary which makes all of this pretty easy. It's basically
a = m
repeat 16 times:
a = a * a
a = a mod n
a = a * m
a = a mod n
where of course a, n and m are "big integers". a needs to be at least 2048 bits as it can get as large as (n-1)2.
For an efficient algorithm you need to combine the exponentiation by squaring with repeated application of mod after each step.
For odd e this holds:
me mod n = m ⋅ me-1 mod n
For even e:
me mod n = (me/2 mod n)2 mod n
With m1 = m as a base case this defines a recursive way to do efficient modular exponentiation.
But even with an algorithm like this, because m and n will be very large, you will still need to use a type/library that can handle integers of such sizes.
result = 1
while e>0:
if (e & 1) != 0:
result = result * m
result = result mod n
m = m*m
m = m mod n
e = e>>1
return result
This checks bits in the exponent starting with the least significant bit. Each time we move up a bit it corresponds to doubling the power of m - hence we shift e and square m. The result only gets the power of m multiplied in if the exponent has a 1 bit in that position. All multiplications need to be reduced mod n.
As an example, consider m^13. 11 = 1101 in binary. so this is the same as m^8 * m^4 * m. Notice the powers 8,4,(not 2),1 which is the same as the bits 1101. And then recall that m^8 = (m^4)^2 and m^4 = (m^2)^2.
If g(x) = x mod 2^k is faster to calculate for your bignum library than f(x) = x mod N for N not divisible by 2, then consider using Montgomery multiplication. When used with modular exponentiation, it avoids having to calculate modulo N at each step, you just need to do the "Montgomeryization" / "un-Montgomeryization" at the beginning and end.

Resources