Combining legends in mathematica Grid[] - grid

I am trying to plot 2 figures that both share identical legends in a grid in Mathematical. Here is an example of the code:
Grid[{{Plot[{x + 1, 2 x + 1}, {x, 0, 10},
PlotStyle -> {{RGBColor[0.880722, 0.611041, 0.142051],
Dashed}, {RGBColor[0.880722, 0.611041, 0.142051], colors}},
PlotLegends -> {a, b}, ImageSize -> 400]},
{Plot[{-x + 10, -2 x + 10}, {x, 0, 10},
PlotStyle -> {{RGBColor[0.880722, 0.611041, 0.142051],
Dashed}, {RGBColor[0.880722, 0.611041, 0.142051], colors}},
PlotLegends -> {a, b}, ImageSize -> 400]}}]
I want to only have one legend, instead of two yet I can't find a clean way to do it with legend since there is a dashed line.

Also added ImagePadding to align the y axes.
Legended[
Grid[{{Plot[{x + 1, 2 x + 1}, {x, 0, 10},
PlotStyle -> {{RGBColor[0.880722, 0.611041, 0.142051],
Dashed}, {RGBColor[0.880722, 0.611041, 0.142051], colors}},
ImageSize -> 400,
ImagePadding -> {{14, Automatic}, {Automatic, Automatic}}]},
{Plot[{-x + 10, -2 x + 10}, {x, 0, 10},
PlotStyle -> {{RGBColor[0.880722, 0.611041, 0.142051],
Dashed}, {RGBColor[0.880722, 0.611041, 0.142051], colors}},
ImageSize -> 400,
ImagePadding -> {{14, Automatic}, {Automatic, Automatic}}]}}],
Placed[LineLegend[{{RGBColor[0.880722, 0.611041, 0.142051],
Dashed}, RGBColor[0.880722, 0.611041, 0.142051]}, {a, b}], Below]]

Related

How can I label axes using RegionPlot3D in Mathematica?

I would like to have a means to plot a solid in R^3 using RegionPlot3D and view it from a specified point on one of the axes so that the remaining axes appear in a specified manner. For example, suppose I wish to view the plane x+y+z=1 from the point (0,0,5) in such a way that the positive x-axis points to the right and the positive y-axis points up. The problem I have is with the labelling of axes.
What I've tried:
RegionPlot3D[0 <= z && z <= 1 - x - y && 0 <= y <= 1 - x , {x, 0, 1}, {y, 0, 1}, {z, 0, 1},
Mesh -> All, PlotPoints -> 100, AxesLabel -> Automatic, LabelStyle -> Directive[Black, 12],
ViewPoint -> {0, 0, 5}, ViewAngle -> 0 Degree, PlotStyle -> Green]
The resulting green "triangle" looks like it should when viewed from the positive z-axis, but none of the axes are labeled.
RegionPlot3D[0 <= z && z <= 1 - x - y && 0 <= y <= 1 - x,
{x, 0, 1}, {y, 0, 1}, {z, 0, 1},
ViewPoint -> {0, 0, 5}, PlotStyle -> Green,
AxesEdge -> {{-1, 1}, {-1, 1}, None},
AxesLabel -> Automatic]

How to input function so it can be graphed correctly

Currently I am trying to graph the sin(x) function and a function named myPolys which is the taylor polynomial of sin(x) as it is equal to
myPolys =
Table[Table[(-1)^((j - 1)/2) x^j/Factorial[j], {j, 1, h, 2}], {h, 1,
19, 2}];
How can I use manipulate to graph both functions so that each part of myPolys is graphed
My graphing code so far:
Manipulate[Plot[{Sin[x], myPolys[[n]]}, {x, -10, 10},
PlotRange -> {-5, 5}], {n, 1, Length[myPolys], 1}];
currently for each iteration of n, myPolys is graphed as separate
x and then x & -(x^3)/3! and then x & -(x^3)/3! & x^5/5! (all are plotted separate o the same graph )
The graph I'm trying to achieve is that for n=1 sin(x) should be plotted and x from myPoly should be plotted, for n=2 it continues and graphs x-(x^3/3!) (instead of plotting, for n=2, x and -x^3/3! seperately) and so on and so forth until n reaches 10.
My graph at the moment:
The graph I'm hoping for:
myPolys = Table[Sum[(-1)^((j - 1)/2) x^j/Factorial[j],
{j, 1, h, 2}], {h, 1, 19, 2}];
Manipulate[Plot[{Sin[x], Evaluate#Take[myPolys, n]},
{x, -10, 10}, PlotRange -> {-5, 5}], {n, 1, Length[myPolys], 1}]
Or, in more functional style.
Clear[myPolys]
myPolys[n_] := Table[Sum[(-1)^((j - 1)/2) x^j/Factorial[j],
{j, 1, h, 2}], {h, 1, 2 n - 1, 2}]
Manipulate[Plot[{Sin[x], Evaluate#myPolys[n]},
{x, -10, 10}, PlotRange -> {-5, 5}], {n, 1, 10, 1}]
And with legend.
myLabels[n_] := Table[Sum[(-1)^((j - 1)/2) x^j/ToString[j] <> "!",
{j, 1, h, 2}], {h, 1, 2 n - 1, 2}]
Manipulate[Plot[{Sin[x], Evaluate#myPolys[n]},
{x, -10, 10}, PlotRange -> {-5, 5},
PlotLegends -> Placed[PointLegend[
Rest#Array[ColorData[97], n + 1], HoldForm /# myLabels[n],
LegendMarkers -> {"\[Tilde]", 30}], Left]], {n, 1, 10, 1}]
I suppose you know there is the built in Series you can use..
Manipulate[m = n;
Show[{
Plot[Sin[x], {x, -10, 10}, PlotRange -> {-5, 5},
PlotStyle -> {Thick, Red}],
Plot[Evaluate[
Accumulate[List ## Normal#Series[Sin[x], {x, 0, m}]]], {x, -10, 10}]}],
{{n, 3}, 3, 25, 2}]

Properties multi plot3d in Wolfram

I want to plot multi surfaces in Wolfram by different properties. For example, one with mesh and the other without. Which command I should use for not meshing the second surface?
Plot3D[{u*x, 0}, {u, 0.2, 2}, {x, 0.2, 2}, AxesLabel -> {u, x}, Mesh -> 30, PlotStyle -> {Blue, GrayLevel[0.98]}, PerformanceGoal -> "Quality", ClippingStyle -> None]
This
Show[Plot3D[x^2/5 + y^2/5, {x, -5, 5}, {y, -5, 5}, Mesh -> 4],
Plot3D[x/10 + y/5 +3, {x, -5, 5}, {y, -5, 5}, Mesh -> None],
PlotRange -> {0, 10}]

How to set the step of plotting by one of axes in Wolfram Mathematica

I have a data such as list of points x,y,z. I added interpolation by splines as
f = Interpolation[{#[[1 ;; 2]], #[[3]]} & /# data, Method -> "Spline"]
And after all I try to plot
`Show[Plot3D[f[x, y], {x, 10000, 10000000}, {y, 10, 50}, Mesh -> 15,
MeshFunctions -> {#3 &}, PlotRange -> {0, 0.0011},
PlotRangePadding -> {0.001, 0.0003}, PlotStyle -> Opacity[0.7],
ColorFunction -> "Rainbow",
AxesStyle -> {Black, Black, Black}],
Graphics3D[{Red, PointSize[.016], Point[data]}]]`
Can't post image.
I use such data as
data = {{10000, 10, 0.000000208191701}, {10000, 20, 0.000000416383402}, {10000, 30, 0.00000066886188}, {10000, 40,0.000000832854501}, {10000, 50, 0.000001040870809}, {100000, 10,0.000002081829313}, {100000, 20, 0.000004163483234}, {100000, 30,0.000006245400245}, {100000, 40, 0.000008327229558}, {100000, 50,0.000010409058871}, {1000000, 10, 0.000020818731618}, {1000000,20, 0.000041636761666}, {1000000, 30,
0.000062455405588}, {1000000, 40, 0.00008327361103}, {1000000, 50,
0.000104092254952},{10000000, 10, 0.000208475750285}, {10000000,
20, 0.000416951237469}, {10000000, 30,
0.000625426900044}, {10000000, 40, 0.000833902387228}, {10000000,
50, 0.001042377962108}}
And I have the question, how can I pull the graph in the Z axis by setting of other step of plotting?
I have changed the aspect ratio from the default, and added z-axis tick values.
You could simply use Ticks -> {Automatic, Automatic, {0, 0.0002, 0.0004, 0.0006, 0.0008, 0.001}} but I added some formatting. FindDivisions is useful for less straightforward cases.
Show[Plot3D[f[x, y], {x, 10000, 10000000}, {y, 10, 50}, Mesh -> 15,
MeshFunctions -> {#3 &}, PlotRange -> {0, 0.0011},
PlotRangePadding -> {0.001, 0.0003}, PlotStyle -> Opacity[0.7],
ColorFunction -> "Rainbow", AxesStyle -> {Black, Black, Black},
Ticks -> {Automatic, Automatic,
{#, NumberForm[#, {3, 4}]} & /# N#FindDivisions[{0, 0.001}, 5]},
AspectRatio -> 1, ImageSize -> 300],
Graphics3D[{Red, PointSize[.016], Point[data]}]]
Edit
Adding sub-ticks:-
Show[Plot3D[f[x, y], {x, 10000, 10000000}, {y, 10, 50}, Mesh -> 15,
MeshFunctions -> {#3 &}, PlotRange -> {0, 0.0011},
PlotRangePadding -> {0.001, 0.0003}, PlotStyle -> Opacity[0.7],
ColorFunction -> "Rainbow", AxesStyle -> {Black, Black, Black},
Ticks -> {Automatic, Automatic,
DeleteCases[
Flatten[{{#1, NumberForm[#1, {3, 4}]}, {#2, ""}, {#3, ""}, {#4, ""}} & ###
Partition[N#FindDivisions[{0, 0.001}, 20], 4, 4, {1, 1}, Null], 1],
{Null, _}]},
AspectRatio -> 1, ImageSize -> 300],
Graphics3D[{Red, PointSize[.016], Point[data]}]]
Adding Box Ratios
Show[Plot3D[f[x, y], {x, 10000, 10000000}, {y, 10, 50}, Mesh -> 15,
MeshFunctions -> {#3 &}, PlotRange -> {0, 0.0011},
PlotRangePadding -> {0.001, 0.0003}, PlotStyle -> Opacity[0.7],
ColorFunction -> "Rainbow", AxesStyle -> {Black, Black, Black},
Ticks -> {Automatic, Automatic,
DeleteCases[
Flatten[{{#1, NumberForm[#1, {3, 4}]}, {#2, ""}, {#3, ""}, {#4, ""}} & ###
Partition[N#FindDivisions[{0, 0.001}, 20], 4, 4, {1, 1}, Null], 1],
{Null, _}]}, AspectRatio -> 1, ImageSize -> 1200],
Graphics3D[{Red, PointSize[.016], Point[data]}],
BoxRatios -> {1, 1, 3},
BaseStyle -> FontSize -> 36]

Upgrade from Mathematica 5 to Mathematica 7

I am trying to upgrade some equations that currently are written against Mathematica 5 to get them to work in Mathematica 7.
F = Graphics[
ContourPlot[
x^2 + (2)*y^2 + (-1)*((1)/(3))*x, {x, -1, 1}, {y, -1, 1},
ContourShading -> False, ContourStyle -> {RGBColor[1, 0, 1]},
Contours -> 20, PlotPoints -> 100]];
G = ParametricPlot[{Cos[u], Sin[u]}, {u, 0, 2*Pi},
PlotStyle -> {RGBColor[0, 174/255, 239/255]}];
H = DeleteCases[F, {x_, y_} /; (x^2 + y^2 > 1), 5];
Show[{H, G}, AspectRatio -> Automatic, Frame -> False, Axes -> True,
AxesOrigin -> {0, 0}, AxesLabel -> {x, y}, Ticks -> None]
It should look like this:
, but id does look like this:
and it gives the following error:
Thread::tdlen: Objects of unequal length in
{{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}}+{{},<<21>>,{}}
cannot be combined. >>
and if you hover over the image you get the following in a tooltip:
The specified setting for the option GraphicsBoxOptions, PlotRange cannot be used.
Coordinate index X is out of range for the enclosing GraphicsComplex
there are a lot of those Coordinate ones all with different coordinates.
And the second one I'm having difficulty with is:
P1 = {{(5)/10*Cos[u]*Cos[v], (5)/10*Sin[u]*Cos[v], (5)/10*Sin[v]}, {u,
0, 2*Pi}, {v, -Pi/2, Pi/2}};
P2 = {{(5)/10*Cos[u], 0, (5)/10*Sin[u]}, {u, 0, 2*Pi}};
P3 = {{(5)/10*Cos[u], (5)/10*Sin[u], 0}, {u, 0, 2*Pi}};
P4 = {{0, (5)/10*Cos[u], (5)/10*Sin[u]}, {u, 0, 2*Pi}};
U = {P1, P2, P3, P4};
XL = {{-1, 1}, {-1, 1}, {-1, 1}};
XV = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
XS = {"x", "y", "z"};
f[a_, b_, c_] := {a, 1.1*b[[2]]*c};
g[a_, b_] := {(b*# &) /# a};
T = Text ### MapThread[f, {XS, XL, XV}];
A = Line ### MapThread[g, {XL, XV}];
F = (ParametricPlot3D[Evaluate[Evaluate ## #]][[1]] &) /# U;
OPT = {Boxed -> False, Axes -> False, BoxRatios -> {1, 1, 1}, PlotRange -> XL,
ViewPoint -> {2.4, 1.3, 2},
DisplayFunction ->
Identity};
L = {LightSources -> {{{0.1, 0, 1}, RGBColor[0.68, 0.88, 0.96]}}};
gr1 = (Show[Graphics3D[#], OPT, L] &) /# {{EdgeForm[], F}, {Dashing[{0.03, 0.03}],
GrayLevel[0.7], A}, {T}};
gr2 = DeleteCases[Graphics[Show[Graphics3D[{A, EdgeForm[], F}], OPT,
RenderAll -> False]], {__, _Polygon}, 3];
Show[{gr1, gr2}, AspectRatio -> Automatic]
This one should look like: , but does look like:
which and it gives these errors:
ParametricPlot3D::write: Tag Plus in x^2+y^2 is Protected. >>
Graphics3D::optx : Unknown option RenderAll
Graphics3D::optx : Unknown option LightSources
If I then remove the Unknown options, those errors disappear but it still looks wrong:
Also, if you hover over the last image in mathematica you get the following message repeated several times in a tooltip
Times is not a Graphics3D primitive or directive
Second one, great circles partly hidden, axes partly dashed:
r = 1.01/2; d = 1/(100 r);
v1 = Riffle[
Table[r { Cos[\[Phi]], Sin[\[Phi]], -d}, {\[Phi], 0, 2 \[Pi], (
2 \[Pi])/40.}],
Table[r { Cos[\[Phi]], Sin[\[Phi]], d}, {\[Phi], 0, 2 \[Pi], (
2 \[Pi])/40.}]];
v2 = Riffle[
Table[-r { Cos[\[Phi]], -d, Sin[\[Phi]]}, {\[Phi], 0, 2 \[Pi], (
2 \[Pi])/40.}],
Table[-r { Cos[\[Phi]], d, Sin[\[Phi]]}, {\[Phi], 0, 2 \[Pi], (
2 \[Pi])/40.}]];
v3 = Riffle[
Table[r { -d, Cos[\[Phi]], Sin[\[Phi]]}, {\[Phi], 0, 2 \[Pi], (
2 \[Pi])/40.}],
Table[r { d, Cos[\[Phi]], Sin[\[Phi]]}, {\[Phi], 0, 2 \[Pi], (
2 \[Pi])/40.}]];
lx = {{{1, 0, 0}, {2, 0, 0}}}/2;
ly = {{{0, 1, 0}, {0, 2, 0}}}/2;
lz = {{{0, 0, 1}, {0, 0, 2}}}/2;
A2 = Line ### {lx, ly, lz, -lx, -ly, -lz};
Graphics3D[
{
FaceForm[None, Black], EdgeForm[],
GraphicsComplex[#,
Table[Polygon[Mod[{i, i + 1, i + 3, i + 2}, Length[v], 1]], {i,
1, Length[v] - 1, 2}]] & /# {v1, v2, v3}, {Opacity[0.75],
RGBColor[0.68`, 0.88`, 0.96`], Sphere[{0, 0, 0}, 1/2]},
{Dashing[{0.02, 0.02}], Black, A}, T, A2
},
Boxed -> False,
Lighting -> {{"Directional", RGBColor[0.68`, 0.88`, 0.96`],
ImageScaled#{0.1, 0, 1}}}, BoxRatios -> {1, 1, 1},
PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}},
BaseStyle -> FontSize -> 14, ViewPoint -> {2.4`, 1.3`, 2},
ViewVertical -> {0, 0, 1}
]
It is a little hard to tell from the picture what you want for the second graphic. Please try this and tell me what is right and what is lacking.
P1 = {{(5)/10*Cos[u]*Cos[v], (5)/10*Sin[u]*Cos[v], (5)/10*Sin[v]}, {u,
0, 2*Pi}, {v, -Pi/2, Pi/2}};
P2 = {{(5)/10*Cos[u], 0, (5)/10*Sin[u]}, {u, 0, 2*Pi}};
P3 = {{(5)/10*Cos[u], (5)/10*Sin[u], 0}, {u, 0, 2*Pi}};
P4 = {{0, (5)/10*Cos[u], (5)/10*Sin[u]}, {u, 0, 2*Pi}};
U = {P1, P2, P3, P4};
XL = {{-1, 1}, {-1, 1}, {-1, 1}};
XV = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
XS = {"x", "y", "z"};
f[a_, b_, c_] := {a, 1.1*b[[2]]*c};
g[a_, b_] := {(b*# &) /# a};
T = Text ### MapThread[f, {XS, XL, XV}];
A = Line ### MapThread[g, {XL, XV}];
F = ParametricPlot3D[##, Mesh -> False][[1]] & ### U;
OPT = {Boxed -> False, Axes -> False, BoxRatios -> {1, 1, 1},
PlotRange -> XL, ViewPoint -> {2.4, 1.3, 2}};
L = Lighting -> {{"Directional",
RGBColor[0.68, 0.88, 0.96], {{5, 5, 4}, {5, 5, 0}}}};
gr1 = Graphics3D[#, OPT, L] & /# {{Opacity[0.5], F},
{Dashing[{0.03, 0.03}], GrayLevel[0.7], A},
{T}};
Show[gr1]
Here is another take that may be closer to the original. You lose the v7 ability to rotate the graphic with this.
gr1 = Rasterize[Graphics3D[#, OPT, L],
Background -> None] & /# {F, {Dashing[{0.03, 0.03}],
GrayLevel[0.7], A}, T};
Show[gr1]
First one:
ContourPlot[x^2 + (2)*y^2 + (-1)*((1)/(3))*x, {x, -1, 1}, {y, -1, 1},
ContourShading -> False, ContourStyle -> {RGBColor[1, 0, 1]},
Contours -> 20, RegionFunction -> (#1^2 + #2^2 <= 1 &),
BoundaryStyle -> Blue]
[Edit]
Second one, using the given values for A and T:
Show[
ParametricPlot3D[{(5)/10*Cos[u]*Cos[v], (5)/10*Sin[u]*Cos[v], (5)/10*
Sin[v]}, {u, 0, 2*Pi}, {v, -Pi/2, Pi/2},
MeshFunctions -> {#1 &, #2 &, #3 &}, PlotStyle -> Opacity[0.75],
Mesh -> {{0}, {0}, {0}}, MeshStyle -> Black, BoundaryStyle -> Black,
Boxed -> False, Axes -> False, BoxRatios -> {1, 1, 1},
PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}},
ViewPoint -> {2.4`, 1.3`, 2},
Lighting -> {{"Directional", RGBColor[0.68`, 0.88`, 0.96`],
ImageScaled#{0.1, 0, 1}}}],
Graphics3D[{{Dashing[{0.03, 0.03}], Black, A}, {T}}]
]
I think the axes will need to be done as separate interior/exterior segments.
The great circles show through in this version; preventing that will require drawn partial curves instead of mesh lines, if that's required.

Resources