I'm still struggling with some aspects of a Shiny app I'm working on. The intention is that the user uploads a csv file of data, which is then processed to generate a report (from a .Rmd template), which the user can then download as an editable Word .doc.
The .Rmd works fine if I render it in a normal R session. However, if done from my Shiny app, I get the following error:
Warning: Error in unique: object 'report.data' not found
[No stack trace available]
report.data should be the dataframe produced by reading the input .csv file. Confusingly, the app does sometimes work (I think this occurs if report.data is already available in the global environment.).
I've tried defining the params in the header of the .Rmd file (see the commented out lines below.) - if I do this then the code runs without an error, but the resulting word document is blank, except for the title.
Can anyone see where I'm going wrong? Thank you, as ever, for your time in reading this and replying.
And apologies, I feel like I'm making a lot of threads asking for help with what seem to be quite basic things in Shiny, but I do search for similar questions and never find things that are quite right! But once I have these basic things in place I should be able to make progress by myself.
Code to generate a .csv file of example input for report.data:
library(dplyr)
set.seed(1234)
product1.parameter1.location1 <- data.frame(
result = rnorm(25, mean = 2.5, sd = 0.2),
product = c("Red Aeroplanes"),
parameter = c("Parameter 1"),
sample.no = c(1:25),
location = c("Factory 1")
)
product1.parameter1.location2 <- data.frame(
result = rnorm(25, mean = 2.6, sd = 0.1),
product = c("Red Aeroplanes"),
parameter = c("Parameter 1"),
sample.no = c(1:25),
location = c("Factory 2")
)
product1 <- rbind(product1.parameter1.location1, product1.parameter1.location2)
product2.parameter1.location1 <- data.frame(
result = rnorm(25, mean = 10, sd = 2),
product = c("Blue Trollies"),
parameter = c("Parameter 1"),
sample.no = c(1:25),
location = c("Factory 1")
)
product2.parameter1.location2 <- data.frame(
result = rnorm(25, mean = 9.5, sd = 0.75),
product = c("Blue Trollies"),
parameter = c("Parameter 1"),
sample.no = c(1:25),
location = c("Factory 2"))
product2.parameter1 <- rbind(product2.parameter1.location1, product2.parameter1.location2)
product2.parameter2.location1 <- data.frame(
result = rnorm(25, mean = 30, sd = 1.8),
product = c("Blue Trollies"),
parameter = c("Parameter 2"),
sample.no = c(1:25),
location = c("Factory 1")
)
product2.parameter2.location2 <- data.frame(
result = rnorm(25, mean = 25, sd = 0.75),
product = c("Blue Trollies"),
parameter = c("Parameter 2"),
sample.no = c(1:25),
location = c("Factory 2"))
product2.parameter2 <- rbind(product2.parameter2.location1, product2.parameter2.location2)
product2 <- rbind(product2.parameter1, product2.parameter2)
product3.parameter1.location1 <- data.frame(
result = rnorm(35, mean = 2, sd = 0.2),
product = c("Brown Carriages"),
parameter = c("Parameter 1"),
sample.no = c(1:35),
location = c("Factory 1")
)
product3.parameter1.location2 <- data.frame(
result = rnorm(35, mean = 1.9, sd = 0.15),
product = c("Brown Carriages"),
parameter = c("Parameter 1"),
sample.no = c(1:35),
location = c("Factory 2"))
product3.parameter1 <- rbind(product3.parameter1.location1, product3.parameter1.location2)
product3.parameter2.location1 <- data.frame(
result = rnorm(35, mean = 4, sd = 0.4),
product = c("Brown Carriages"),
parameter = c("Parameter 2"),
sample.no = c(1:35),
location = c("Factory 1")
)
product3.parameter2.location2 <- data.frame(
result = rnorm(35, mean = 3.8, sd = 0.5),
product = c("Brown Carriages"),
parameter = c("Parameter 2"),
sample.no = c(1:35),
location = c("Factory 2"))
product3.parameter2 <- rbind(product3.parameter2.location1, product3.parameter2.location2)
product3.parameter3.location1 <- data.frame(
result = rnorm(35, mean = 10, sd = 1.8),
product = c("Brown Carriages"),
parameter = c("Parameter 3"),
sample.no = c(1:35),
location = c("Factory 1")
)
product3.parameter3.location2 <- data.frame(
result = rnorm(35, mean = 10, sd = 2),
product = c("Brown Carriages"),
parameter = c("Parameter 3"),
sample.no = c(1:35),
location = c("Factory 2"))
product3.parameter3 <- rbind(product3.parameter3.location1, product3.parameter3.location2)
product3 <- rbind(product3.parameter1, product3.parameter2, product3.parameter3)
write.csv(product1, "product1.csv", row.names = FALSE)
write.csv(product2, "product2.csv", row.names = FALSE)
write.csv(product3, "product3.csv", row.names = FALSE)
report.data <- rbind(product1, product2, product3) %>% mutate(identifier = paste(product, parameter, sep = " "))
write.csv(report.data, "all.data.csv", row.names = FALSE)
The app.R code:
#
# This is a Shiny web application. You can run the application by clicking
# the 'Run App' button above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("R Shiny app"),
# Sidebar with file input
sidebarLayout(
sidebarPanel(
fileInput(
inputId = "file1",
label = "Select file(s)",
multiple = TRUE,
accept = NULL,
width = NULL,
buttonLabel = "Browse...",
placeholder = "No file(s) selected"
),
downloadButton("report", "Generate report")
),
# Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot")
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
output$report <- downloadHandler(
reactive(file <- input$file1),
# For PDF output, change this to "report.pdf"
filename = "report.doc",
content = function(file) {
# Copy the report file to a temporary directory before processing it, in
# case we don't have write permissions to the current working dir (which
# can happen when deployed).
tempReport <- file.path(tempdir(), "wordreport.Rmd")
file.copy("wordreport.Rmd", tempReport, overwrite = TRUE)
# Knit the document, passing in the `params` list, and eval it in a
# child of the global environment (this isolates the code in the document
# from the code in this app).
params <- list(report.data = input$file1)
rmarkdown::render(tempReport, output_file = "wordreport.doc",
params = params,
envir = new.env(parent = globalenv()))
file.copy("wordreport.doc", file)
}
)
}
# Run the application
shinyApp(ui = ui, server = server)
The .Rmd file (with the lines relating to params declaration commented out):
---
title: "Comparison Report for [CATEGORY] in [MONTH/YEAR]"
output: word_document
toc: yes
#params:
#report.data: report.data
---
```{r setup, include=FALSE, comment = "", results = 'asis', echo = FALSE}
library(dplyr)
library(ggplot2)
library(purrr)
knitr::opts_chunk$set(echo = FALSE)
```
#report.data <- params$report.data
```
my_plot <- function(df) {
ggplot(df, aes(x = sample.no, y = result)) +
geom_point(aes(colour = location)) +
geom_hline(aes(yintercept = mean(result)), colour = "black", linetype = "dotted") +
geom_hline(aes(yintercept = mean(result) + 1.96 * sd(result)), colour = "red", linetype = "dashed") +
geom_hline(aes(yintercept = mean(result) - 1.96 * sd(result)), colour = "red", linetype = "dashed") +
theme_classic() +
theme(legend.title = element_blank()) +
labs(
title = paste0("Comparison for ", unique(df$identifier)),
x = "Sample number",
y = "Result") +
#caption = paste0("Caption here.")) +
expand_limits(y = 0) +
coord_cartesian(xlim = c(0, max(df$sample.no) + 2)) +
theme(
plot.caption=element_text(size=12, hjust = 0, margin = margin(t=20)),
plot.margin = margin(b=50)
)
}
```
```{r, comment = "", results = 'asis', echo = FALSE}
purrr::map(unique(report.data$identifier),
function(x) {
#section heading
cat("#", (x), "\n")
cat("\n\n")
# filter data before passing it to the plot function
report.data %>%
dplyr::filter(identifier == x) %>%
my_plot() %>% print()
cat("\n\n")
no.outofbounds <- report.data %>%
dplyr::filter(identifier == x) %>%
mutate(outofbounds = ifelse(result > mean(result)+1.96*sd(result)|result < mean(result)-1.96*sd(result), TRUE, FALSE)) %>%
dplyr::filter(outofbounds == TRUE) %>%
nrow()
ifelse(no.outofbounds > 0, paste(cat(no.outofbounds), " results greater than 1.96 standard deviations away from the mean."), "All results within 1.96 standard deviations of the mean.") %>%
cat()
cat("\n\n")
CV <- report.data %>%
dplyr::filter(identifier == x) %>%
summarise(CV = sd(result)/mean(result) * 100) %>%
round(2)
cat("\n\n")
paste("The all-site/factor CV for this parameter is ", CV, "%.") %>%
cat()
cat("\n\n")
cat("APPROVED/REJECTED.")
cat("\n\n")
}
) -> results
```
There are several issues with your code. I'll go over them one by one
Invalid parameter in downloadHandler()
You are passing an object of class reactive to the contentType parameter of downloadHandler().
downloadHandler(
reactive(file <- input$file1), ## <--- here
filename = "report.doc",
content = function(file) {
# ...
}
)
It seems that this messes up the whole logic of downloadHandler() and leads to "server error" messages on the client side with no errors or warnings from shiny.
This line needs to be removed in order to download files successfully
Reference the Rmd-parameter correctly
When you want to access the parameter from the Rmd report, you will need to use params$report.data. Just using report.data will lead to the following error: object 'report.data' not found.
---
output: word_document
params:
report.data: NULL
---
```{r}
report.data <- params$report.data
# ...
```
Fix the path to the generated file
You are knitting the Rmd inside the temporary directory, which is generally a good idea. However, getting the paths right is not always that easy. In your case, I used the following
rendered_report <- rmarkdown::render(
tempReport, output_file = "wordreport.doc",
params = params,
envir = new.env(parent = globalenv())
)
file.copy(rendered_report, file)
The reason your version didn't work is that the generated report is created inside the temporary directory alogside tmpReport. See the reference documentation of ?rmarkdown::render for more details.
I used the return value of rmarkdown::render() instead which holds an absolute path to the generated file. This is less error prone and especially useful if you do not know the file extension of the generated file in advance
Use read.csv to convert the uploaded file into a data.frame
Shiny doesn't automatically convert uploaded csv files into dataframes. You need to define a parsing logic to do that.
params <- list(report.data = read.csv(input$file1$datapath))
One final word
Try to get more organized with your coding projects and limit the scope of future SO questions to one issue at a time. Creating "minimal reproducible examples" might seem tedious at first, but there are several advantages in doing that
Other people can read the questions and answers and reuse them in their own projects easily without dissecting a wall of code
It is much easier to answer those questions. With questions like this, the SO community usually only provides comments because answering them properly requires a lot of effort
Minimizing and isolating problems is a skill that will help you to figure out issues in your future coding projects much more easily
Related
I'm working on cancer data from TCGA.
Im new to shiny and creating web applications (learning it!!)
I'm working on a shiny tool to plot the volcanoplot using highcharter package.
sometimes I'm successfully able to plot the volcanoplot in the UI. but sometimes it fails to plot it and throws an error saying,
"An error has occurred!
could not find function "highchartOutput"
and one warning message is given for the error;
Listening on http://127.0.0.1:5335
Warning: Error in highchartOutput: could not find function "highchartOutput"
83: dots_list
82: div
81: tabPanel
I think there is some problem with the tabset panel.
is this error has anything to do with indentation? (wherever I adjust the brackets it works magically. not sure how it works for sometimes.)
I am attaching the UI and server files with this post.
code is attached for one type of comparison
UI file below:
library(shiny)
# Define UI for application
shinyUI(fluidPage(
# Application title
titlePanel("miR-Gyn-Explorer"),
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
## select the count matrix
selectInput("file", label = h3("Count Matrix"),
choices = list("Stage I - Normal" = list("TCGA-BRCA" = "Data/TCGA-BRCASI_NT.rda", "TCGA-UCEC" = "Data/TCGA-UCECSI_NT.rda"))),
## select the phenodata of samples
selectInput("phenofile", label = h3("Sample Phenodata"),
choices = list("Stage I - Normal" = list("TCGA-BRCA" = "Data/TCGA-BRCA_phenoSI_NT.rda", "TCGA-UCEC" = "Data/TCGA-UCEC_phenoSI_NT.rda"))),
submitButton("Update View")
),
# Show a plot of the generated distribution
mainPanel(
tabsetPanel(
tabPanel("DEmiRNA", DT::dataTableOutput("DEmiRNA"),
"Volcano-Plot", highchartOutput("volcanoPlot", height = "500px"))
#tabPanel("miRNA-Targets", DT::dataTableOutput('miRTarget'),
#plotOutput("GO"))
)
)
)
)
)
server file:
library(shiny)
library(R.utils)
##function to find the DEmiRNA by edgeR method
library(limma)
library(edgeR)
library(DT)
library(dplyr)
library(multiMiR)
library(miRBaseConverter)
library(ggplot2)
#library(ggrepel)
library(tidyverse)
library(highcharter)
library(org.Hs.eg.db)
library(clusterProfiler)
library(purrr)
gdcDEmiRNA <- function(counts, groups, comparison, filter=TRUE) {
## method = edgeR
dge = DGEList(counts = counts, samples = groups)
group <- factor(groups$group)
design <- model.matrix(~0+group)
colnames(design) <- levels(group)
contrast.matrix <- makeContrasts(contrasts=comparison,
levels=design)
keep = filterByExpr(dge,design)
dge <- dge[keep,,keep.lib.sizes = TRUE]
dge <- calcNormFactors(dge)
dge <- estimateDisp(dge, design)
fit <- glmFit(dge, design)
lrt <- glmLRT(fit, contrast=contrast.matrix)
DEGAll <- lrt$table
DEGAll$FDR <- p.adjust(DEGAll$PValue, method = 'fdr')
o <- order(DEGAll$FDR)
DEGAll <- DEGAll[o,]
return (DEGAll)
}
# Define server logic required to perform the DEmiRNA analysis
server <- function(input, output) {
d <- reactive({
#DEmiRNA calculation
file <- load(input$file)
phenofile <- load(input$phenofile)
if(file == "SI_NT"){
if(phenofile == "phenoSI_NT"){
DEmiRNA <- gdcDEmiRNA(counts = SI_NT, groups = phenoSI_NT,
comparison = 'StageI-Normal')
}
}
})
output$DEmiRNA <- DT::renderDataTable({
mir <- d()
#mir <- mir[mir$FDR < input$FDR,]
})
output$volcanoPlot <- renderHighchart({
x <- d()
x$mirna <- rownames(x)
x$sig <- ifelse(x$PValue < 0.05 & abs(x$logFC) > 0.57, "DEmiRNA", "Not Regulated")
hc <- highchart() %>%
hc_add_series(x, "scatter", hcaes(logFC, -log10(PValue), group = sig, value = mirna),
color = c('rgba(67, 67, 72, 0.6)', 'rgba(124, 181, 236, 0.6)'),
enableMouseTracking = c(TRUE, TRUE),
showInLegend = TRUE, marker = list(radius = 4)) %>%
hc_tooltip(pointFormat = "{point.value}", headerFormat = "") %>%
hc_xAxis(title = list(text = "Log fold change"), gridLineWidth = 1,
tickLength = 0, startOnTick = "true", endOnTick = "true", min = -6, max = 6) %>%
hc_yAxis(title = list(text = "-Log10(p-value)")) %>%
hc_chart(zoomType = "xy", width=700) %>%
hc_exporting(enabled = TRUE, filename = "volcano")
hc
})
}
any comment and help from you guys is appreciated
Thank you in advance!
-Ankita
I'm trying to create and render an interactive formattable table in a shiny app.
Here is a sample dataframe:
tcharts <- data.frame(pgm = c(1,2,3,4,5,6,7,8),
horse = c("Cigar", "Funny Cide", "Animal Kingdom", "Blame", "Zenyatta", "New Years Day", "Northern Dancer", "Beautiful Pleasure"),
groundloss = c(55,70,85,42,90,45,53,50),
distanceRun = c(5050,5070,5085,5045,5090,5045,5053,5050),
ttl = c(50,70,85,42,90,45,53,50),
fps = c(52.3,51.8,51.9,52.0,53.6,52.9,53.7,53.1),
finishTime = c(52.3,51.8,51.9,52.0,53.6,52.9,53.7,53.1),
finish = c(4,7,1,2,5,6,3,8),
BL = c(0,1,2,6,2,9,6,8),
rnum = c(1,1,1,1,1,1,1,1),
sixteenth = c(330,330,330,330,330,330,330)
)
Working version
This version of the code, when list() is empty (use all variables in dataframe) produces a table as expected.
library(shiny)
library(formattable)
inputPanel(
selectInput("rnum", label = "Race Number:",
choices = c(1,2,3,4,5,6,7,8,9), selected = 1),
sliderInput("poc", label = "Point of Call:",
min = 330, max = 5280, value = 330, step = 330)
)
cdat <- reactive({
tcharts %>% filter(rnum %in% input$rnum) %>%
filter(Sixteenth %in% input$poc)
})
renderFormattable({
formattable(cdat(),list(
))
})
Error Version:
With this version, I get an ERROR: object pgm not found
library(shiny)
library(formattable)
inputPanel(
selectInput("rnum", label = "Race Number:",
choices = c(1,2,3,4,5,6,7,8,9), selected = 1),
sliderInput("poc", label = "Point of Call:",
min = 330, max = 5280, value = 330, step = 330)
)
cdat <- reactive({
tcharts %>% filter(rnum %in% input$rnum) %>%
filter(Sixteenth %in% input$poc)
})
renderFormattable({
formattable(cdat(),list(
pgm,
Horse
))
})
The error message leads me to believe I'm not specifying the variable correctly, but I'm not sure how to do it. I'v looked at several formattable / shiny SO questions and responses, but have not come up with the correct sytax.
So I am trying to tackle the following but I may have started down the wrong road.
As these sample sizes increase, I need to update the y-limits so the highest bar in geom_histogram() doesn't go off the top. The especially happens if the st. dev. is set near 0.
This is literally my second day working with Shiny and reactive applications so I feel I've gotten myself into a pickle.
I think I need to save the ggplot() objects and then update their ylimit reactively with the value of the largest bar from the last histogram. Just not sure if I can do that the way this thing is set up now.
(I am realizing I had a similar problem over 2 years ago)
ggplot2 Force y-axis to start at origin and float y-axis upper limit
This is different because it is the height of a histogram that needs to tell the y-axis to increase, not the largest data value. Also, because Shiny.
My server.R function looks like
library(shiny)
library(ggplot2)
library(extrafont)
# Define server logic for random distribution application
function(input, output, session) {
data <- reactive({
set.seed(123)
switch(input$dist,
norm = rnorm(input$n,
sd = input$stDev),
unif = runif(input$n,-4,4),
lnorm = rlnorm(input$n)
)
})
height="100%"
plotType <- function(blah, maxVal, stDev, n, type) {
roundUp <- function(x) 10^ceiling(log10(x)+0.001)
maxX<- roundUp(maxVal)
breakVal<-max(floor(maxX/10),1)
switch(type,
norm = ggplot(as.data.frame(blah), aes(x=blah))+
geom_histogram(binwidth = 0.2,
boundary = 0,
colour = "black") +
scale_y_continuous(limits = c(0, maxX),
breaks = seq(0, maxX, breakVal),
expand = c(0, 0)) +
scale_x_continuous(breaks = seq(-4, 4, 1),
expand = c(0, 0)) +
theme_set(theme_bw(base_size = 40) +
ylab("Frequency")+
xlab("")+
coord_cartesian(xlim=c(-4, 4))+
ggtitle(paste("n = ",n, "St Dev =", stDev," Normal Distribution ", sep = ' ')),
unif = ggplot(as.data.frame(blah), aes(x=blah))+
geom_histogram(binwidth=0.1, boundary =0,colour = "black")+
scale_y_continuous(limits = c(0,roundUp(maxVal*(3/stDev))),
breaks=seq(0,roundUp(maxVal*(3/stDev)), roundUp(maxVal*(3/stDev))/10),
expand = c(0, 0))+
scale_x_continuous(breaks=seq(-4,4,1),expand = c(0, 0))+
theme_set(theme_bw(base_size = 40))+
ylab("Frequency")+xlab("")+
coord_cartesian(xlim=c(-4,4))+
ggtitle(paste("n = ",n, " Uniform Distribution ", sep = ' ')),
lnorm = ggplot(as.data.frame(blah), aes(x=blah))+
geom_histogram(binwidth=0.2, boundary =0,colour = "black")+
scale_y_continuous(limits = c(0,maxX),
breaks=seq(0,maxX, breakVal),
expand = c(0, 0))+
scale_x_continuous(breaks=seq(0,8,1),expand = c(0, 0))+
theme_set(theme_bw(base_size = 40))+
ylab("Frequency")+xlab("")+
coord_cartesian(xlim=c(0,8))+
ggtitle(paste("n = ",n, " Log-Normal Distribution ", sep = ' '))
)
}
observe({
updateSliderInput(session, "n",
step = input$stepSize,
max=input$maxN)
})
plot.dat <- reactiveValues(main=NULL, layer1=NULL)
#plotType(data, maxVal, stDev, n, type)
output$plot <- renderPlot({
plotType(data(),
switch(input$dist,
norm = max((input$n)/7,1),
unif = max((input$n)/50,1),
lnorm =max((input$n)/8,1)
),
input$stDev,
input$n,
input$dist) })
# Generate a summary of the data
output$summary <- renderTable(
as.array(round(summary(data())[c(1,4,6)],5)),
colnames=FALSE
)
output$stDev <- renderTable(
as.array(sd(data())),
colnames=FALSE
)
# Generate an HTML table view of the data
output$table <- renderTable({
data.frame(x=data())
})
}
And my ui.R looks like
library(shiny)
library(shinythemes)
library(DT)
# Define UI for random distribution application
shinyUI(fluidPage(theme = shinytheme("slate"),
# Application title
headerPanel("Michael's Shiny App"),
# Sidebar with controls to select the random distribution type
# and number of observations to generate. Note the use of the
# br() element to introduce extra vertical spacing
sidebarLayout(
sidebarPanel(
tags$head(tags$style("#plot{height:90vh !important;}")),
radioButtons("dist", "Distribution:",
c("Standard Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm")),
br(),
numericInput("stepSize", "Step", 1, min = 1, max = NA, step = NA,
width = NULL),
numericInput("maxN", "Max Sample Size", 50, min = NA, max = NA, step = NA,
width = NULL),
br(),
sliderInput("n",
"Number of observations:",
value = 0,
min = 1,
max = 120000,
step = 5000,
animate=animationOptions(interval=1200, loop=T)),
sliderInput("stDev",
"Standard Deviation:",
value = 1,
min = 0,
max = 3,
step = 0.1,
animate=animationOptions(interval=1200, loop=T)),
p("Summary Statistics"),
tabPanel("Summary", tableOutput("summary")),
p("Sample St. Dev."),
tabPanel("Standard Dev", tableOutput("stDev")),
width =2
),
# Show a tabset that includes a plot, summary, and table view
# of the generated distribution
mainPanel(
tabsetPanel(type = "tabs",
tabPanel("Plot", plotOutput("plot")),
tabPanel("Table", tableOutput("table"))
))
)))
The whole thing has a lot of redundancy. What I want to do, is once the biggest bar on the histogram gets close to the upper y-limit, I want the ylimit to jump to the next power of 10.
Any suggestions are greatly appreciated.
Update Loosely, the solution that I ended up using is as follows: In the renderPlot() function, you need to save the ggplot object. Then as mentioned below, access the ymax value (still within renderPlot()),
ggplot_build(norm)$layout$panel_ranges[[1]]$y.range[[2]]
and then use that to update the y-axis. I used the following function to make the axis limit "nice".
roundUpNice <- function(x, nice=c(1,2,4,5,6,8,10)) {
10^floor(log10(x)) * nice[[which(x <= 10^floor(log10(x)) * nice)[[1]]]]
}
Then updating the y-axis. (still within renderplot())
ymaxX = roundUpNice(ggplot_build(norm)$layout$panel_ranges[[1]]$y.range[[2]])
norm+scale_y_continuous(limits = c(0, max(ymaxX, 20)),
expand=c(0,0))
First, store the histogram (default axes).
p1 <- ggplot(...) + geom_histogram()
Then, Use ggplot_build(p1) to access the heights of the histogram bars. For example,
set.seed(1)
df <- data.frame(x=rnorm(10000))
library(ggplot2)
p1 <- ggplot(df, aes(x=x)) + geom_histogram()
bar_max <- max(ggplot_build(p1)[['data']][[1]]$ymax) # where 1 is index 1st layer
bar_max # returns 1042
You will need a function to tell you what the next power of 10 is, for example:
nextPowerOfTen <- function(x) as.integer(floor(log10(x) + 1))
# example: nextPowerOfTen(999) # returns 3 (10^3=1000)
You will want to check whether the bar_max is within some margin (based on your preference) of the next power of 10. If an adjustment is triggered, you can simply do p1 + scale_y_continuous(limits=c(0,y_max_new)).
I found the answer hidden in the "scale_y_continuous()" portion of your code. The app was very close, but in some cases, the data maxed out the y-axis, which made it appear like it was running further than the axis limits as you said.
To fix this problem, the expand argument within the scale_y_continuous section needs to be set to "c(0.05, 0)", instead of "c(0, 0)".
First, I've replicated an example of the graph run-off you were describing by setting the sample size to 50 and standard deviation to 0.3 within your app. After running the original code with "expand=c(0, 0)", we can see we get the following graph:
This problem is fixed by changing the argument to "expand=c(0.05, 0)", as shown here:
For copies of the fixed scripts, see below.
Part 1 -- server.R
library(shiny)
library(ggplot2)
library(extrafont)
# Define server logic for random distribution application
function(input, output, session) {
data <- reactive({
set.seed(123)
switch(input$dist,
norm = rnorm(input$n,
sd = input$stDev),
unif = runif(input$n,-4,4),
lnorm = rlnorm(input$n)
)
})
height="100%"
plotType <- function(blah, maxVal, stDev, n, type){
roundUp <- function(x){10^ceiling(log10(x)+0.001)}
maxX<- roundUp(maxVal)
breakVal<-max(floor(maxX/10),1)
switch(type,
norm=ggplot(as.data.frame(blah), aes(x=blah)) +
geom_histogram(binwidth = 0.2,
boundary = 0,
colour = "black") +
scale_y_continuous(limits = c(0, maxX),
breaks = seq(0, maxX, breakVal),
expand = c(0.05, 0)) +
scale_x_continuous(breaks = seq(-4, 4, 1),
expand = c(0, 0)) +
theme_set(theme_bw(base_size = 40)) +
ylab("Frequency") +
xlab("") +
coord_cartesian(xlim=c(-4, 4))+
ggtitle(paste("n = ",n, "St Dev =", stDev,
" Normal Distribution ", sep = ' ')),
unif=ggplot(as.data.frame(blah), aes(x=blah)) +
geom_histogram(binwidth=0.1, boundary=0, colour="black")+
scale_y_continuous(
limits = c(0,roundUp(maxVal*(3/stDev))),
breaks=seq(0,roundUp(maxVal*(3/stDev)),
roundUp(maxVal*(3/stDev))/10),
expand = c(0.05, 0))+
scale_x_continuous(breaks=seq(-4,4,1),expand=c(0, 0)) +
theme_set(theme_bw(base_size = 40))+
ylab("Frequency")+xlab("")+
coord_cartesian(xlim=c(-4,4))+
ggtitle(paste("n = ",n,
" Uniform Distribution ", sep = ' ')),
lnorm=ggplot(as.data.frame(blah), aes(x=blah))+
geom_histogram(binwidth=0.2,boundary=0, colour="black") +
scale_y_continuous(limits=c(o,maxX),
breaks=seq(0,maxX, breakVal),
expand = c(0.05, 0)) +
scale_x_continuous(breaks=seq(0,8,1),
expand = c(0, 0)) +
theme_set(theme_bw(base_size = 40)) +
ylab("Frequency") +
xlab("") +
coord_cartesian(xlim=c(0,8)) +
ggtitle(paste("n = ",n,
" Log-Normal Distribution ",
sep = ' '))
)
}
observe({
updateSliderInput(session, "n",
step = input$stepSize,
max=input$maxN)
})
plot.dat <- reactiveValues(main=NULL, layer1=NULL)
#plotType(data, maxVal, stDev, n, type)
output$plot <- renderPlot({
plotType(data(),
switch(input$dist,
norm = max((input$n)/7,1),
unif = max((input$n)/50,1),
lnorm =max((input$n)/8,1)
),
input$stDev,
input$n,
input$dist) })
# Generate a summary of the data
output$summary <- renderTable(
as.array(round(summary(data())[c(1,4,6)],5)),
colnames=FALSE
)
output$stDev <- renderTable(
as.array(sd(data())),
colnames=FALSE
)
# Generate an HTML table view of the data
output$table <- renderTable({
data.frame(x=data())
})
}
Part 2 -- ui.R
library(shiny)
library(shinythemes)
library(DT)
# Define UI for random distribution application
shinyUI(fluidPage(theme = shinytheme("slate"),
# Application title
headerPanel("Michael's Shiny App"),
# Sidebar with controls to select the random distribution type
# and number of observations to generate. Note the use of the
# br() element to introduce extra vertical spacing
sidebarLayout(
sidebarPanel(
tags$head(tags$style("#plot{height:90vh !important;}")),
radioButtons("dist", "Distribution:",
c("Standard Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm")),
br(),
numericInput("stepSize", "Step", 1,
min = 1, max = NA, step = NA, width = NULL),
numericInput("maxN", "Max Sample Size", 50,
min = NA, max = NA, step = NA,width = NULL),
br(),
sliderInput("n", "Number of observations:", value = 0,
min = 1, max = 120000, step = 5000,
animate=animationOptions(interval=1200, loop=T)),
sliderInput("stDev","Standard Deviation:",value = 1,
min = 0,max = 3,step = 0.1,
animate=animationOptions(interval=1200, loop=T)),
p("Summary Statistics"),
tabPanel("Summary", tableOutput("summary")),
p("Sample St. Dev."),
tabPanel("Standard Dev", tableOutput("stDev")),
width =2),
# Show a tabset that includes a plot, summary, and table view
# of the generated distribution
mainPanel(tabsetPanel(type = "tabs",
tabPanel("Plot", plotOutput("plot")),
tabPanel("Table", tableOutput("table"))
))
)))
Update Loosely, the solution that I ended up using is as follows: In the renderPlot() function, you need to save the ggplot object. Then as mentioned below, access the ymax value (still within renderPlot()),
ggplot_build(p1)$layout$panel_ranges[[1]]$y.range[[2]]
and then use that to update the y-axis. I used the following function to make the axis limit "nice".
roundUpNice <- function(x, nice=c(1,2,4,5,6,8,10)) {
if(length(x) != 1) stop("'x' must be of length 1")
10^floor(log10(x)) * nice[[which(x <= 10^floor(log10(x)) * nice)[[1]]]]
}
Yesterday, I did my first attempt at creating a shiny app. I have come this far but some things I don't quite understand yet so here is the app:
library(shiny)
library(ggplot2)
### Ui
ui <- shinyUI(fluidPage(
titlePanel("Distributions"),
sidebarLayout(
sidebarPanel(
selectInput("dist", "Distribution",
c("Normal distribution" = "norm",
"t-distribution" = "t",
"Poisson distribution" = "pois"
)
),
uiOutput("ui")
),
mainPanel(
plotOutput("plot")
)
)
)
)
### Server
server <- shinyServer(function(input, output) {
output$ui <- renderUI({
switch(input$dist,
"norm" = withMathJax(wellPanel(numericInput("norm_mu", "Mean: \\(\\mu\\)", value = 0),
numericInput("norm_sd", "Standard deviation: \\(\\sigma\\)", value = 1, min = 0))),
"t" = numericInput("t_df", "Degrees of freedom:", value = 1, min = 1),
"pois" = withMathJax(numericInput("pois_lambda", "Parameter: \\(\\lambda\\)",
value = 1))
)
})
output$plot <- renderPlot({
dist_range <- switch(input$dist,
"norm" = c(-10, 10),
"t" = c(-10, 10),
"pois" = seq(0, 20, by = 1))
a <- ggplot(data.frame(x = dist_range), aes(x = x))
a <- a + switch(input$dist,
"norm" = stat_function(fun = dnorm, args = list(mean = input$norm_mu, sd = input$norm_sd)),
"t" = stat_function(fun = dt, args = list(df = input$t_df)),
"pois" = geom_bar(aes(y = dpois(x, lambda = input$pois_lambda)), stat = "identity")
)
a
})
})
shinyApp(ui = ui, server = server)
Now my questions are:
When I run the app for the first time, I get no plot in the main panel but two errors in my console:
Error in (function (x, mean = 0, sd = 1, log = FALSE) :
Non-numeric argument for mathematical function
Error in exists(name, envir = env, mode = mode) :
argument "env" is missing, with no default
I figured out, that withMathJax is causing these errors but two things puzzle me anyway.
a. When I remove withMathJax, the plot appears but I still get those errors. Why is that?
b. If I dont remove withMathJax, run the app and then chose another distribution, I get a plot, however the errors are still there. If I go back to the normal distribution again, the plot appears (along with errors). If I choose the t-distribution again, everything works perfectly without any errors. Why is that ?
Note: I guess it has something to do with what gets evaluated when and how. If so, could someone 1.) clarify that for me or at least point to some good documentation and 2.) explain how to avoid this behaviour.
Choosing the Poisson distribution results in an error:
Error in dpois(x, lambda = input$pois_lambda) : object 'input' not found
Why can't input$pois_lambda be accessed here? What is different to the stat_function(...) part used for the normal and the t-distribution, where accessing doesn't seem to be a problem?
Help is much appreciated! Thanks
I created a shiny app, in which I want to display the residual of a log-linear model using a mosaic plot. I need to use the data from a reactive expression and pass it to loglm. It seem pretty strait forward, but when I do that I get the following error : "objet 'mod' introuvable".
I've already figured which line is causing the problem, but I don't know how to fix it. Running the code below as is should work fine.
However, uncomment the line # mod <- loglm( formula = reformulate(f), data = mod ), in server and you should get the same error I get.
Any help would be greatly appreciated.
ui <- fluidPage(
titlePanel("Shiny Viz!"),
fluidRow( class= "R1",
tabsetPanel(type= "pills",
tabPanel("Log-linear model",
fluidRow(
column(3, offset=1,
selectInput("model", label= "Choose model to fit:",
choices= c("(SPT)","(SP,ST,PT)","(ST,PT)","(SP,PT)","(SP,ST)")),
selectInput("type", label= "Visualise the expected or observed values?",
choices = c("observed", "expected")),
sliderInput("n_breaks", label = "Degree Celcius per bin:",
min = .5, max = 5, value = 1, step = .5)),
column(8, plotOutput("loglinear.mosaic", height= "600px") )
))))
)
library(ggplot2)
library(data.table)
library(vcd)
library(vcdExtra)
server <- function(input, output) {
# Create data
DF <- data.table( Temp = runif(5000, 0, 30),
Presence = factor(rbinom(5000, 1, runif(20, 0.1, 0.60))),
Period = factor(as.integer(runif(5000, 1, 9))) )
# Reactive expression
loglinear <- reactive({
DF[ , Temperature.category := cut_interval(Temp, length= input$n_breaks)]
Tab <- xtabs(formula= ~ Period + Temperature.category + Presence,
data = DF)
return(Tab)
})
# mosaic plot
output$loglinear.mosaic <- renderPlot({
mod <- loglinear()
f <- switch(input$model,
"(SPT)"= c("Presence*Period*Temperature.category"),
"(SP,ST,PT)" = c("Presence*Period","Presence*Temperature.category","Period*Temperature.category"),
"(ST,PT)" = c("Presence*Temperature.category","Period*Temperature.category"),
"(SP,PT)" = c("Presence*Period","Period*Temperature.category"),
"(SP,ST)" = c("Presence*Period","Presence*Temperature.category"))
# mod <- loglm( formula = reformulate(f), data = mod )
mosaic(mod,
gp= shading_hcl,
spacing = spacing_highlighting,
type= input$type,
labeling_args= list(offset_varnames = c(right = 1, left=.5),
offset_labels = c(right = .1),
set_varnames = c(Temperature.category="Temperature", Period="Period",
Presence="Status")),
set_labels=list(Presence = c("Ab","Pr")),
margins = c(right = 5, left = 3, bottom = 1, top =3))
})
}
shinyApp(ui = ui, server = server)
I still haven't found what is causing the problem with loglm, but I've figured another way of getting the result I wanted.
I used glm to fit the model instead of loglm, then used mosaic.glm from the vcdExtra package to create the mosaic plot. The code is pretty much the same except that the data as to be a data.frame and the column 'Temperature.category', 'Period' and 'Presence' must be factor to be used with glm.
However, I am still clueless as to why loglm can't find the object 'mod', but glm can? I'd realy want to know the reason. Since my answers doesn't answer that question, I'll accept an other answer if someone has an explanation.
Here's what the code using glm:
ui <- fluidPage(
titlePanel("Shiny Viz!"),
fluidRow( class= "R1",
tabsetPanel(type= "pills",
tabPanel("Log-linear model",
fluidRow(
column(3, offset=1,
selectInput("model", label= "Choose model to fit:",
choices= c("(SPT)","(SP,ST,PT)","(ST,PT)","(SP,PT)","(SP,ST)")),
selectInput("type", label= "Visualise the expected or observed values?",
choices = c("observed", "expected")),
sliderInput("n_breaks", label = "Degree Celcius per bin:",
min = .5, max = 5, value = 1, step = .5)),
column(8, plotOutput("loglinear.mosaic", height= "800px") )
))))
)
library(ggplot2)
library(data.table)
library(vcd)
library(vcdExtra)
server <- function(input, output) {
DF <- data.table( Temp = runif(5000, 0, 30),
Presence = factor(rbinom(5000, 1, runif(20, 0.1, 0.60))),
Period = factor(as.integer(runif(5000, 1, 9)) ) )
# data to data.frame format
loglinear <- reactive({
DF[ , Temperature.category := cut_interval(Temp, length= input$n_breaks)]
# add 'Freq' column
dat <- data.frame(as.table(xtabs(formula= ~ Period + Temperature.category + Presence,
data = DF)), stringsAsFactors = T)
return(dat)
})
# mosaic plot
output$loglinear.mosaic <- renderPlot({
mod <- loglinear()
f <- switch(input$model,
"(SPT)"= c("Presence*Period*Temperature.category"),
"(SP,ST,PT)" = c("Presence*Period","Presence*Temperature.category","Period*Temperature.category"),
"(ST,PT)" = c("Presence*Temperature.category","Period*Temperature.category"),
"(SP,PT)" = c("Presence*Period","Period*Temperature.category"),
"(SP,ST)" = c("Presence*Period","Presence*Temperature.category"))
# fit model using glm
mod.glm <- glm(formula = reformulate(f, response = "Freq"), data= mod, family= poisson)
mosaic.glm(mod.glm,
formula = ~ Temperature.category + Period + Presence,
gp= shading_hcl,
spacing = spacing_highlighting,
type= input$type,
labeling_args= list(rot_labels = c(left = 0, right = 0),
offset_varnames = c(left=1.5, right = 1),
offset_labels = c(left=.5, right = .1),
set_varnames = c(Temperature.category="Temperature", Period="Period",
Presence="Status")),
set_labels=list(Presence = c("Ab","Pr")),
margins = c(right = 5, left = 4, bottom = 1, top =3))
})
}