I have a list of networkX graphs gSet that are of varying sizes. I want to add isolated nodes to all of them such that they all have the same number of nodes thereby padding their adjacency matrices on the right and bottom with 0's. This is what I have tried thus far, maxNodes is the number of nodes in the largest graph from the list:
for i in range(0, len( gSet )):
numOfNodes = nx.to_numpy_array( gSet[i] ).shape[0]
for j in range(maxNodes - numOfNodes, maxNodes ):
gSet[i].add_node(j)
This doesn't seem to change all the graphs to be the same size however.
# collection of dummy graphs:
gSet = []
for _ in range(10):
size = np.random.randint(1,8)
G = nx.from_numpy_array(np.random.rand(size,size)>0.8)
gSet.append(G)
# check number of nodes in each graph:
print('before:')
for g in gSet:
print(len(g))
# find number of nodes in graph with most nodes:
max_nodes = max([len(g) for g in gSet])
# networkx numbers nodes from 0 to the number of nodes -1 (=length of the graph -1)
# so len(g) gives the smallest positive integer that can be used as a node name.
for g in gSet:
while len(g) < max_nodes:
g.add_node(len(g))
# check number of nodes in each graph:
print('after:')
for g in gSet:
print(len(g))
gSet.add_node(j)
This looks to be incorrect. You want to add the extra node to ONE of the graphs in gSet.
Related
I have an igraph network object constructed in R and generated weight information for each edge. I want to see the nodes of the most weighted edges (descending). What codes should I use to do that? Thank you!
# create an igraph project of user interaction network and check descriptives.
library(igraph)
#edge list
EL = read.csv("(file path omitted)user_interaction_structure.csv")
head(EL)
#node list: I do not have a node list
#construct an igraph oject
g <- graph_from_data_frame(EL, directed = TRUE, vertices = NULL)
#check the edge and node number of the network
gsize(g)
vcount(g)
#check nodes based on degree (descending)
deg <- igraph::degree(g)
dSorted <-sort.int(deg,decreasing=TRUE,index.return=FALSE)
dSorted
#check edges based on weight
E(g)
#the network will contain loop edges and multiple edges
#simplify multiple edges
g_simple <- graph.adjacency(get.adjacency(g),weighted=TRUE)
#check edge weight
E(g_simple)$weight
#igraph can generate a matrix
g_simple[]
Then I wanted to see who were interacting heavily with whom (the nodes of the edges with the largest weight),so I tried
e_top_weights <- order(order(E(g_simple))$weight, decreasing=TRUE)
but it did not work.
I think what you want is the igraph function strength(), which gives the sum of the weights of the edges incident to each node. Here's an example:
library(igraph)
# A small graph we can visualize
g <- make_ring(5)
# Assign each edge an increasing weight, to make things
# easy
edgeweights<- 1:ecount(g)
E(g)$weight <- edgeweights
# The strength() function sums the weights of edges incident
# to each node
strengths <- strength(g)
# We can collect the top two strengths by sorting the
# strengths vector, then asking for which elements of the
# strengths vector are equal to or greater than the second
# largest element.
toptwo <- which(strengths >= sort(strengths, decreasing = TRUE)[2])
## [1] 4 5
# Assign nodes a color blue that is more saturated when nodes
# have greater strength.
cr <- colorRamp(c(rgb(0,0,1,.1), rgb(0,0,1,1)), alpha = TRUE)
colors <- cr(strengths/max(strengths))
V(g)$color <- apply(colors, 1, function(row) rgb(row[1], row[2], row[3], row[4], maxColorValue = 255))
# Plot to confirm
plot(g, edge.width = edgeweights)
Edit
Here are two different ways to find the two nodes (the "from" node and the "to" node) which are the ends of the edge with the maximum weight:
## 1
edge_df <- as_data_frame(g, "edges")
edge_df[which(edge_df$weight == max(edge_df$weight)), c("from", "to")]
## 2
max_weight_edge <- E(g)[which(E(g)$weight == max(E(g)$weight))]
ends(g, es = max_weight_edge)
In igraph in R, if we use as_adjacency_matrix(g) on an undirected graph g, sometimes I see an entry of 2 versus just getting 0 or 1. I am used to only getting 0's or 1's but what does a 2 mean and how can I get rid of it?
as_adj() returns a matrix where any edges between two edges are counted. If you have more than one edge between two vertices, the weighted matrix will contain numbers above one. Compare these two examples:
# Single edges give weights of 1
g <- make_empty_graph(directed=F) %>% add_vertices(3) %>% add_edges(c(1,2,2,3,3,1))
plot(g)
( as_adj(g) )
# Multiple links give weights > 1
g <- g %>% add_edges(c(1,2,2,3,2,3))
( as_adj(g) )
plot(g)
I'm trying to create an arc graph showing relationships between nonprofits focusing on a subgraph centered on one of the nonprofits. There are so many nonprofits in this subgraph, I need to reduce the number of nodes in the arc graph to only focus on the strongest connections.
I've successfully filtered out edges below a weight of 50. But when I create the graph, the nodes are still remaining even though the edges have disappeared. How do I filter the unwanted nodes from the arc graph?
Here's my code, starting from the creation of the igraph object.
# Create an igraph object
NGO_igraph <- graph_from_data_frame(d = edges, vertices = nodes, directed = TRUE)
# Create a subgraph centered on a node
# Start by entering the node ID
nodes_of_interest <- c(48)
# Build the graph
selegoV <- ego(NGO_igraph, order=1, nodes = nodes_of_interest, mode = "all", mindist = 0)
selegoG <- induced_subgraph(NGO_igraph,unlist(selegoV))
# Reducing the graph based on edge weight
smaller <- delete.edges(selegoG, which(E(selegoG)$weight < 50))
# Plotting an arc graph
ggraph(smaller, layout = "linear") +
geom_edge_arc(aes(width = weight), alpha = 0.8) +
scale_edge_width(range = c(0.2, 2)) +
geom_node_text(aes(label = label)) +
labs(edge_width = "Interactions") +
theme_graph()
And here's the result I'm getting:
If you are only interested in omitting zero degree vertices or isolates (meaning vertices which have no incoming or outgoing edge) you could simply use the following line:
g <- induced.subgraph(g, degree(g) > 0)
However, this will delete all isolates. So if you are for some reason set on specificly deleting those vertices connected by edges smaller than 50 (and exempt other 'special' isolates), then you will need to clearly identify which those are:
special_vertex <- 1
v <- ends(g, which(E(g) < 50))
g <- delete.vertices(g, v[v != special_vertex])
You could also skip the delete.edges part by considering the strength of a vertex:
g <- induced.subgraph(g, strength(g) > 50)
Without any sample data I created this basic sample:
#define graph
g <- make_ring(10) %>%
set_vertex_attr("name", value = LETTERS[1:10])
g
V(g)
#delete edges going to and from vertice C
g<-delete.edges(g, E(g)[2:3])
#find the head and tails of each edge in graph
heads<-head_of(g, E(g))
tails<-tail_of(g, E(g))
#list of all used vetrices
combine<-unique(c(heads, tails))
#collect an vertices
v<-V(g)
#find vertices not in found set
toremove<-setdiff(v, combine)
#remove unwanted vertices
delete_vertices(g, toremove)
The basic process is to identify the start and end of all of the edges of interest, then compare this unique list with all of the edges and remove the ones not in the unique list.
From your code above the graph "smaller" would be used to find the vertices.
Hope this helps.
I'm would like to solve Chinese Postman problem in a graph where an eulerian cycle does not exist. So basically I'm looking for a path in a graph which visits every edge exactly once, and starts and ends at the same node. A graph will have an euler cycle if and only if every node has same number of edges entering into and going out of it. Obviously my graph doesn't .
I found out that Eulerization (making a graph Eulerian) could solve my question LINK. Can anyone suggest a script to add duplicate edges to a graph so that the resulting graph has no vertices of odd degree (and thus does have an Euler Circuit)?
Here is my example:
require(igraph)
require(graph)
require(eulerian)
require(GA)
g1 <- graph(c(1,2, 1,3, 2,4, 2,5, 1,5, 3,5, 4,7, 5,7, 5,8, 3,6, 6,8, 6,9, 9,11, 8,11, 8,10, 8,12, 7,10, 10,12, 11,12), directed = FALSE)
mat <- get.adjacency(g1)
mat <- as.matrix(mat)
rownames(mat) <- LETTERS[1:12]
colnames(mat) <- LETTERS[1:12]
g2 <- as(graphAM(adjMat=mat), "graphNEL")
hasEulerianCycle(g2)
Fun problem.
The graph you sugest in the code above, can be made to have duplicates that enable a eulerian cycle to be created. The function I provide below tries to add the minimum amount of duplicate edges, but also readily breaks the graph structure by adding new links if it has to.
You can run:
eulerian.g1 <- make.eulerian(g1)$graph
Check what the function did to your graph with:
make.eulerian(g1)$info
Bare in mind that:
This is not the only graph structure where duplicates added to the original g1 graph can form an eulerian cycle. Imagine for example my function looping the vertices of the graph backwards instead.
Your graph already has an uneven number of vertices with uneven degree, and all of the vertices that are, have neighbours with uneven degrees to pair them with. This function therefore works well four your particular example data.
The function could fail to produce a graph using only duplicates even in graphs where eulerian cycles are possible with correctly added duplicates. This is since it always goes for connecting a node with the first of its neighbours with uneven degree. If this is something that you'd absolutely like to get around, an MCMC-approach would be the way to go.
See also this excellent answer on probability calculation:
Here's my function in a full script that you can source out-of-the-box:
library(igraph)
# You asked about this graph
g1 <- graph(c(1,2, 1,3, 2,4, 2,5, 1,5, 3,5, 4,7, 5,7, 5,8, 3,6, 6,8, 6,9, 9,11, 8,11, 8,10, 8,12, 7,10, 10,12, 11,12), directed = FALSE)
# Make a CONNECTED random graph with at least n nodes
connected.erdos.renyi.game <- function(n,m){
graph <- erdos.renyi.game(n,m,"gnm",directed=FALSE)
graph <- delete_vertices(graph, (degree(graph) == 0))
}
# This is a random graph
g2 <- connected.erdos.renyi.game(n=12, m=16)
make.eulerian <- function(graph){
# Carl Hierholzer (1873) had explained how eulirian cycles exist for graphs that are
# 1) connected, and 2) contain only vertecies with even degrees. Based on this proof
# the posibility of an eulerian cycle existing in a graph can be tested by testing
# on these two conditions.
#
# This function assumes a connected graph.
# It adds edges to a graph to ensure that all nodes eventuall has an even numbered. It
# tries to maintain the structure of the graph by primarily adding duplicates of already
# existing edges, but can also add "structurally new" edges if the structure of the
# graph does not allow.
# save output
info <- c("broken" = FALSE, "Added" = 0, "Successfull" = TRUE)
# Is a number even
is.even <- function(x){ x %% 2 == 0 }
# Graphs with an even number of verticies with uneven degree will more easily converge
# as eulerian.
# Should we even out the number of unevenly degreed verticies?
search.for.even.neighbor <- !is.even(sum(!is.even(degree(graph))))
# Loop to add edges but never to change nodes that have been set to have even degree
for(i in V(graph)){
set.j <- NULL
#neighbors of i with uneven number of edges are good candidates for new edges
uneven.neighbors <- !is.even(degree(graph, neighbors(graph,i)))
if(!is.even(degree(graph,i))){
# This node needs a new connection. That edge e(i,j) needs an appropriate j:
if(sum(uneven.neighbors) == 0){
# There is no neighbor of i that has uneven degree. We will
# have to break the graph structure and connect nodes that
# were not connected before:
if(sum(!is.even(degree(graph))) > 0){
# Only break the structure if it's absolutely nessecary
# to force the graph into a structure where an euclidian
# cycle exists:
info["Broken"] <- TRUE
# Find candidates for j amongst any unevenly degreed nodes
uneven.candidates <- !is.even(degree(graph, V(graph)))
# Sugest a new edge between i and any node with uneven degree
if(sum(uneven.candidates) != 0){
set.j <- V(graph)[uneven.candidates][[1]]
}else{
# No candidate with uneven degree exists!
# If all edges except the last have even degrees, thith
# function will fail to make the graph eulerian:
info["Successfull"] <- FALSE
}
}
}else{
# A "structurally duplicated" edge may be formed between i one of
# the nodes of uneven degree that is already connected to it.
# Sugest a new edge between i and its first neighbor with uneven degree
set.j <- neighbors(graph, i)[uneven.neighbors][[1]]
}
}else if(search.for.even.neighbor == TRUE & is.null(set.j)){
# This only happens once (probably) in the beginning of the loop of
# treating graphs that have an uneven number of verticies with uneven
# degree. It creates a duplicate between a node and one of its evenly
# degreed neighbors (if possible)
info["Added"] <- info["Added"] + 1
set.j <- neighbors(graph, i)[ !uneven.neighbors ][[1]]
# Never do this again if a j is correctly set
if(!is.null(set.j)){search.for.even.neighbor <- FALSE}
}
# Add that a new edge to alter degrees in the desired direction
# OBS: as.numeric() since set.j might be NULL
if(!is.null(set.j)){
# i may not link to j
if(i != set.j){
graph <- add_edges(graph, edges=c(i, set.j))
info["Added"] <- info["Added"] + 1
}
}
}
# return the graph
(list("graph" = graph, "info" = info))
}
# Look at what we did
eulerian <- make.eulerian(g1)
eulerian$info
g <- eulerian$graph
par(mfrow=c(1,2))
plot(g1)
plot(g)
I am analyzing an undirected graph in R. I'm trying to (eventually) write a function to get the ratio of the size (number of vertices) of the largest connected component to the size of the largest biconnected component - of any random graph. I was able to extract the size of the largest connected component, but am having trouble with the size of the largest biconnected component. I started off using the igraph function biconnected_components on graph g:
bicomponent_list <- biconnected_components(g)
bicomponent_list$components # lists all of the components, including size and vertex names
length(bicomponent_list$components[[1]]) # returns number of vertices of first bicomponent
Then my half-baked idea was to somehow order this list in decreasing number of vertices, so that I can always call length(bicomponent_list$components[[1]]) and it will be the largest biconnected component. But I don't know how to sort this correctly. Perhaps I have to convert it to a vector? But I also don't know how to specify that I want the number of vertices in the vector. Does anyone know, or have a better way to do it? Thanks so much!
library(igraph)
# generating sample graph
g1 <- barabasi.game(100, 1, 5)
V(g1)$name <- as.character(1:100)
g2 <- erdos.renyi.game(50, graph.density(g1), directed = TRUE)
V(g2)$name <- as.character(101:200)
g3 <- graph.union(g1, g2, byname = TRUE)
# analyzing the bicomponents
bicomponent_list <- biconnected_components(g3)
bi_list <- as.list(bicomponent_list$components)
bi_list <- lapply(bi_list, length) # lists the sizes of all of the components that I want to reorder
My desired outcome would be ordering bi_list such that length(bicomponent_list$components[[1]]) returns the bicomponent with the most vertices.
The components property is a list containing vertex lists. You can iterate over them and find the length of them like so
sapply(bicomponent_list$components, length)
and if you just wanted the largest, wrap that in a max()
max(sapply(bicomponent_list$components, length))