RStudio: Statement to clear memory [duplicate] - r

I was hoping to make a global function that would clear my workspace and dump my memory. I called my function "cleaner" and want it to execute the following code:
remove(list = ls())
gc()
I tried making the function in the global environment but when I run it, the console just prints the text of the function. In my function file to be sourced:
cleaner <- function(){
remove(list = ls())
gc()
#I tried adding return(invisible()) to see if that helped but no luck
}
cleaner()
Even when I make the function in the script I want it to run (cutting out any potential errors with sourcing), the storage dump seems to work, but it still doesn't clear the workspace.

Two thoughts about this: Your code does not delete all objects, to also remove the hidden ones use
rm(list = ls(all.names = TRUE))
There is also the command gctorture() which provokes garbage collection on (nearly) every memory allocation (as the man page said). It's intended for R developers to ferret out memory protection bugs:
cleaner <- function(){
# Turn it on
gctorture(TRUE)
# Clear workspace
rm(list = ls(all.names = TRUE, envir=sys.frame(-1)),
envir = sys.frame(-1))
# Turn it off (important or it gets very slow)
gctorture(FALSE)
}
If this procedure is used within a function, there is the following problem: Since the function has its own stack frame, only the objects within this stack frame are deleted. They still exist outside. Therefore, it must be specified separately with sys.frame(-1) that only the higher-level stack frame should be considered. The variables are then only deleted within the function that calls cleaner() and in cleaner itself when the function is exited.
But this also means that the function may only be called from the top level in order to function correctly (you can use sys.frames() which lists all higher-level stack frames to build something that also avoids this problem if really necessary)

Related

R functions that execute functions

I'm trying to break out common lines of code used in a fairly large R script into encapsulated functions...however, they don't seem to be running the intended code when called. I feel like I'm missing some conceptual piece of how R works, or functional programming in general.
Examples:
Here's a piece of code I'd like to call to clear the workspace -
clearWorkSpace <- function() {
rm(list= ls(all=TRUE))
}
As noted, the code inside of the function executes as expected, however if the parent function is called, the environment is not cleared.
Again, here's a function intended to load all dependency files -
loadDependencies <- function() {
dep_files <- list.files(path="./dependencies")
for (file in dep_files) {
file_path <- paste0("./dependencies/",file)
source(file_path,local=TRUE)
}
}
If possible, it'd be great to be able to encapsulate code into easy to read functions. Thanks for your help in advance.
What you are calling workspace is more properly referred to as the global environment.
Functions execute in their own environments. This is, for example, why you don't see the variables defined inside a function in your global environment. Also how a function knows to use a variable named x defined in the function body rather than some x you might happen to have in your global environment.
Most functions don't modify the external environments, which is good! It's the functional programming paradigm. Functions that do modify environments, such as rm and source, usually take arguments so that you can be explicit about which environment is modified. If you look at ?rm you'll see an envir argument, and that argument is most of what its Details section describes. source has a local argument:
local - TRUE, FALSE or an environment, determining where the parsed expressions are evaluated. FALSE (the default) corresponds to the user's workspace (the global environment) and TRUE to the environment from which source is called.
You explicitly set local = TRUE when you call source, which explicitly tells source to only modify the local (inside the function) environment, so of course your global environment is untouched!
To make your functions work as I assume you want them to, you could modify clearWorkSpace like this:
clearWorkSpace <- function() {
rm(list= ls(all=TRUE, envir = .GlobalEnv), envir = .GlobalEnv)
}
And for loadDependencies simply delete the local = TRUE. (Or more explicitly set local = FALSE or local = .GlobalEnv) Though you could re-write it in a more R-like way:
loadDependencies = function() {
invisible(lapply(list.files(path = "./dependencies", full.names = TRUE), source))
}
For both of these (especially with the simplified dependency running above) I'd question whether you really need these wrapped up in functions. Might be better to just get in the habit of restarting R when you resume work on a project and keeping invisible(lapply(list.files(path = "./dependencies", full.names = TRUE), source)) at the top of your script...
For more reading on environments, there is The Evironments Section of Advanced R. Notably, there are several ways to specify environments that might be useful for different use cases rather than hard-coding the global environment.
In theory you need just to do something like:
rm(list= ls(all=TRUE, envir = .GlobalEnv))
I mean you set explicitly the environment ( even it is better here to use pos argument). but this will delete also the clearWorkSpace function since it is a defined in the global environment. So this will fails with a recursive call.
Personally I never use rm within a function or a local call. My understanding , rm is intended to be called from the console to clear the work space.

R: How make dump.frames() include all variables for later post-mortem debugging with debugger()

I have the following code which provokes an error and writes a dump of all frames using dump.frames() as proposed e. g. by Hadley Wickham:
a <- -1
b <- "Hello world!"
bad.function <- function(value)
{
log(value) # the log function may cause an error or warning depending on the value
}
tryCatch( {
a.local.value <- 42
bad.function(a)
bad.function(b)
},
error = function(e)
{
dump.frames(to.file = TRUE)
})
When I restart the R session and load the dump to debug the problem via
load(file = "last.dump.rda")
debugger(last.dump)
I cannot find my variables (a, b, a.local.value) nor my function "bad.function" anywhere in the frames.
This makes the dump nearly worthless to me.
What do I have to do to see all my variables and functions for a decent post-mortem analysis?
The output of debugger is:
> load(file = "last.dump.rda")
> debugger(last.dump)
Message: non-numeric argument to mathematical functionAvailable environments had calls:
1: tryCatch({
a.local.value <- 42
bad.function(a)
bad.function(b)
2: tryCatchList(expr, classes, parentenv, handlers)
3: tryCatchOne(expr, names, parentenv, handlers[[1]])
4: value[[3]](cond)
Enter an environment number, or 0 to exit
Selection:
PS: I am using R3.3.2 with RStudio for debugging.
Update Nov. 20, 2016: Note that it is not an R bug (see answer of Martin Maechler). I did not change my answer for reproducibility. The described work around still applies.
Summary
I think dump.frames(to.file = TRUE) is currently an anti pattern (or probably a bug) in R if you want to debug errors of batch jobs in a new R session.
You should better replace it with
dump.frames()
save.image(file = "last.dump.rda")
or
options(error = quote({dump.frames(); save.image(file = "last.dump.rda")}))
instead of
options(error = dump.frames)
because the global environment (.GlobalEnv = the user workspace you normally create your objects) is included then in the dump while it is missing when you save the dump directly via dump.frames(to.file = TRUE).
Impact analysis
Without the .GlobalEnv you loose important top level objects (and their current values ;-) to understand the behaviour of your code that led to an error!
Especially in case of errors in "non-interactive" R batch jobs you are lost without .GlobalEnv since you can debug only in a newly started (empty) interactive workspace where you then can only access the objects in the call stack frames.
Using the code snippet above you can examine the object values that led to the error in a new R workspace as usual via:
load(file = "last.dump.rda")
debugger(last.dump)
Background
The implementation of dump.frames creates a variable last.dump in the workspace and fills it with the environments of the call stack (sys.frames(). Each environment contains the "local variables" of the called function). Then it saves this variable into a file using save().
The frame stack (call stack) grows with each call of a function, see ?sys.frames:
.GlobalEnv is given number 0 in the list of frames. Each subsequent
function evaluation increases the frame stack by 1 and the [...] environment for evaluation of that function are returned by [...] sys.frame with the appropriate index.
Observe that the .GlobalEnv has the index number 0.
If I now start debugging the dump produced by the code in the question and select the frame 1 (not 0!) I can see a variable parentenv which points (references) the .GlobalEnv:
Browse[1]> environmentName(parentenv)
[1] "R_GlobalEnv"
Hence I believe that sys.frames does not contain the .GlobalEnv and therefore dump.frames(to.file = TRUE) neither since it only stores the sys.frames without all other objects of the .GlobalEnv.
Maybe I am wrong, but this looks like an unwanted effect or even a bug.
Discussions welcome!
References
https://cran.r-project.org/doc/manuals/R-exts.pdf
Excerpt from section 4.2 Debugging R code (page 96):
Because last.dump can be looked at later or even in another R session,
post-mortem debug- ging is possible even for batch usage of R. We do
need to arrange for the dump to be saved: this can be done either
using the command-line flag
--save to save the workspace at the end of the run, or via a setting such as
options(error = quote({dump.frames(to.file=TRUE); q()}))
Note that it is often more productive to work with the R Core team rather than just telling that R has a bug. It clearly has no bug, here, as it behaves exactly as documented.
Also there is no problem if you work interactively, as you have full access to your workspace (which may be LARGE) there, so the problem applies only to batch jobs (as you've mentioned).
What we rather have here is a missing feature and feature requests (and bug reports!) should happen on the R bug site (aka _'R bugzilla'), https://bugs.r-project.org/ ... typically however after having read the corresponding page on the R website: https://www.r-project.org/bugs.html.
Note that R bugzilla is searchable, and in the present case, you'd pretty quickly find that Andreas Kersting made a nice proposal (namely as a wish, rather than claiming a bug),
https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17116
and consequently I had added the missing feature to R, on Aug.16, already.
Yes, of course, the development version of R, aka R-devel.
See also today's thread on the R-devel mailing list,
https://stat.ethz.ch/pipermail/r-devel/2016-November/073378.html

Using rm(list=ls()) in a parallel environment in R

I am running code in R that runs a function in parallel. The code sets some parameters initially and loads libraries etc, then calls a function (called calibrate) and this runs across several workers using different input parameters on each worker in parallel and returns the result back to the centre. It works, and a number of iterations take place (sometimes more than a 100 over a couple of hours) but crashes after a while, and I suspect that it is a memory resource issue. Hence I want to include an rm type command to reduce memory usage:
At first the function looked like this:
Calibrate <- function() {
rm(list = ls())
gc()
...rest of code calling other functions
}
but this had very little effect. When looking closely and running the code line by line I realised that rm(list=ls()) will do very little inside a function.
So, I thought I would change the code to:
Calibrate <- function() {
ENV <- globalenv()
ll <- ls(envir = ENV)
lf <- lsf.str(envir = ENV)
ll <- ll[ll != lf]
rm(list = ll, envir = ENV)
....rest of code calling other functions
}
This will now get rid of all the variables but not the functions. However, I am worried that this will get rid of all the variables on all the other workers which will still be running. The code runs in parallel but the code does not necessarily run on all the workers at the same speed. So the code is effectively staggered. I only want to remove the variables for an individual worker when the calibrate function is called.
So my question, what should I be doing to clear the variables (rm) for one worker and not the whole system when running in parallel?
Help, really appreciated.

R user-defined functions in new environment

I use some user-defined small functions as helpers. These functions are all stored in a R_HOME_USER/helperdirectory. Until now, these functions were sourced at R start up. The overall method is something like `lapply(my.helper.list,source). I want now these functions to be sourced but not to appear in my environment, as they pollute it.
A first and clean approach would be to build a package with all my helper.R. For now, I do not want to follow this method. A second approach would be to name these helpers with a leading dot. This annoys me to have to run R > .helper1().
Best way would be to define these helpers in a specific and accessible environment, but I am messing with the code. My idea is to create first a new environment:
.helperEnv <- new.env(parent = baseenv())
attach(.helperEnv, name = '.helperEnv')
Fine, R > search() returns 'helperEnv' in the list. Then I run :
assign('helper1', helper1, envir = .helperEnv)
rm(helper1)
Fine, ls(.helperEnv)returns 'helper1' and this function does not appear anymore in my environment.
The issue is I can't run helper1 (object not found). I guess I am not on the right track and would appreciate some hints.
I think you should assign the pos argument in your call to attach as a negative number:
.helperEnv <- new.env()
.helperEnv$myfunc<-function(x) x^3+1
attach(.helperEnv,name="helper",pos=-1)
ls()
#character(0)
myfunc
#function(x) x^3+1

hiding personal functions in R

I have a few convenience functions in my .Rprofile, such as this handy function for returning the size of objects in memory. Sometimes I like to clean out my workspace without restarting and I do this with rm(list=ls()) which deletes all my user created objects AND my custom functions. I'd really like to not blow up my custom functions.
One way around this seems to be creating a package with my custom functions so that my functions end up in their own namespace. That's not particularly hard, but is there an easier way to ensure custom functions don't get killed by rm()?
Combine attach and sys.source to source into an environment and attach that environment. Here I have two functions in file my_fun.R:
foo <- function(x) {
mean(x)
}
bar <- function(x) {
sd(x)
}
Before I load these functions, they are obviously not found:
> foo(1:10)
Error: could not find function "foo"
> bar(1:10)
Error: could not find function "bar"
Create an environment and source the file into it:
> myEnv <- new.env()
> sys.source("my_fun.R", envir = myEnv)
Still not visible as we haven't attached anything
> foo(1:10)
Error: could not find function "foo"
> bar(1:10)
Error: could not find function "bar"
and when we do so, they are visible, and because we have attached a copy of the environment to the search path the functions survive being rm()-ed:
> attach(myEnv)
> foo(1:10)
[1] 5.5
> bar(1:10)
[1] 3.027650
> rm(list = ls())
> foo(1:10)
[1] 5.5
I still think you would be better off with your own personal package, but the above might suffice in the meantime. Just remember the copy on the search path is just that, a copy. If the functions are fairly stable and you're not editing them then the above might be useful but it is probably more hassle than it is worth if you are developing the functions and modifying them.
A second option is to just name them all .foo rather than foo as ls() will not return objects named like that unless argument all = TRUE is set:
> .foo <- function(x) mean(x)
> ls()
character(0)
> ls(all = TRUE)
[1] ".foo" ".Random.seed"
Here are two ways:
1) Have each of your function names start with a dot., e.g. .f instead of f. ls will not list such functions unless you use ls(all.names = TRUE) therefore they won't be passed to your rm command.
or,
2) Put this in your .Rprofile
attach(list(
f = function(x) x,
g = function(x) x*x
), name = "MyFunctions")
The functions will appear as a component named "MyFunctions" on your search list rather than in your workspace and they will be accessible almost the same as if they were in your workspace. search() will display your search list and ls("MyFunctions") will list the names of the functions you attached. Since they are not in your workspace the rm command you normally use won't remove them. If you do wish to remove them use detach("MyFunctions") .
Gavin's answer is wonderful, and I just upvoted it. Merely for completeness, let me toss in another one:
R> q("no")
followed by
M-x R
to create a new session---which re-reads the .Rprofile. Easy, fast, and cheap.
Other than that, private packages are the way in my book.
Another alternative: keep the functions in a separate file which is sourced within .RProfile. You can re-source the contents directly from within R at your leisure.
I find that often my R environment gets cluttered with various objects when I'm creating or debugging a function. I wanted a way to efficiently keep the environment free of these objects while retaining personal functions.
The simple function below was my solution. It does 2 things:
1) deletes all non-function objects that do not begin with a capital letter and then
2) saves the environment as an RData file
(requires the R.oo package)
cleanup=function(filename="C:/mymainR.RData"){
library(R.oo)
# create a dataframe listing all personal objects
everything=ll(envir=1)
#get the objects that are not functions
nonfunction=as.vector(everything[everything$data.class!="function",1])
#nonfunction objects that do not begin with a capital letter should be deleted
trash=nonfunction[grep('[[:lower:]]{1}',nonfunction)]
remove(list=trash,pos=1)
#save the R environment
save.image(filename)
print(paste("New, CLEAN R environment saved in",filename))
}
In order to use this function 3 rules must always be kept:
1) Keep all data external to R.
2) Use names that begin with a capital letter for non-function objects that I want to keep permanently available.
3) Obsolete functions must be removed manually with rm.
Obviously this isn't a general solution for everyone...and potentially disastrous if you don't live by rules #1 and #2. But it does have numerous advantages: a) fear of my data getting nuked by cleanup() keeps me disciplined about using R exclusively as a processor and not a database, b) my main R environment is so small I can backup as an email attachment, c) new functions are automatically saved (I don't have to manually manage a list of personal functions) and d) all modifications to preexisting functions are retained. Of course the best advantage is the most obvious one...I don't have to spend time doing ls() and reviewing objects to decide whether they should be rm'd.
Even if you don't care for the specifics of my system, the "ll" function in R.oo is very useful for this kind of thing. It can be used to implement just about any set of clean up rules that fit your personal programming style.
Patrick Mohr
A nth, quick and dirty option, would be to use lsf.str() when using rm(), to get all the functions in the current workspace. ...and let you name the functions as you wish.
pattern <- paste0('*',lsf.str(), '$', collapse = "|")
rm(list = ls()[-grep(pattern, ls())])
I agree, it may not be the best practice, but it gets the job done! (and I have to selectively clean after myself anyway...)
Similar to Gavin's answer, the following loads a file of functions but without leaving an extra environment object around:
if('my_namespace' %in% search()) detach('my_namespace'); source('my_functions.R', attach(NULL, name='my_namespace'))
This removes the old version of the namespace if it was attached (useful for development), then attaches an empty new environment called my_namespace and sources my_functions.R into it. If you don't remove the old version you will build up multiple attached environments of the same name.
Should you wish to see which functions have been loaded, look at the output for
ls('my_namespace')
To unload, use
detach('my_namespace')
These attached functions, like a package, will not be deleted by rm(list=ls()).

Resources