Triangle distribution ifelse statement - r

I am trying to make my own function of the triangle distribution that should return the probability, similar to the one in triangle package. The problem I have is how to incorporate the if statement of lower.tail (that should compute the lower tail) and log.p (that should compute the logarithm of the density). Is there anyone who knows how to solve this?
Thanks.
The function I have:
ptriangle3 <- function(q, a, b, c, lower.tail = T, log.p = F){
if (!all(a <= c && c <= b && a < b)) stop("Villkoren måste uppfyllas: a <= c <= b and a < b!")
ifelse(q > a & q < b,
ifelse(q <= c,
((q-a)^2)/((b-a)*(c-a)),
1-((b-q)^2)/((b-a)*(b-c))),
ifelse(q <= a,
0,
1))
}

Related

Save simplify solve as decimal

With this code:
x, a, b = var('x a b')
eq1 = sin(x) == a + b
solve([eq1,a==1, b==-0.1], x,a,b)
I get a non human readable:
[[a == 1, b == (-3602879701896397/36028797018963968), x == pi + 2*pi*z7004 - arctan(32425917317067571/82211366926801441775188500821661*sqrt(27403788975600480591729500273887))], [a == 1, b == (-3602879701896397/36028797018963968), x == 2*pi*z7058 + arctan(32425917317067571/82211366926801441775188500821661*sqrt(27403788975600480591729500273887))]]
How to make it output:
[[a == 1, b == -0.1, x == pi -1.11976 + 2*pi*n], [a == 1, b == b == -0.1, x == 1.11976 + 2*pi*n]]
One can try the same solve process having exact numbers when possible:
x, a, b = var('x,a,b')
for sol in solve([sin(x) == a + b, a == 1, b == -1/10], [x, a, b]):
print(sol)
with the output:
[a == 1, b == (-1/10), x == pi + 2*pi*z20314 - arctan(9/19*sqrt(19))]
[a == 1, b == (-1/10), x == 2*pi*z20376 + arctan(9/19*sqrt(19))]
From here it is easier to get the numerical values (for the involved constants) programatically. I understand that the question is a toy example for something wilder in practice, where instead of that "beautiful" -0.1 there may be some -0.8743891743127341234 - and making it exact would lead to less useful exact answers. But we have to keep in mind that == is an equality, that should be checked / checkable in that manner in the domain used (reals or complex numbers).
Alternatively, if indeed numerical solutions are wanted in a situation similar to the one described above, i would try
x, a, b = var('x,a,b')
solve([sin(x) == a + b, a == 1.0, b == -0.1], [x, a, b], algorithm='sympy')
which delivers:
[{a: 1.00000000000000, b: -0.100000000000000, x: 1.11976951499863},
{a: 1.00000000000000, b: -0.100000000000000, x: 2.02182313859116}]
and yes, we are losing the 2 pi ZZ freedom in x. But for me, sage should be used complementing the own devices, not as a machine giving answers in a best format.

Linear optimization with R

I'm trying to maximize the function by x[1], x[2]:
(a - 1) * x[1] * c + (a - 1) * x[2] * b * d
Where a, b, c, d are known positive constants and
0 < x[1] < 1, 0 < x[2] < 1,
x[1] + x[2] = 1
Using NlcOptim, I did:
solver_1 <- function(a, b, c, d){
obj = function(x){
return((a - 1) * x[1] * c + (a - 1) * x[2] * b * d )
}
con = function(x){
f = NULL
f = rbind(f, x[1] + x[2] - 1)
return(list(ceq = f, c = NULL))
}
x0 = c(1, 0)
solnl(x0, objfun = obj, confun = con)
}
solver_1(1.2, 5.2, 0.8, 0.1)
But it gives me:
Error in if (norm(H, "I") == 0) { : missing value where TRUE/FALSE needed
Does anyone know what I'm doing wrong?
Using an optimization package is massive overkill.
Either by following up on the comment of #Roland and doing some elementary calculus, or using the corner point theorem of linear programming, your objective function is optimized when x[1] = 0 and x[2] = 1 or vice versa. Thus you only have to evaluated two constant expressions in a,b,c,d and pick the larger of the two:
max(c*(a-1), b*d*(a-1))
For any a other than 1, which is larger will be determined by whether or not c > a*b

How to approach this type of problem in permutation and combination?

Altitudes
Alice and Bob took a journey to the mountains. They have been climbing
up and down for N days and came home extremely tired.
Alice only remembers that they started their journey at an altitude of
H1 meters and they finished their wandering at an alitude of H2
meters. Bob only remembers that every day they changed their altitude
by A, B, or C meters. If their altitude on the ith day was x,
then their altitude on day i + 1 can be x + A, x + B, or x + C.
Now, Bob wonders in how many ways they could complete their journey.
Two journeys are considered different if and only if there exist a day
when the altitude that Alice and Bob covered that day during the first
journey differs from the altitude Alice and Bob covered that day during
the second journey.
Bob asks Alice to tell her the number of ways to complete the journey.
Bob needs your help to solve this problem.
Input format
The first and only line contains 6 integers N, H1, H2, A, B, C that
represents the number of days Alice and Bob have been wandering,
altitude on which they started their journey, altitude on which they
finished their journey, and three possible altitude changes,
respectively.
Output format
Print the answer modulo 10**9 + 7.
Constraints
1 <= N <= 10**5
-10**9 <= H1, H2 <= 10**9
-10**9 <= A, B, C <= 10**9
Sample Input
2 0 0 1 0 -1
Sample Output
3
Explanation
There are only 3 possible journeys-- (0, 0), (1, -1), (-1, 1).
Note
This problem comes originally from a hackerearth competition, now closed. The explanation for the sample input and output has been corrected.
Here is my solution in Python 3.
The question can be simplified from its 6 input parameters to only 4 parameters. There is no need for the beginning and ending altitudes--the difference of the two is enough. Also, we can change the daily altitude changes A, B, and C and get the same answer if we make a corresponding change to the total altitude change. For example, if we add 1 to each of A, B, and C, we could add N to the altitude change: 1 additional meter each day over N days means N additional meters total. We can "normalize" our daily altitude changes by sorting them so A is the smallest, then subtract A from each of the altitude changes and subtract N * A from the total altitude change. This means we now need to add a bunch of 0's and two other values (let's call them D and E). D is not larger than E.
We now have an easier problem: take N values, each of which is 0, D, or E, so they sum to a particular total (let's say H). This is the same at using up to N numbers equaling D or E, with the rest zeros.
We can use mathematics, in particular Bezout's identity, to see if this is possible. Some more mathematics can find all the ways of doing this. Once we know how many 0's, D's, and E's, we can use multinomial coefficients to find how many ways these values can be rearranged. Total all these up and we have the answer.
This code finds the total number of ways to complete the journey, and takes it modulo 10**9 + 7 only at the very end. This is possible since Python uses large integers. The largest result I found in my testing is for the input values 100000 0 100000 0 1 2 which results in a number with 47,710 digits before taking the modulus. This takes a little over 8 seconds on my machine.
This code is a little longer than necessary, since I made some of the routines more general than necessary for this problem. I did this so I can use them in other problems. I used many comments for clarity.
# Combinatorial routines -----------------------------------------------
def comb(n, k):
"""Compute the number of ways to choose k elements out of a pile of
n, ignoring the order of the elements. This is also called
combinations, or the binomial coefficient of n over k.
"""
if k < 0 or k > n:
return 0
result = 1
for i in range(min(k, n - k)):
result = result * (n - i) // (i + 1)
return result
def multcoeff(*args):
"""Return the multinomial coefficient
(n1 + n2 + ...)! / n1! / n2! / ..."""
if not args: # no parameters
return 1
# Find and store the index of the largest parameter so we can skip
# it (for efficiency)
skipndx = args.index(max(args))
newargs = args[:skipndx] + args[skipndx + 1:]
result = 1
num = args[skipndx] + 1 # a factor in the numerator
for n in newargs:
for den in range(1, n + 1): # a factor in the denominator
result = result * num // den
num += 1
return result
def new_multcoeff(prev_multcoeff, x, y, z, ag, bg):
"""Given a multinomial coefficient prev_multcoeff =
multcoeff(x-bg, y+ag, z+(bg-ag)), calculate multcoeff(x, y, z)).
NOTES: 1. This uses bg multiplications and bg divisions,
faster than doing multcoeff from scratch.
"""
result = prev_multcoeff
for d in range(1, ag + 1):
result *= y + d
for d in range(1, bg - ag + 1):
result *= z + d
for d in range(bg):
result //= x - d
return result
# Number theory routines -----------------------------------------------
def bezout(a, b):
"""For integers a and b, find an integral solution to
a*x + b*y = gcd(a, b).
RETURNS: (x, y, gcd)
NOTES: 1. This routine uses the convergents of the continued
fraction expansion of b / a, so it will be slightly
faster if a <= b, i.e. the parameters are sorted.
2. This routine ensures the gcd is nonnegative.
3. If a and/or b is zero, the corresponding x or y
will also be zero.
4. This routine is named after Bezout's identity, which
guarantees the existences of the solution x, y.
"""
if not a:
return (0, (b > 0) - (b < 0), abs(b)) # 2nd is sign(b)
p1, p = 0, 1 # numerators of the two previous convergents
q1, q = 1, 0 # denominators of the two previous convergents
negate_y = True # flag if negate y=q (True) or x=p (False)
quotient, remainder = divmod(b, a)
while remainder:
b, a = a, remainder
p, p1 = p * quotient + p1, p
q, q1 = q * quotient + q1, q
negate_y = not negate_y
quotient, remainder = divmod(b, a)
if a < 0:
p, q, a = -p, -q, -a # ensure the gcd is nonnegative
return (p, -q, a) if negate_y else (-p, q, a)
def byzantine_bball(a, b, s):
"""For nonnegative integers a, b, s, return information about
integer solutions x, y to a*x + b*y = s. This is
equivalent to finding a multiset containing only a and b that
sums to s. The name comes from getting a given basketball score
given scores for shots and free throws in a hypothetical game of
"byzantine basketball."
RETURNS: None if there is no solution, or an 8-tuple containing
x the smallest possible nonnegative integer value of
x.
y the value of y corresponding to the smallest
possible integral value of x. If this is negative,
there is no solution for nonnegative x, y.
g the greatest common divisor (gcd) of a, b.
u the found solution to a*u + b*v = g
v " "
ag a // g, or zero if g=0
bg b // g, or zero if g=0
sg s // g, or zero if g=0
NOTES: 1. If a and b are not both zero and one solution x, y is
returned, then all integer solutions are given by
x + t * bg, y - t * ag for any integer t.
2. This routine is slightly optimized for a <= b. In that
case, the solution returned also has the smallest sum
x + y among positive integer solutions.
"""
# Handle edge cases of zero parameter(s).
if 0 == a == b: # the only score possible from 0, 0 is 0
return (0, 0, 0, 0, 0, 0, 0, 0) if s == 0 else None
if a == 0:
sb = s // b
return (0, sb, b, 0, 1, 0, 1, sb) if s % b == 0 else None
if b == 0:
sa = s // a
return (sa, 0, a, 1, 0, 1, 0, sa) if s % a == 0 else None
# Find if the score is possible, ignoring the signs of x and y.
u, v, g = bezout(a, b)
if s % g:
return None # only multiples of the gcd are possible scores
# Find one way to get the score, ignoring the signs of x and y.
ag, bg, sg = a // g, b // g, s // g # we now have ag*u + bg*v = 1
x, y = sg * u, sg * v # we now have a*x + b*y = s
# Find the solution where x is nonnegative and as small as possible.
t = x // bg # Python rounds toward minus infinity--what we want
x, y = x - t * bg, y + t * ag
# Return the information
return (x, y, g, u, v, ag, bg, sg)
# Routines for this puzzle ---------------------------------------------
def altitude_reduced(n, h, d, e):
"""Return the number of distinct n-tuples containing only the
values 0, d, and e that sum to h. Assume that all these
numbers are integers and that 0 <= d <= e.
"""
# Handle some impossible special cases
if n < 0 or h < 0:
return 0
# Handle some other simple cases with zero values
if n == 0:
return 0 if h else 1
if 0 == d == e: # all step values are zero
return 0 if h else 1
if 0 == d or d == e: # e is the only non-zero step value
# If possible, return # of tuples with proper # of e's, the rest 0's
return 0 if h % e else comb(n, h // e)
# Handle the main case 0 < d < e
# --Try to get the solution with the fewest possible non-zero days:
# x d's and y e's and the rest zeros: all solutions are given by
# x + t * bg, y - t * ag
solutions_info = byzantine_bball(d, e, h)
if not solutions_info:
return 0 # no way at all to get h from d, e
x, y, _, _, _, ag, bg, _ = solutions_info
# --Loop over all solutions with nonnegative x, y, small enough x + y
result = 0
while y >= 0 and x + y <= n: # at most n non-zero days
# Find multcoeff(x, y, n - x - y), in a faster way
if result == 0: # 1st time through loop: no prev coeff available
amultcoeff = multcoeff(x, y, n - x - y)
else: # use previous multinomial coefficient
amultcoeff = new_multcoeff(amultcoeff, x, y, n - x - y, ag, bg)
result += amultcoeff
x, y = x + bg, y - ag # x+y increases by bg-ag >= 0
return result
def altitudes(input_str=None):
# Get the input
if input_str is None:
input_str = input('Numbers N H1 H2 A B C? ')
# input_str = '100000 0 100000 0 1 2' # replace with prev line for input
n, h1, h2, a, b, c = map(int, input_str.strip().split())
# Reduce the number of parameters by normalizing the values
h_diff = h2 - h1 # net altitude change
a, b, c = sorted((a, b, c)) # a is now the smallest
h, d, e = h_diff - n * a, b - a, c - a # reduce a to zero
# Solve the reduced problem
print(altitude_reduced(n, h, d, e) % (10**9 + 7))
if __name__ == '__main__':
altitudes()
Here are some of my test routines for the main problem. These are suitable for pytest.
# Testing, some with pytest ---------------------------------------------------
import itertools # for testing
import collections # for testing
def brute(n, h, d, e):
"""Do alt_reduced with brute force."""
return sum(1 for v in itertools.product({0, d, e}, repeat=n)
if sum(v) == h)
def brute_count(n, d, e):
"""Count achieved heights with brute force."""
if n < 0:
return collections.Counter()
return collections.Counter(
sum(v) for v in itertools.product({0, d, e}, repeat=n)
)
def test_impossible():
assert altitude_reduced(0, 6, 1, 2) == 0
assert altitude_reduced(-1, 6, 1, 2) == 0
assert altitude_reduced(3, -1, 1, 2) == 0
def test_simple():
assert altitude_reduced(1, 0, 0, 0) == 1
assert altitude_reduced(1, 1, 0, 0) == 0
assert altitude_reduced(1, -1, 0, 0) == 0
assert altitude_reduced(1, 1, 0, 1) == 1
assert altitude_reduced(1, 1, 1, 1) == 1
assert altitude_reduced(1, 2, 0, 1) == 0
assert altitude_reduced(1, 2, 1, 1) == 0
assert altitude_reduced(2, 4, 0, 3) == 0
assert altitude_reduced(2, 4, 3, 3) == 0
assert altitude_reduced(2, 4, 0, 2) == 1
assert altitude_reduced(2, 4, 2, 2) == 1
assert altitude_reduced(3, 4, 0, 2) == 3
assert altitude_reduced(3, 4, 2, 2) == 3
assert altitude_reduced(4, 4, 0, 2) == 6
assert altitude_reduced(4, 4, 2, 2) == 6
assert altitude_reduced(2, 6, 0, 2) == 0
assert altitude_reduced(2, 6, 2, 2) == 0
def test_main():
N = 12
maxcnt = 0
for n in range(-1, N):
for d in range(N): # must have 0 <= d
for e in range(d, N): # must have d <= e
counts = brute_count(n, d, e)
for h, cnt in counts.items():
if cnt == 25653:
print(n, h, d, e, cnt)
maxcnt = max(maxcnt, cnt)
assert cnt == altitude_reduced(n, h, d, e)
print(maxcnt) # got 25653 for N = 12, (n, h, d, e) = (11, 11, 1, 2) etc.

cvxpy contrained normalization equations (abs)

I am working in an optimization problem (A*v = b) where I would like to rank a set of alternatives X = {x1,x2,x3,x4}. However, I have the following normalization constraint: |v[i] - v[j]| <= 1, which can be in the form -1 <= v[i] - v[j] <= 1.
My code is as follows:
import cvxpy as cp
n = len(X) #set of alternatives
v = cp.Variable(n)
objective = cp.Minimize(cp.sum_squares(A*v - b))
constraints = [0 <= v]
#Normalization condition -1 <= v[i] - v[j] <= 1
for i in range(n):
for j in range(n):
constraints = [-1 <= v[i]-v[j], 1 >= v[i]-v[j]]
prob = cp.Problem(objective, constraints)
# The optimal objective value is returned by `prob.solve()`.
result = prob.solve()
# The optimal value for v is stored in `v.value`.
va2 = v.value
Which outputs:
[-0.15 0.45 -0.35 0.05]
Result, which is not close to what should be and even have negative values. I think, my code for the normalization contraint most probably is wrong.
You are not appending your constraints, instead you are overwriting them each time. Instead of this line
constraints = [-1 <= v[i]-v[j], 1 >= v[i]-v[j]]
You should have
constraints += [-1 <= v[i]-v[j], 1 >= v[i]-v[j]]
For cleanliness you may want to change this
for i in range(n):
for j in range(n):
To only consider each pair once:
for i in range(n):
for j in range(i+1, n):

Is angle in between two angles

I have 3 angles a b c
a=315
b=20
c=45
ok so would like to know giving all three if b is in between a and c
i have the long way of doing this adding and subtracting that's seems to work. I would just like to get something smaller and maybe more efficient.
thanks
EDIT
Here is a picture what i am trying to say.
Ok I have angle L(currently 0) i add 45(or any angle) and subtract 45(or any angle) to get a and b (my view angle).
Now i need to know if the green dot is between a and b
(g> a || g > 0) && (g < b)
so in this picture only the top green dot will be true..
Sorry if I am not making my self clear my first language is not English
I had a similar problem. I got it. All the calculations are in degrees.
I needed to calculate id a gps location is inside a rectangle.
Or, I needed to see if an angle x is between angle check+r and angle check-r.
check-r<x<check+r.
If you need a<x<b, find the angle check in the middle of a and b and then the distance (r) of check from a or b.
The method normalize, changes the angles from -infinity...infinity to -180...180.
The method check, takes the arguments
x: the angle that we need to see if it is between the angles check-r and check+r.
check: the angle to check with.
r: the radius around angle check.
private static double normalize(double x) {
x = x % 360;
if (x>=180) {
return x-360;
}
if (x<-180) {
return x+360;
}
return x;
}
public static boolean check(double x, double check, double r) {
x = x - check;
x = normalize(x);
return x<r && x>-r;
}
1st off, every angle is between 2 other angles, what you're really asking is:
For given angles: a, b, and g, is g outside the reflex angle between a and b?
You can just go ahead and define a as the leftmost angle and b as the rightmost angle or you can solve for that, for example if either of these statements are true a is your leftmost angle:
a ≤ b ∧ b - a ≤ π
a > b ∧ a - b ≥ π
For simplicity let's say that your leftmost angle is l and your rightmost angle is r and you're trying to find if g is between them.
The problem here is the seem. There are essentially 3 positive cases that we're looking for:
l ≤ g ≤ r
l ≤ g ∧ r < l
g ≤ r ∧ r < l
If you're just defining a to be leftmost and b to be rightmost you're done here and your condition will look like:
a <= g && g <= b ||
a <= g && b < a ||
g <= b && b < a
If however you calculated the l and r you'll notice there is an optimization opportunity here in doing both processes at once. Your function will look like:
if(a <= b) {
if(b - a <= PI) {
return a <= g && g <= b;
} else {
return b <= g || g <= a;
}
} else {
if(a - b <= PI) {
return b <= g && g <= a;
} else {
return a <= g || g <= b;
}
}
Or if you need it you could expand into this nightmare condition:
a <= b ?
(b - a <= PI && a <= g && g <= b) || (b - a > PI && (b <= g || g <= a)) :
(a - b <= PI && b <= g && g <= a) || (a - b > PI && (a <= g || g <= b))
Note that all this math presumes that your input is in radians and in the range [0 : 2π].
Live Example
I personally had the same problem recently and found counterexamples for all the answers posted yet, so I will share my own approach.
Let a be the start angle and b the end angle and we are checking whether c is between them clockwise, that means when you go from a to b you must pass c. The approach of checking whether c is in the range from a to b gives you false positives when b is greater than a numerically. For example:
a=80°, b=320° and c=150°: a <= c <= b which would mean that c is between a and b.
But it isn't.
The approach that's working is to subtract 360 from b if it is greater than a and also subtract 360 from c if c is greater than a. Then check whether a <= c <= b.
In Java:
public static boolean isBetween(double c, double a, double b) {
if (b > a) b -= 360;
if (c > a) c -= 360;
return a <= c && c <= b;
}
This assumes that a, b and c are in range 0 to 360.
Some example:
isBetween(150, 80, 320) => false
isBetween(30, 80, 320) => true
isBetween(340, 80, 320) => true
isBetween(140, 0, 160) => true
isBetween(180, 0, 160) => false
There is an issue with the suggested solutions when handling negative angles (e.g. from=30 to=-29)
The suggested (kotlin) fix should be:
fun isBetween(from:Float,to:Float,check:Float,inclusive:Boolean = true):Boolean{
var a1 = to - from
a1 = (a1 + 180f).mod(360f) - 180f
if(a1<0f) a1+=360f
var a2 = check - from
a2 = (a2 + 180f).mod(360f) - 180f
if(a2<0f) a2+=360f
val between = if(inclusive) a2<=a1 else a2<a1 && a2>0f
println("$from->$to, $check, $between ($a1,$a2)")
return between }
Assuming a > c, you would actually use:
( b < a ) && ( b > c )
This is the same as checking if a value is between a lower and upper bound. Them being angles makes no difference, unless you want to take into account the fact that as you go round a circle, an angle of 405 is the same as an angle of 45. In which case you can just use a % 360 to get the angle betweeen 0 and 360.

Resources