Optimal number of cluster in a dendrogram [duplicate] - r

I could use some advice on methods in R to determine the optimal number of clusters and later on describe the clusters with different statistical criteria. I’m new to R with basic knowledge about the statistical foundations of cluster analysis.
Methods to determine the number of clusters: In the literature one common method to do so is the so called "Elbow-criterion" which compares the Sum of Squared Differences (SSD) for different cluster solutions. Therefore the SSD is plotted against the numbers of Cluster in the analysis and an optimal number of clusters is determined by identifying the “elbow” in the plot (e.g. here: https://en.wikipedia.org/wiki/File:DataClustering_ElbowCriterion.JPG)
This method is a first approach to get a subjective impression. Therefore I’d like to implement it in R. The information on the internet on this is sparse. There is one good example here: http://www.mattpeeples.net/kmeans.html where the author also did an interesting iterative approach to see if the elbow is somehow stable after several repetitions of the clustering process (nevertheless it is for partitioning cluster methods not for hierarchical).
Other methods in Literature comprise the so called “stopping rules”. MILLIGAN & COOPER compared 30 of these stopping rules in their paper “An examination of procedures for determining the number of clusters in a data set” (available here: http://link.springer.com/article/10.1007%2FBF02294245) finding that the Stopping Rule from Calinski and Harabasz provided the best results in a Monte Carlo evaluation. Information on implementing this in R is even sparser.
So if anyone has ever implemented this or another Stopping rule (or other method) some advice would be very helpful.
Statistically describe the clusters:For describing the clusters I thought of using the mean and some sort of Variance Criterion. My data is on agricultural land-use and shows the production numbers of different crops per Municipality. My aim is to find similar patterns of land-use in my dataset.
I produced a script for a subset of objects to do a first test-run. It looks like this (explanations on the steps within the script, sources below).
#Clusteranalysis agriculture
#Load data
agriculture <-read.table ("C:\\Users\\etc...", header=T,sep=";")
attach(agriculture)
#Define Dataframe to work with
df<-data.frame(agriculture)
#Define a Subset of objects to first test the script
a<-df[1,]
b<-df[2,]
c<-df[3,]
d<-df[4,]
e<-df[5,]
f<-df[6,]
g<-df[7,]
h<-df[8,]
i<-df[9,]
j<-df[10,]
k<-df[11,]
#Bind the objects
aTOk<-rbind(a,b,c,d,e,f,g,h,i,j,k)
#Calculate euclidian distances including only the columns 4 to 24
dist.euklid<-dist(aTOk[,4:24],method="euclidean",diag=TRUE,upper=FALSE, p=2)
print(dist.euklid)
#Cluster with Ward
cluster.ward<-hclust(dist.euklid,method="ward")
#Plot the dendogramm. define Labels with labels=df$Geocode didn't work
plot(cluster.ward, hang = -0.01, cex = 0.7)
#here are missing methods to determine the optimal number of clusters
#Calculate different solutions with different number of clusters
n.cluster<-sapply(2:5, function(n.cluster)table(cutree(cluster.ward,n.cluster)))
n.cluster
#Show the objects within clusters for the three cluster solution
three.cluster<-cutree(cluster.ward,3)
sapply(unique(three.cluster), function(g)aTOk$Geocode[three.cluster==g])
#Calculate some statistics to describe the clusters
three.cluster.median<-aggregate(aTOk[,4:24],list(three.cluster),median)
three.cluster.median
three.cluster.min<-aggregate(aTOk[,4:24],list(three.cluster),min)
three.cluster.min
three.cluster.max<-aggregate(aTOk[,4:24],list(three.cluster),max)
three.cluster.max
#Summary statistics for one variable
three.cluster.summary<-aggregate(aTOk[,4],list(three.cluster),summary)
three.cluster.summary
detach(agriculture)
Sources:
http://www.r-tutor.com/gpu-computing/clustering/distance-matrix
How to apply a hierarchical or k-means cluster analysis using R?
http://statistics.berkeley.edu/classes/s133/Cluster2a.html

The elbow criterion as your links indicated is for k-means. Also the cluster mean is obviously related to k-means, and is not appropriate for linkage clustering (in particular not for single-linkage, see single-link-effect).
Your question title however mentions hierarchical clustering, and so does your code?
Note that the elbow criterion does not choose the optimal number of clusters. It chooses the optimal number of k-means clusters. If you use a different clustering method, it may need a different number of clusters.
There is no such thing as the objectively best clustering. Thus, there also is no objectively best number of clusters. There is a rule of thumb for k-means that chooses a (maybe best) tradeoff between number of clusters and minimizing the target function (because increasing the number of clusters always can improve the target function); but that is mostly to counter a deficit of k-means. It is by no means objective.
Cluster analysis in itself is not an objective task. A clustering may be mathematically good, but useless. A clustering may score much worse mathematically, but it may provide you insight to your data that cannot be measured mathematically.

This is a very late answer and probably not useful for the asker anymore - but maybe for others. Check out the package NbClust. It contains 26 indices that give you a recommended number of clusters (and you can also choose your type of clustering). You can run it in such a way that you get the results for all the indices and then you can basically go with the number of clusters recommended by most indices. And yes, I think the basic statistics are the best way to describe clusters.

You can also try the R-NN Curves method.
http://rguha.net/writing/pres/rnn.pdf

K means Clustering is highly sensitive to the scale of data e.g. for a person's age and salary, if not normalized, K means would consider salary more important variable for clustering rather than age, which you do not want. So before applying the Clustering Algorithm, it is always a good practice to normalize the scale of data, bring them to the same level and then apply the CA.

Related

Filtering Variables within Cluster Analysis in R

I am attempting to run a cluster analysis (PAM) on a financial dataset with a lot of noise.
There are well over 100 variables, many of which are highly collinear.
Running the clustering algorithm on the entire array of columns is almost nonsensical given the amount of noise and collinearity, and I do not wish to use a PCA because I will end up with components rather than ranges of existing variables for each cluster, which I plan to further analyze.
In assessing the clustering tendency (hopkin's statistic) of a defined group of say 10 variables, I can determine whether clustering is viable. My question is if there is a way to loop the hopkin's statistic across every possible group of say 10 variables, such that I can run the clustering algorithm on the group with the best hopkin's statistic, etc.
I may be way off base with this, but any advice is appreciated.
There is a package ‘clustertend’ and there is hopkin's statistics here as function
https://cran.r-project.org/web/packages/clustertend/clustertend.pdf
Use a subspace clustering approach.
These algorithms attempt to identify both clusters and the variables that distinguish this cluster at the same time.
But even these algorithms will benefit if you reduce the number of variables. First try to identify highly correlated variables (duplicates), and useless variables (noise), and remove them.
Don't rely on the Hopkins statistic. It's a simple test for uniformity, but not for multimodality. I.e., a single Gaussian will have a high "clustering tendency", but that likely will not be useful to you. So the statistic will likely not help.

Determining optimal number of clusters and with Daisy function and Gower Similarity

I am attempting to cluster the behavioral traits of 250 species into life-history strategies. The trait data consists of both numerical and nominal variables. I am relatively new to R and to cluster analysis, but I believe the best option to find the distances for these points is to use the gower similarity method within the daisy function. 1) Is that the best method?
Once I have these distances, I would like to find significant clusters. I have looked into pvclust and like its ability to give me the strength of the cluster. However, I have not been able to modify the code to accept the distance measurements previously made using daisy. I have unsuccessfully tried to follow the advice given here https://stats.stackexchange.com/questions/10347/making-a-heatmap-with-a-precomputed-distance-matrix-and-data-matrix-in-r/10349#10349 and using the code obtained here http://www.is.titech.ac.jp/~shimo/prog/pvclust/pvclust_unofficial_090824/pvclust.R
2)Can anyone help me to modify the existing code to accept my distance measurements?
3) Or, is there another better way to determine the number of significant clusters?
I thank all in advance for your help.
Some comments...
About 1)
It is a good way to deal with different types of data.
You could also create as many new rows in the dataset as possible nominal values and put 1/0 where it is needed. For example if there are 3 nominal values such as "reptile", "mammal" and "bird" you could change your initial dataset that has 2 columns (numeric, Nominal)
for a new one with 4 columns (numeric, numeric( representing reptile), numeric(representing mammal), numeric(representing bird)) an instance (23.4,"mammal") would be mapped to (23.4,0,1,0).
Using this mapping you could work with "normal" distances (be sure to standardize the data so that no column dominates the others due to it's big/small values).
About 2)
daisy returns an element of type dissimilarity, you can use it in other clustering algorithms from the cluster package (maybe you don't have to implement more stuff). For example the function pam can get the object returned by daisy directly.
About 3)
Clusters are really subjective and most cluster algorithms depend on the initial conditions so "significant clusters" is not really a term that some people would not be comfortable using. Pam could be useful in your case because clusters are centered using medoids which is good for nominal data (because it is interpretable). K-means for example has the disadvantage that the centroids are not interpretable (what does it mean 1/2 reptile 1/2 mammal?) pam builds the clusters centered to instances which is nice for interpretation purposes.
About pam:
http://en.wikipedia.org/wiki/K-medoids
http://stat.ethz.ch/R-manual/R-devel/library/cluster/html/pam.html
You can use Zahn algorithm to find the cluster. Basically it's a minimum spanning tree and a function to remove the longest edge.

Hierarchical Clustering: Determine optimal number of cluster and statistically describe Clusters

I could use some advice on methods in R to determine the optimal number of clusters and later on describe the clusters with different statistical criteria. I’m new to R with basic knowledge about the statistical foundations of cluster analysis.
Methods to determine the number of clusters: In the literature one common method to do so is the so called "Elbow-criterion" which compares the Sum of Squared Differences (SSD) for different cluster solutions. Therefore the SSD is plotted against the numbers of Cluster in the analysis and an optimal number of clusters is determined by identifying the “elbow” in the plot (e.g. here: https://en.wikipedia.org/wiki/File:DataClustering_ElbowCriterion.JPG)
This method is a first approach to get a subjective impression. Therefore I’d like to implement it in R. The information on the internet on this is sparse. There is one good example here: http://www.mattpeeples.net/kmeans.html where the author also did an interesting iterative approach to see if the elbow is somehow stable after several repetitions of the clustering process (nevertheless it is for partitioning cluster methods not for hierarchical).
Other methods in Literature comprise the so called “stopping rules”. MILLIGAN & COOPER compared 30 of these stopping rules in their paper “An examination of procedures for determining the number of clusters in a data set” (available here: http://link.springer.com/article/10.1007%2FBF02294245) finding that the Stopping Rule from Calinski and Harabasz provided the best results in a Monte Carlo evaluation. Information on implementing this in R is even sparser.
So if anyone has ever implemented this or another Stopping rule (or other method) some advice would be very helpful.
Statistically describe the clusters:For describing the clusters I thought of using the mean and some sort of Variance Criterion. My data is on agricultural land-use and shows the production numbers of different crops per Municipality. My aim is to find similar patterns of land-use in my dataset.
I produced a script for a subset of objects to do a first test-run. It looks like this (explanations on the steps within the script, sources below).
#Clusteranalysis agriculture
#Load data
agriculture <-read.table ("C:\\Users\\etc...", header=T,sep=";")
attach(agriculture)
#Define Dataframe to work with
df<-data.frame(agriculture)
#Define a Subset of objects to first test the script
a<-df[1,]
b<-df[2,]
c<-df[3,]
d<-df[4,]
e<-df[5,]
f<-df[6,]
g<-df[7,]
h<-df[8,]
i<-df[9,]
j<-df[10,]
k<-df[11,]
#Bind the objects
aTOk<-rbind(a,b,c,d,e,f,g,h,i,j,k)
#Calculate euclidian distances including only the columns 4 to 24
dist.euklid<-dist(aTOk[,4:24],method="euclidean",diag=TRUE,upper=FALSE, p=2)
print(dist.euklid)
#Cluster with Ward
cluster.ward<-hclust(dist.euklid,method="ward")
#Plot the dendogramm. define Labels with labels=df$Geocode didn't work
plot(cluster.ward, hang = -0.01, cex = 0.7)
#here are missing methods to determine the optimal number of clusters
#Calculate different solutions with different number of clusters
n.cluster<-sapply(2:5, function(n.cluster)table(cutree(cluster.ward,n.cluster)))
n.cluster
#Show the objects within clusters for the three cluster solution
three.cluster<-cutree(cluster.ward,3)
sapply(unique(three.cluster), function(g)aTOk$Geocode[three.cluster==g])
#Calculate some statistics to describe the clusters
three.cluster.median<-aggregate(aTOk[,4:24],list(three.cluster),median)
three.cluster.median
three.cluster.min<-aggregate(aTOk[,4:24],list(three.cluster),min)
three.cluster.min
three.cluster.max<-aggregate(aTOk[,4:24],list(three.cluster),max)
three.cluster.max
#Summary statistics for one variable
three.cluster.summary<-aggregate(aTOk[,4],list(three.cluster),summary)
three.cluster.summary
detach(agriculture)
Sources:
http://www.r-tutor.com/gpu-computing/clustering/distance-matrix
How to apply a hierarchical or k-means cluster analysis using R?
http://statistics.berkeley.edu/classes/s133/Cluster2a.html
The elbow criterion as your links indicated is for k-means. Also the cluster mean is obviously related to k-means, and is not appropriate for linkage clustering (in particular not for single-linkage, see single-link-effect).
Your question title however mentions hierarchical clustering, and so does your code?
Note that the elbow criterion does not choose the optimal number of clusters. It chooses the optimal number of k-means clusters. If you use a different clustering method, it may need a different number of clusters.
There is no such thing as the objectively best clustering. Thus, there also is no objectively best number of clusters. There is a rule of thumb for k-means that chooses a (maybe best) tradeoff between number of clusters and minimizing the target function (because increasing the number of clusters always can improve the target function); but that is mostly to counter a deficit of k-means. It is by no means objective.
Cluster analysis in itself is not an objective task. A clustering may be mathematically good, but useless. A clustering may score much worse mathematically, but it may provide you insight to your data that cannot be measured mathematically.
This is a very late answer and probably not useful for the asker anymore - but maybe for others. Check out the package NbClust. It contains 26 indices that give you a recommended number of clusters (and you can also choose your type of clustering). You can run it in such a way that you get the results for all the indices and then you can basically go with the number of clusters recommended by most indices. And yes, I think the basic statistics are the best way to describe clusters.
You can also try the R-NN Curves method.
http://rguha.net/writing/pres/rnn.pdf
K means Clustering is highly sensitive to the scale of data e.g. for a person's age and salary, if not normalized, K means would consider salary more important variable for clustering rather than age, which you do not want. So before applying the Clustering Algorithm, it is always a good practice to normalize the scale of data, bring them to the same level and then apply the CA.

Predict in Clustering

In R language is there a predict function in clustering like the way we have in classification?
What can we conclude from the clustering graph result that we get from R, other that comparing two clusters?
Clustering does not pay attention to prediction capabilities. It just tries to find objects that seem to be related. That is why there is no "predict" function for clustering results.
However, in many situations, learning classifiers based on the clusters offers an improved performance. For this, you essentially train a classifier to assign the object to the appropriate cluster, then classify it using a classifier trained only on examples from this cluster. When the cluster is pure, you can even skip this second step.
The reason is the following: there may be multiple types that are classified with the same label. Training a classifier on the full data set may be hard, because it will try to learn both clusters at the same time. Splitting the class into two groups, and training a separate classifier for each, can make the task significantly easier.
Many packages offer predict methods for cluster object. One of such examples is clue, with cl_predict.
The best practice when doing this is applying the same rules used to cluster training data. For example, in Kernel K-Means you should compute the kernel distance between your data point and the cluster centers. The minimum determines cluster assignment (see here for example). In Spectral Clustering you should project your data point dissimilarity into the eigenfunctions of the training data, compare the euclidean distance to K-Means centers in that space, and a minimum should determine your cluster assignment (see here for example).

What method do you use for selecting the optimum number of clusters in k-means and EM?

Many algorithms for clustering are available. A popular algorithm is the K-means where, based on a given number of clusters, the algorithm iterates to find best clusters for the objects.
What method do you use to determine the number of clusters in the data in k-means clustering?
Does any package available in R contain the V-fold cross-validation method for determining the right number of clusters?
Another well used approach is Expectation Maximization (EM) algorithm which assigns a probability distribution to each instance which indicates the probability of it belonging to each of the clusters.
Is this algorithm implemented in R?
If it is, does it have the option to automatically select the optimum number of clusters by cross validation?
Do you prefer some other clustering method instead?
For large "sparse" datasets i would seriously recommend "Affinity propagation" method.
It has superior performance compared to k means and it is deterministic in nature.
http://www.psi.toronto.edu/affinitypropagation/
It was published in journal "Science".
However the choice of optimal clustering algorithm depends on the data set under consideration. K Means is a text book method and it is very likely that some one has developed a better algorithm more suitable for your type of dataset/
This is a good tutorial by Prof. Andrew Moore (CMU, Google) on K Means and Hierarchical Clustering.
http://www.autonlab.org/tutorials/kmeans.html
Last week I coded up such an estimate-the-number-of-clusters algorithm for a K-Means clustering program. I used the method outlined in:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.9687&rep=rep1&type=pdf
My biggest implementation problem was that I had to find a suitable Cluster Validation Index (ie error metric) that would work. Now it is a matter of processing speed, but the results currently look reasonable.

Resources