How to plot geom_point alone plus geom_point with position_dodge - r

I struggling on how I can plot my real values, present in the real_values vector, next to the estimates values. My problem here is that the estimates values have a range (via the geom_errorbar), and for the real values I would like to plot just the point, in black, on the left side of each of the 10 estimates.
Here's an example of what I tried:
est_values = rnorm(20)
real_values = rnorm(10)
dat_ex = data.frame(
xvalues = 1:10,
values = est_values,
method = c(rep("A",10),rep("B",10)),
ic_0.025 = c(est_values - rnorm(20,1,0.1)),
ic_0.975 = c(est_values + rnorm(20,1,0.1)))
ggplot(dat_ex) +
#geom_point(aes(x = 1:10, y= real_values), size = 2) +
geom_point(aes(x = xvalues, y= values, group = method, colour = method), position=position_dodge(.9), size = 3) +
geom_errorbar(aes(x = xvalues, y= values, group = method, colour = method,ymin = ic_0.025, ymax = ic_0.975), size = 1.3,position=position_dodge(.9), width = .2)

ggplot generally works best with data in data frames. So we put your real_values in a data frame and plot them in a separate layer, and "nudge" them to the left, as requested:
ggplot(dat_ex) +
geom_point(aes(x = xvalues, y= values, group = method, colour = method), position=position_dodge(.9), size = 3) +
geom_errorbar(aes(x = xvalues, y= values, group = method, colour = method,ymin = ic_0.025, ymax = ic_0.975), size = 1.3,position=position_dodge(.9), width = .2) +
geom_point(
data = data.frame(values = real_values, xvalues = dat_ex$xvalues),
aes(x = xvalues, y = values),
position = position_nudge(x = -.4),
color = "black")
A nicer method might be to put them all in the same data frame. This can simplify the code and will automatically put them in the legend.
library(dplyr)
dat_ex = data.frame(
xvalues = 1:10,
values = real_values,
method = "real"
) %>%
bind_rows(dat_ex) %>%
mutate(method = factor(method, levels = c("real", "A", "B")))
ggplot(dat_ex, aes(x = xvalues, y = values, color = method)) +
geom_point(position=position_dodge(.9), size = 3) +
geom_errorbar(aes(ymin = ic_0.025, ymax = ic_0.975, group = method),
size = 1.3, position=position_dodge(.9), width = .2) +
scale_color_manual(values = c("real" = "black", "A" = "orange", "B" = "blue"))

I would add real_values to your data as another level of method, so they will be dodged along with "A" and "B" (and included in the legend):
library(ggplot2)
dat_ex <- rbind(
dat_ex,
data.frame(
xvalues = 1:10,
values = real_values,
method = "Real",
ic_0.025 = NA_real_,
ic_0.975 = NA_real_
)
)
# arrange so "Real" is on the left
dat_ex$method <- factor(dat_ex$method, levels = c("Real", "A", "B"))
ggplot(dat_ex) +
geom_point(aes(x = xvalues, y= values, group = method, colour = method), position=position_dodge(.9), size = 3) +
geom_errorbar(aes(x = xvalues, y= values, group = method, colour = method,ymin = ic_0.025, ymax = ic_0.975), size = 1.3,position=position_dodge(.9), width = .2) +
scale_colour_manual(values = c("black", "forestgreen", "royalblue"))

Related

Change ggplot2 legend order without changing the manually specified aesthetics

I need to make a graph with multiple kinds of data on it, and I'm plotting one type of data with lines and one type with points. I've added a manually specified legend to show which type is points and which is lines (admittedly, my approach is a bit hacky), and that's working except for the legend order. Here's a dummy example:
DF1 <- data.frame(X = 1:10,
Y = c(1:10*0.5, 1:10*0.25),
Fruit = rep(c("mango", "kiwi"), each = 10))
DF2 <- data.frame(X = 1:10,
Y = c(1:10*2, 1:10*4),
Cat = rep(c("tabby", "calico"), each = 10))
Empty <- data.frame(X = mean(DF$X),
Y = as.numeric(NA),
# Q = c(0, 1))
Type = c("Cat", "Fruit"))
Mygraph <- ggplot(DF1, aes(x = X, y = Y, color = Fruit)) +
geom_point() +
geom_line(data = DF2, aes(x = X, y = Y, linetype = Cat),
inherit.aes = F) +
labs(color = NULL, linetype = NULL) +
geom_point(data = Empty, aes(x = X, y = Y, alpha = Type),
inherit.aes = F) +
geom_line(data = Empty, aes(x = X, y = Y, alpha = Type),
inherit.aes = F) +
scale_alpha_manual(
name = "Type of item", values = c(1, 1),
breaks = c("Fruit", "Cat"),
guide = guide_legend(override.aes =
list(linetype = c("blank", "solid"),
shape = c(16, NA)))) +
theme_bw()
Mygraph
This graph looks pretty good:
But check out what happens to the "Type of item" bit when I try to specify the order:
Mygraph +
guides(alpha = guide_legend(order = 1),
linetype = guide_legend(order = 2),
color = guide_legend(order = 3))
Why do my specified aesthetics go away? How can I both specify what that part of the legend should look like and also specify that the order of the three parts of the legend should be 1. alpha, 2. linetype, and then 3. color?
You were attempting to override aesthetics for alpha in two places (ie guides() and scale_alpha...()), and ggplot was choosing to just interpret one of them. I suggest including your shape override with your legend order override, like this:
library(ggplot2)
ggplot(DF1, aes(x = X, y = Y, color = Fruit)) +
geom_point() +
geom_line(data = DF2, aes(x = X, y = Y, linetype = Cat), inherit.aes = F) +
labs(color = NULL, linetype = NULL) +
geom_point(data = Empty, aes(x = X, y = Y, alpha = Type), inherit.aes = F) +
geom_line(data = Empty, aes(x = X, y = Y, alpha = Type), inherit.aes = F) +
scale_alpha_manual(name = "Type of item", values = c(1, 1), breaks = c("Fruit", "Cat")) +
guides(alpha = guide_legend(order = 1,
override.aes=list(linetype = c("blank", "solid"),
shape = c(16,NA))),
linetype = guide_legend(order = 2),
color = guide_legend(order = 3)) +
theme_bw()
data:
DF1 <- data.frame(X = 1:10,
Y = c(1:10*0.5, 1:10*0.25),
Fruit = rep(c("mango", "kiwi"), each = 10))
DF2 <- data.frame(X = 1:10,
Y = c(1:10*2, 1:10*4),
Cat = rep(c("tabby", "calico"), each = 10))
Empty <- data.frame(X = mean(DF1$X),
Y = as.numeric(NA),
Type = c("Cat", "Fruit"))

How to supress/combine the legend for two geoms in R

Im making a scatterplot which shows a value plotted against the date since symptom onset. These patients are categorised based on disease severity, and i wanted to show how the values change over time in each severity category. I have coloured the dots based on severity score, but i prefer to use shape =21 so i can have a border. I also draw a line to see the trend, and i want that coloured in the same way, however, this has added another legend and it looks complicated. This issue doesnt happen if use a different shape that isnt filled, because scale_colour_manual can be used for both the lines and the dots, but i dont think it looks as nice. Any idea how i can fix this?
IC50SymObySS <- ggplot(data = isaric) +
geom_point(mapping = aes(x = Days_since_onset, y = log2IC50, fill = Severity_score), size = 2, colour = "black", shape = 21)+
geom_smooth(mapping = aes(x = Days_since_onset, y = log2IC50, colour = Severity_score), se = FALSE)+
scale_fill_manual(breaks=c("1","2","3","4","5"),
values=c("1" = "lightblue1","2" = "lightblue3","3" = "lightblue4","4" = "lightcoral","5" = "firebrick2"),
labels=c("1","2","3","4","5"),
name = "Severity Score")+
scale_colour_manual(values=c("1" = "lightblue1","2" = "lightblue3","3" = "lightblue4","4" = "lightcoral","5" = "firebrick2"))+
theme_minimal()+
JTheme+
ylab("Serum Log2 IC50")+
xlab("Days Since Symptom Onset")+
guides(colour = guide_legend(title.position = "top", title.hjust = 0.5))
IC50SymObySS
As per this answer, you need to use identical name and labels values for both fill and colour scale.
library(ggplot2)
library(dplyr)
isaric <- transmute(iris,
Days_since_onset = (Sepal.Length - 4)^3,
log2IC50 = Sepal.Width * 3,
Severity_score = cut(Petal.Length, breaks = quantile(Petal.Length, prob = 0:5 / 5), labels = 1:5))
ggplot(data = isaric) +
geom_smooth(mapping = aes(x = Days_since_onset, y = log2IC50, colour = Severity_score), se = FALSE)+
geom_point(mapping = aes(x = Days_since_onset, y = log2IC50, fill = Severity_score), size = 2, colour = "black", shape = 21)+
scale_colour_manual(
name = "Severity Score",
values=c("1" = "lightblue1","2" = "lightblue3","3" = "lightblue4","4" = "lightcoral","5" = "firebrick2"),
labels=c("1","2","3","4","5"))+
scale_fill_manual(
name = "Severity Score",
breaks=c("1","2","3","4","5"),
values=c("1" = "lightblue1","2" = "lightblue3","3" = "lightblue4","4" = "lightcoral","5" = "firebrick2"),
labels=c("1","2","3","4","5"))+
theme_minimal()+
ylab("Serum Log2 IC50")+
xlab("Days Since Symptom Onset")+
guides(colour = guide_legend(title.position = "top", title.hjust = 0.5))

How do I fill a bar plot with a specific colour palette according to the variables?

Trying to assing each variable colour by creating my own colour palette, but some of the colours get mixed up. Any ideas on how I should fix this?
cor.partidos <- c(
`ps` = "#f71b75",
`psd` = "#ef6438",
`pcp-pev` = "#ff001d",
`pan` = "#71af64",
`outros` = "#f71b75",
`nulos` = "#565557",
`brancos` = "#aaa8ad",
`l` = "#f71b75",
`il` = "#f71b75",
`ch` = "#393195",
`cds-pp` = "#1192d8",
`be` = "#b40020",
`a` = "#f71b75")
#test graph
bars <- ggplot(leg19, aes(x = partido, y = votos)) +
geom_bar(stat="identity",
position="identity",
fill = cor.partidos) +
geom_hline(yintercept = 0, size = 1, colour="#333333") +
bbc_style() +
theme(axis.text=element_text(size=10))+
labs(subtitle = "Resultados Legislativas 2019",
ylab = "votos")
update with a mwe
It will work if the variables in the pallet are in the same order as the dataframe but if you mix it around a bit it won't work. Changing it to aes(fill = cor.partidos) won't work :(
test.pallet <- c(
`pink` = "#f71b75",
`orange` = "#ef6438",
`green` = "#71af64",
`red` = "#ff001d",
`other pink` = "#f71b72")
test.datafrane <- data_frame(
name = c("pink","orange","red","green","other pink"),
value = c(1,2,3,4,5)
)
test.datafrane$value <- as.numeric(test.datafrane$value)
test.graph <- ggplot(test.datafrane, aes(x = name, y = value)) +
geom_bar(stat="identity",
position="identity",
fill = test.pallet)
test.graph
As I suggested in my comment you could achieve your result by mapping your categorical var on fill inside aes() and make use of scale_fill_manual:
test.pallet <- c(
`pink` = "#f71b75",
`orange` = "#ef6438",
`green` = "#71af64",
`red` = "#ff001d",
`other pink` = "#f71b72")
test.datafrane <- data.frame(
name = c("pink","orange","red","green","other pink"),
value = c(1,2,3,4,5)
)
test.datafrane$value <- as.numeric(test.datafrane$value)
library(ggplot2)
test.graph <- ggplot(test.datafrane, aes(x = name, y = value, fill = name)) +
geom_bar(stat="identity",
position="identity") +
scale_fill_manual(values = test.pallet)
test.graph

Marginal boxplots not aligned by group in R

I have a density plot with different colors per group, where I would like to add a marginal boxplot per group at the top. But the grouping is not done correctly in the boxplots, both show the same data.
set.seed(123)
library(ggplot2)
library(ggExtra)
library(data.table)
Data <- data.table(x = rnorm(100),
group = rep(c("group1", "group2"), times = c(30, 70)))
Data[group == "group1", x := x + 3]
p <-
ggplot(Data, aes(x = x, fill = group, colour = group)) +
geom_density(alpha = 0.5)
p %>% ggMarginal(type = "boxplot",
margins = "x",
size = 5,
groupColour = TRUE,
groupFill = TRUE)
UPDATE:
With geom_point it does work:
p <-
ggplot(Data, aes(x = x, y = x, fill = group, colour = group)) +
geom_point(alpha = 0.5)
p %>% ggMarginal(type = "boxplot",
margins = "x",
size = 5,
groupColour = TRUE,
groupFill = TRUE)
So, why is it not working with geom_density?
As noted in the help file for ?ggMarginal, the function expects a ggplot2 scatterplot in p.
The following would work:
p2 <- ggplot(Data, aes(x = x, fill = group, colour = group)) +
geom_point(aes(y = 0.1), alpha = 0) + # add an invisible scatterplot geom as the first layer
geom_density(alpha = 0.5)
p2 %>% ggMarginal(type = "boxplot",
margins = "x",
size = 5,
groupColour = TRUE,
groupFill = TRUE)

add a legend to ggalt::geom_dumbbell plot AND sort y axis

In this SO answer, user #Crops shows how to add a legend to a ggalt::geom_dumbbell plot. Very nice.
library(ggalt)
df <- data.frame(trt=LETTERS[1:5], l=c(20, 40, 10, 30, 50), r=c(70, 50, 30, 60, 80))
df2 = tidyr::gather(df, group, value, -trt)
ggplot(df, aes(y = trt)) +
geom_point(data = df2, aes(x = value, color = group), size = 3) +
geom_dumbbell(aes(x = l, xend = r), size=3, color="#e3e2e1",
colour_x = "red", colour_xend = "blue",
dot_guide=TRUE, dot_guide_size=0.25) +
theme_bw() +
scale_color_manual(name = "", values = c("red", "blue") )
I want to sort trt descending on r. I tried replacing y = trt with y = reorder(trt, r), but I get an error that object r is not found.
Here is a way where we reorder the factor levels of trt in df and df2 before we plot.
# reorder factor levels
df$trt <- reorder(df$trt, df$r)
df2$trt <- factor(df2$trt, levels = levels(df$trt))
ggplot(df, aes(y = trt)) +
geom_point(data = df2, aes(x = value, color = group), size = 3) +
geom_dumbbell(aes(x = l, xend = r), size=3, color="#e3e2e1",
colour_x = "red", colour_xend = "blue",
dot_guide=TRUE, dot_guide_size=0.25) +
theme_bw() +
scale_color_manual(name = "", values = c("red", "blue") )
Using the dumbbell package
##Reformat data
df3<-df %>% arrange(r)
df2<-df%>% mutate("key"="trt")
df2$trt<-factor(df2$trt,df3$trt)
##plot
dumbbell::dumbbell(df2, id="trt", column1="l", column2="r",key="key", delt =1, textsize=3, lab1 = "l", lab2="r", pt_val = 1, pointsize = 3,pt_alpha = 0.6, arrow=1, leg = "Add legend title", pval=2) + xlim(8,85) + facet_wrap(key ~.)
Added in some bells and whistles, you can remove them toggling with the options.
I dont have enough points to embed for here is the link. Hope someone finds it useful.

Resources