I am trying to create a dag for a ETL solution where we have 4 stages to the the pipeline. We have source_2_s3,staging,dim_population,fact_loads
Each of these stages have multiple glue jobs in them that can run in parallel. I am trying to run these stages as taskgroups and passing a list of jobnames as parameters so we can create the glue operators on runtime but I am only getting one gluejob for each task group? What am I doing wrong. My code is as follows:
The yaml file contains all jobs for each task group and the gluejob script location as keyvalue pair
from os import path
from airflow import DAG
from airflow.providers.amazon.aws.operators.glue import AwsGlueJobOperator
import yaml
from airflow.models import Variable
from airflow.utils.dates import days_ago
from airflow.operators.dummy import DummyOperator
from airflow.utils.task_group import TaskGroup
AwsGlueJobOperator.ui_color = "#F3D5C5"
DAG_FOLDER_PATH = path.dirname(__file__)
ENVIRONMENT = Variable.get("environment")
CONFIG_FILE_NAME = f"dwh_config_{ENVIRONMENT}.yml"
with open(path.join(DAG_FOLDER_PATH, CONFIG_FILE_NAME), 'r') as fl:
cfg = yaml.safe_load(fl)["dwh"]
aws_conn_id = cfg["aws"]["aws_conn_id"]
glue_scripts_bucket_name = cfg["glue"]["app"]["bucket_name"]
src1_tg = cfg["glue"]["app"]["src1_taskgroup"]
src2_tg = cfg["glue"]["app"]["src2_taskgroup"]
staging_tg = cfg["glue"]["app"]["staging_taskgroup"]
dim_tg = cfg["glue"]["app"]["dim_taskgroup"]
fact_tg = cfg["glue"]["app"]["fact_taskgroup"]
def glue_operator(list_of_jobs):
for jobname, script_path in list_of_jobs.items():
return AwsGlueJobOperator(
task_id=jobname,
dag=dag,
aws_conn_id='aws_default',
region_name='eu-west-2',
job_name=jobname,
script_location=path.join("s3://", glue_scripts_bucket_name,
script_path)
)
with DAG(dag_id="CLIENTUSAGE_DAILY_DWH_REFRESH", schedule_interval="#daily", start_date=days_ago(1),
tags=['Clientusage']) as dag:
batch_start_job = DummyOperator(task_id="START")
batch_close_job = DummyOperator(task_id="END")
with TaskGroup(group_id='src1_tg ') as src1_taskgroup:
list = glue_operator(src1_tg)
with TaskGroup(group_id='src2_tg') as src2_taskgroup:
list = glue_operator(src2_tg)
with TaskGroup(group_id='staging_tg') as staging_taskgroup:
list = glue_operator(staging_tg)
with TaskGroup(group_id='dim_tg') as dim_taskgroup:
list = glue_operator(dim_tg)
with TaskGroup(group_id='fact_tg') as fact_taskgroup:
list = glue_operator(fact_tg)
batch_start_job >> [src1_taskgroup,
src2_taskgroup] >> staging_taskgroup >> dim_taskgroup >> fact_taskgroup
'''
The issue was my function for generating dags. I forgot the basics of functions :D. Had to append all operators to an array before returning it.
def glue_operator(list_of_jobs):
operators = []
for jobname, script_path in list_of_jobs.items():
operators.append(AwsGlueJobOperator(
task_id=jobname,
dag=dag,
aws_conn_id='aws_default',
region_name='eu-west-2',
job_name=jobname,
script_location=path.join("s3://", glue_scripts_bucket_name,
script_path)
))
return operators
Related
Below code creates the dag (the graph is also attached) which contains 2 PythonSensors and a PythonOperator.
First Sensors creates a random integer list as data and a random boolean with 50% chance of success. It logs generated values and returns PokeReturnValue
Second sensor and Python operator both tries to get data from xcom and log them.
Graph of DAG
# region IMPORTS
import random
import logging
from datetime import datetime, timedelta
from airflow import DAG
from heliocampus.configuration.constants import Constants
from airflow.operators.empty import EmptyOperator
from airflow.operators.python import PythonOperator
from airflow.sensors.python import PythonSensor
from airflow.sensors.base import PokeReturnValue
from airflow.utils.trigger_rule import TriggerRule
from box import Box
# endregion
# region configuration
constants = Constants()
dagconfig = Box({ "Code":"Test" })
# endregion
def main() -> DAG:
# region default_args
args = dict()
args['start_date'] = datetime(2021, 1, 1)
# endregion
with DAG(dag_id=dagconfig.Code, schedule_interval="#once", default_args=args, tags=['test', 'V0.1.4']) as dag:
start = EmptyOperator(task_id="start")
# region Sensors
check_all_expired_tables = PythonSensor(
task_id="CHECK_ALL_EXPIRED_TABLES",
poke_interval=timedelta(seconds=20).total_seconds(),
timeout=timedelta(minutes=1).total_seconds(),
mode="reschedule",
python_callable=check_expired_tables,
trigger_rule=TriggerRule.ALL_SUCCESS
)
check_all_expired_tables_notification = PythonOperator(
task_id="CHECK_ALL_EXPIRED_TABLES_NOTIFICATION",
python_callable=sensor_result_nofitication,
op_kwargs={"notification_source":"CHECK_ALL_EXPIRED_TABLES"},
trigger_rule=TriggerRule.ALL_FAILED
)
verify_ods_operator = PythonSensor(
task_id="VERIFY_ODS",
poke_interval=timedelta(seconds=30).total_seconds(),
timeout=timedelta(hours=2).total_seconds(),
mode="reschedule",
python_callable=verify_ods,
op_kwargs={"notification_source":"CHECK_ALL_EXPIRED_TABLES"},
trigger_rule=TriggerRule.ALL_SUCCESS
)
# endregion
end = EmptyOperator(task_id="end")
start >> check_all_expired_tables >> verify_ods_operator >> end
check_all_expired_tables >> check_all_expired_tables_notification
return dag
# region Notifications
def sensor_result_nofitication(ti, notification_source):
actual_xcom_value = ti.xcom_pull(task_ids=[notification_source])
logging.info(f"sensor_result_nofitication : Sensor without key from {notification_source} is {actual_xcom_value}")
actual_xcom_value = ti.xcom_pull(key='return_value', task_ids=[notification_source])
logging.info(f"sensor_result_nofitication : Sensor return_value from {notification_source} is {actual_xcom_value}")
# endregion
def check_expired_tables():
randomlist = random.sample(range(10, 30), 5)
randomResult = random.randint(0, 100) > 50
logging.info(f"check_expired_tables : returning PokeReturnValue(is_done={randomResult}, xcom_value={randomlist})")
return PokeReturnValue(is_done=randomResult, xcom_value=randomlist)
def verify_ods(ti, notification_source):
actual_xcom_value = ti.xcom_pull(task_ids=[notification_source])
logging.info(f"verify_ods : Sensor without key from {notification_source} is {actual_xcom_value}")
actual_xcom_value = ti.xcom_pull(key='return_value', task_ids=[notification_source])
logging.info(f"verify_ods : Sensor return_value from {notification_source} is {actual_xcom_value}")
rnd = random.randint(0, 100)
logging.info("Random Number : {num}".format(num=rnd))
return (rnd > 20)
main()
Regardless of whether the first sensor is successfull or not the data from xcom can not be logged in the second sensor or python operator.
I don't know if the problem is on the pushing side or pulling side.
I can not see any rows inserted in airflow database (xcom table).
The problem lives in the PythonSensor which is coercing the return of the python callable to boolean without checking its type first:
return_value = self.python_callable(*self.op_args, **self.op_kwargs)
return PokeReturnValue(bool(return_value))
To get the expected behavior something like this needs to be added to the PythonSensor:
return return_value if isinstance(return_value, PokeReturnValue) else PokeReturnValue(bool(return_value)
In my actual DAG, I need to first get a list of IDs and then for each ID run a set of tasks.
I have used Dynamic Task Mapping to pass a list to a single task or operator to have it process the list, but can we do this using a TaskGroup as well?
If I can figure out how to pass a variable value at the TaskGroup level, so it uses that value in all sub tasks, then I should be able to meet my requirement.
The below should give you an idea of what I am looking for, just need help getting it working.
from airflow import DAG, XComArg
from datetime import datetime
from airflow.decorators import task
from airflow.utils.task_group import TaskGroup
from airflow.operators.python import PythonOperator
with DAG(
'dtm_tg_test',
schedule_interval = None,
start_date = datetime(2022, 1, 1)
) as dag:
def getList():
return [ "Hello", "World" ]
def printText(text):
print(text)
get_list = PythonOperator(
task_id = "get_list",
python_callable = getList,
dag = dag
)
with TaskGroup.partial(
group_id = "task_group"
).expand(
list = XComArg(get_list)
) as task_group:
print_text = PythonOperator(
task_id = "print_output",
python_callable = printText,
op_kwargs = { "text": list }
dag = dag
)
print_again = PythonOperator(
task_id = "print_output",
python_callable = printText,
op_kwargs = { "text": list }
dag = dag
)
print_text >> print_again
get_list >> task_group
You can achieve it with the following example :
list_ids = ['45', '48']
#task_group()
def parent_group(list_ids: List[str]) -> List[TaskGroup]:
return list(map(build_group_for_id, list_ids))
def build_group_for_id(current_id: str) -> TaskGroup:
with TaskGroup(group_id=f'group_for_id_{current_id}') as group:
print_text = PythonOperator(
task_id = f"print_output_{current_id}",
python_callable = printText,
op_kwargs = { "text": current_id }
dag = dag
)
print_again = PythonOperator(
task_id = f"print_output_other_{current_id}",
python_callable = printText,
op_kwargs = { "text": current_id}
dag = dag
print_text >> print_again
return group
with airflow.DAG(
"my_dag", default_args=args, schedule_interval=None,
) as dag:
DummyOperator(task_id='start_dag') >> parent_group(list_ids())
Some explanations :
I create a parent taskGroup called parent_group
This parent group takes the list of IDs
I add a loop and for each parent ID, I create a TaskGroup containing your 2 Aiflow tasks (print operators)
For the TaskGroup related to a parent ID, the TaskGroup ID is built from it in order to be unique in the DAG
For the print operators inside the TaskGroup, I generated again the task IDs by the current parent ID
I have created dynamic tasks generation dag. Tasks are generated accurately, But those tasks are not trigger in order,not work in consistently.
i have noticed it triggered on alphanumeric order.
Let's check run_modification_ tasks. i have generated 0 to 29 tasks. i have noticed it trigger on below format.
run_modification_0
run_modification_1
run_modification_10
run_modification_11
run_modification_12
run_modification_13
run_modification_14
run_modification_15
run_modification_16
run_modification_17
run_modification_18
run_modification_19
run_modification_2
run_modification_21
run_modification_23....
But i need to run it on tasks order like
run_modification_0
run_modification_1
run_modification_2
run_modification_3
run_modification_4
run_modification_5..
Please help me to run those tasks on task created order.
from datetime import date, timedelta, datetime
from airflow.utils.dates import days_ago
from airflow.models import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.bash_operator import BashOperator
from airflow.operators.postgres_operator import PostgresOperator
from airflow.hooks.postgres_hook import PostgresHook
from airflow.models import Variable
import os
args = {
'owner': 'Airflow',
'start_date': days_ago(2),
}
dag = DAG(
dag_id='tastOrder',
default_args=args,
schedule_interval=None,
tags=['task']
)
modification_processXcom = """ cd {{ ti.xcom_pull(task_ids=\'run_modification_\'+params.i, key=\'taskDateFolder\') }} """
def modificationProcess(ds,**kwargs):
today = datetime.strptime('2021-01-01', '%Y-%m-%d').date()
i = str(kwargs['i'])
newDate = today-timedelta(days=int(i))
print(str(newDate))
kwargs["ti"].xcom_push("taskDateFolder", str(newDate))
def getDays():
today = today = datetime.strptime('2021-01-01', '%Y-%m-%d').date()
yesterday = today - timedelta(days=30)
day_Diff = today-yesterday
return day_Diff,today
day_Diff, today = getDays()
for i in reversed(range(0,day_Diff.days)):
run_modification = PythonOperator(
task_id='run_modification_'+str(i),
provide_context=True,
python_callable=modificationProcess,
op_kwargs={'i': str(i)},
dag=dag,
)
modification_processXcom = BashOperator(
task_id='modification_processXcom_'+str(i),
bash_command=modification_processXcom,
params = {'i' :str(i)},
dag = dag
)
run_modification >> modification_processXcom
To get the dependency as:
run_modification_1 -> modification_processXcom_1 ->
run_modification_2 -> modification_processXcom_2 -> ... - >
run_modification_29 -> modification_processXcom_29
You can do:
from datetime import datetime
from airflow import DAG
from airflow.operators.bash import BashOperator
dag = DAG(
dag_id='my_dag',
schedule_interval=None,
start_date=datetime(2021, 8, 10),
catchup=False,
is_paused_upon_creation=False,
)
mylist1 = []
mylist2 = []
for i in range(1, 30):
mylist1.append(
BashOperator( # Replace with your requested operator
task_id=f'run_modification_{i}',
bash_command=f"""echo executing run_modification_{i}""",
dag=dag,
)
)
mylist2.append(
BashOperator( # Replace with your requested operator
task_id=f'modification_processXcom_{i}',
bash_command=f"""echo executing modification_processXcom_{i}""",
dag=dag,
)
)
if len(mylist1) > 0:
mylist1[-1] >> mylist2[-1] # This set dependency between run_modifiation to modification_processXcom
if len(mylist1) > 1:
mylist2[-2] >> mylist1[-1] # This set dependency between modification_processXcom to previous run_modifiation
This code create a list of operators and set them to run one after another as:
Tree view:
Let's say we have these tasks:
for endpoint in ENDPOINTS:
latest_only = LatestOnlyOperator(
task_id=f'{endpoint.name}_latest_only',
)
s3 = SnowflakeQOperator(
task_id=f'{endpoint.name}_to_S3',
boostr_conn_id='boostr_default',
s3_conn_id='aws_default',
partition=endpoint.partition,
endpoint=endpoint
)
short_circuit = ShortCircuitOperator(
task_id=f"short_circuit_missing_{endpoint.name}",
op_kwargs={'endpoint_to_check': endpoint, 'aws_conn_id': 'aws_default'},
python_callable=check_file_exists,
provide_context=True
)
s3 >> short_circuit
and let's say I want to add one task to run after nbc_to_s3 which is one of the '{endpoint.name}' task in the s3 task.
we're importing ENDPOINTS which contains several class, with the 'name' method:
#property
def name(self) -> str:
return 'nbc'
I've tried to add it outside of the loop like this:
nbc_to_s3 >> new_task but that doesn't work because 'nbc_to_s3' is not defined
You could apply some logic within the loop to set a new dependency for new_task like so (apologies for the quick mockup):
from airflow.decorators import dag
from airflow.operators.dummy import DummyOperator
from datetime import datetime
ENDPOINTS = ["nbc", "cbs", "bravo", "espn"]
DEFAULT_ARGS = dict(owner="airflow", start_date=datetime(2021, 6, 9))
DAG_ARGS = dict(schedule_interval=None, default_args=DEFAULT_ARGS, catchup=False)
#dag(**DAG_ARGS)
def run_task_after_loop():
for endpoint in ENDPOINTS:
s3 = DummyOperator(
task_id=f"{endpoint}_to_S3",
)
short_circuit = DummyOperator(
task_id=f"short_circuit_missing_{endpoint}",
)
s3 >> short_circuit
if endpoint == "nbc":
new_task = DummyOperator(task_id=f"new_task_{endpoint}")
s3 >> new_task
dag = run_task_after_loop()
What i am mainly aiming for is that the restore_denormalized_es_Data should only get triggered when the load_denormalized_es_data task fails. If the load_denormalized_es_data task is successful then the command should be directed to end . Here as you can see , my restore is working when archive fails and load is skipped or retrying as a result i am getting wrong answers.
Have stated the code i am using
import sys
import os
from datetime import datetime
#import files what u want to import
# Airflow level imports
from airflow.models import DAG
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator,BranchPythonOperator
from airflow.operators.bash_operator import BashOperator
from airflow.utils.trigger_rule import TriggerRule
#Imported all the functions and the code is able to call the functions with ease
# Name of the Dag
DAG_NAME = "DAG"
#Default arguments
default_args = {
"owner": "Mehul",
"start_date": datetime.today().strftime("%Y-%m-%d"),
"provide_context": True
}
# Define the dag object
dag = DAG(
DAG_NAME,
default_args=default_args,
schedule_interval=None
)
archive_denormalized_es_data = PythonOperator(
task_id = "archive_denormalized_es_data",
python_callable = archive_current_ES_data,
trigger_rule=TriggerRule.ALL_SUCCESS,
provide_context = False,
dag=dag
)
load_denormalized_es_data = PythonOperator(
task_id = "load_denormalized_es_data",
python_callable = es_load,
provide_context = False,
trigger_rule = TriggerRule.ALL_SUCCESS,
dag=dag
)
restore_denormalized_es_data = PythonOperator(
task_id = "restore_denormalized_es_data",
python_callable = restore_current_ES_data,
trigger_rule=TriggerRule.ALL_FAILED,
provide_context=False,
dag=dag
)
END = DummyOperator(
task_id="END",
trigger_rule=TriggerRule.ALL_SUCCESS,
dag=dag)
denormalized_data_creation>>archive_denormalized_es_data>>load_denormalized_es_data
load_denormalized_es_data<<archive_denormalized_es_data<<denormalized_data_creation
load_denormalized_es_data>>restore_denormalized_es_data
restore_denormalized_es_data<<load_denormalized_es_data
load_denormalized_es_data>>END
END<<load_denormalized_es_data
restore_denormalized_es_data>>END
END<<restore_denormalized_es_data
Here is the picture of the pipelines referred above
If I understand correctly, you want to skip the rest of the pipeline if A fails.
ShortCircuitOperator will allow Airflow to short circuit (skip) the rest of the pipeline.
Here is an example that does what you outlined.
from datetime import datetime
from airflow.models import DAG
from airflow.operators.dummy import DummyOperator
from airflow.operators.python import PythonOperator, ShortCircuitOperator
from airflow.utils.trigger_rule import TriggerRule
from airflow.utils.state import State
def proceed(**context):
ti = context['dag_run'].get_task_instance(a.task_id)
if ti.state == State.FAILED:
return False
else:
return True
dag = DAG(
dag_id="dag",
start_date=datetime(2021, 4, 5),
schedule_interval='#once',
)
with dag:
a = PythonOperator(
task_id='archive_denormalized_es_data',
python_callable=lambda x: 1
)
gate = ShortCircuitOperator(
task_id='gate',
python_callable=proceed,
trigger_rule=TriggerRule.ALL_DONE
)
b = PythonOperator(
task_id='load_denormalized_es_data',
python_callable=lambda: 1
)
c = DummyOperator(
task_id='restore_denormalized_es_data',
trigger_rule=TriggerRule.ALL_FAILED
)
d = DummyOperator(
task_id='END',
trigger_rule=TriggerRule.ONE_SUCCESS
)
a >> gate >> b >> c
[b, c] >> d
If archive_denormalized_es_data fails, the rest of the pipeline is skipped, meaning Airflow does not run restore_denormalized_es_data
If load_denormalized_es_data fails, restore_denormalized_es_data runs and continues to END.
If load_denormalized_es_data succeeds, restore_denormalized_es_data is skipped and continues to END.
You code is essentially missing the logic to skip when archive_denormalized_es_data fails, which the ShortCircuitOperator takes care of for you.