MATLAB's ss() state-space model function in Scilab - scilab

I am trying to follow this tutorial, implemented
function transfer_function = tf(numerator, denominator)
transfer_function = syslin('c', poly(numerator, "s", "coeff") / poly(denominator, "s", "coeff"));
endfunction
// physical constants:
R = 2.0; // Ohms
L = 0.5; // Henrys
Km = 0.1; // torque constant
Kb = 0.1; // back emf constant
Kf = 0.2; // Nms
J = 0.02; // kg.m^2/s^2
// state-space model:
h1 = tf(Km, [L R]); // armature
h2 = tf(1, [J Kf]); // eqn of motion
dcm = tf2ss(h2) * [h1, 1]; // w = h2 * (h1 * Va + Td)
that returns
--> dcm
dcm =
dcm(1) (state-space system:)
"lss" "A" "B" "C" "D" "X0" "dt"
dcm(2)= A matrix =
-0.1 0.5
0. -0.25
dcm(3)= B matrix =
0. 2.236068
0.2236068 0.
dcm(4)= C matrix =
2.236068 0.
dcm(5)= D matrix =
0. 0.
dcm(6)= X0 (initial state) =
0.
0.
dcm(7)= Time domain =
"c"
which is different from what MATLAB yields:
>> dcm
dcm =
A =
x1 x2
x1 -10 3.2
x2 0 -4
B =
u1 u2
x1 0 8
x2 0.5 0
C =
x1 x2
y1 6.25 0
D =
u1 u2
y1 0 0
Continuous-time state-space model.
now my questions are:
Did I implement the minimal tf() function correctly, or there is a more complete/canonical version available/possible?
Is the tf2ss() the equivalent of MATLAB's ss() or there is another built-in function available?
If there is no ss() equivalent available, what is a minimal implementation that delivers the identical results as the above MATLAB tutorial?

My implementation of the tf() function, was flawed. Using
function transfer_function = tf(numerator, denominator)
transfer_function = syslin('c', poly(numerator($:-1:1), "s", "coeff") / poly(denominator($:-1:1), "s", "coeff"));
endfunction
now I get
--> dcm
dcm =
dcm(1) (state-space system:)
"lss" "A" "B" "C" "D" "X0" "dt"
dcm(2)= A matrix =
-10. 3.1622777
0. -4.
dcm(3)= B matrix =
0. 7.0710678
0.4472136 0.
dcm(4)= C matrix =
7.0710678 0.
dcm(5)= D matrix =
0. 0.
dcm(6)= X0 (initial state) =
0.
0.
dcm(7)= Time domain =
"c"
which is pretty close, but not quite right!

Related

To understand how Gram-Schmidt Process is translated into this piece of code as the implementation

Trying to understand Gram-Schmidt process from this explanation:
http://mlwiki.org/index.php/Gram-Schmidt_Process
The steps of the calculation make sense to me. However the Python implementation included in the same article doesn't seem to be aligned.
def normalize(v):
return v / np.sqrt(v.dot(v))
n = len(A)
A[:, 0] = normalize(A[:, 0])
for i in range(1, n):
Ai = A[:, i]
for j in range(0, i):
Aj = A[:, j]
t = Ai.dot(Aj)
Ai = Ai - t * Aj
A[:, i] = normalize(Ai)
From above code, we see it does dot product for V1 and b, however the (V1,V1) part is not done as the denominator (refer to below equation). I wonder how below equation is translated into code residing in the for loop?
This is what the code does exactly
Basically it normalize the previous vector (column in A) and project the current one to it and to be subtracted by the current one.
Normalization happens with every vector for neat calculation.
The V2 equation above doesn't normalize the previous vector hence the difference.
Try this vectorized implementation.
Also I would suggest to go through David C lay book for theory.
def replace_zero(array):
for i in range(len(array)) :
if array[i] == 0 :
array[i] = 1
return array
def gram_schmidt(self,A, norm=True, row_vect=False):
"""Orthonormalizes vectors by gram-schmidt process
Parameters
-----------
A : ndarray,
Matrix having vectors in its columns
norm : bool,
Do you need Normalized vectors?
row_vect: bool,
Does Matrix A has vectors in its rows?
Returns
-------
G : ndarray,
Matrix of orthogonal vectors
Gram-Schmidt Process
--------------------
The Gram–Schmidt process is a simple algorithm for
producing an orthogonal or orthonormal basis for any
nonzero subspace of Rn.
Given a basis {x1,....,xp} for a nonzero subspace W of Rn,
define
v1 = x1
v2 = x2 - (x2.v1/v1.v1) * v1
v3 = x3 - (x3.v1/v1.v1) * v1 - (x3.v2/v2.v2) * v2
.
.
.
vp = xp - (xp.v1/v1.v1) * v1 - (xp.v2/v2.v2) * v2 - .......
.... - (xp.v(p-1) / v(p-1).v(p-1) ) * v(p-1)
Then {v1,.....,vp} is an orthogonal basis for W .
In addition,
Span {v1,.....,vp} = Span {x1,.....,xp} for 1 <= k <= p
References
----------
Linear Algebra and Its Applications - By David.C.Lay
"""
if row_vect :
# if true, transpose it to make column vector matrix
A = A.T
no_of_vectors = A.shape[1]
G = A[:,0:1].copy() # copy the first vector in matrix
# 0:1 is done to to be consistent with dimensions - [[1,2,3]]
# iterate from 2nd vector to number of vectors
for i in range(1,no_of_vectors):
# calculates weights(coefficents) for every vector in G
numerator = A[:,i].dot(G)
denominator = np.diag(np.dot(G.T,G)) #to get elements in diagonal
weights = np.squeeze(numerator/denominator)
# projected vector onto subspace G
projected_vector = np.sum(weights * G,
axis=1,
keepdims=True)
# orthogonal vector to subspace G
orthogonalized_vector = A[:,i:i+1] - projected_vector
# now add the orthogonal vector to our set
G = np.hstack((G,orthogonalized_vector))
if norm :
# to get orthoNormal vectors (unit orthogonal vectors)
# replace zero to 1 to deal with division by 0 if matrix has 0 vector
# or normazalization value comes out to be zero
G = G/self.replace_zero(np.linalg.norm(G,axis=0))
if row_vect:
return G.T
return G
G = np.array([[1,0,0],[1,1,0],[1,1,1],[1,1,1]])
gram_schmidt(G)
>
array([[ 0.5 , -0.8660254 , 0. ],
[ 0.5 , 0.28867513, -0.81649658],
[ 0.5 , 0.28867513, 0.40824829],
[ 0.5 , 0.28867513, 0.40824829]])

Compute discrete sequence from equation in Scilab

I Need to develop the scilab code for the following problem solution.
System under consideration is
x_(n+1) = ax_n+μ, for x_n ≤ 0
bx_n+μ-1, for x_n > 0
x_(n+1) is calculated depending on the x_n values in each iteration
The code needs to do the following steps:
Let initial value of x_n=0;then
First iteration n=0:
As x_n ≤ 0,
x_(n+1) = ax_n + µ → x_1 = ax_0 + µ
Consider that x1 >0
Second Iteration n=1:
x_(n+1) = bx_n + µ-1 → x_2 = bx_1 + µ-1 → x2 = b*(a*x_0+µ) + µ-1
I don't know exactly what you expect but the following should do what you want, just replace the values of parameters by your values:
a = -1;
b = -2;
mu = 0.5;
x = 0;
for n=1:10
if x(n) <= 0
x(n+1) = a*x(n)+mu;
else
x(n+1) = b*x(n)+mu-1;
end
end
disp(x)
it yields
0.
0.5
-1.5
2.
-4.5
5.
-10.5
11.
-22.5
23.
-46.5

Direved and integral problème [SCILAB]

I'm working on a project that calculates the derivative of the speed and the integral of the acceleration.
my problem is that I have a lot of acceleration points and speed over time and I can not find the right program for that.
example:
acceleration from 0 km / h to 40 km / h in 5 seconds
from 5 to 10 seconds, the speed is constant 40km/h;
from 10 to 17 seconds there is a deceleration from 40 km / h to 20 km / h
So dv/dt = (v2-v1)/(t2-t1) but I don't know how to declare multiple variables for v1 v2 t1 t2
function a=acc(v1,v2,t1,t2)
a= (v2-v1)/(t2-t1)
endfunction
v1=
v2=
t1=
t2=
disp(acc(v1,v2,t1,t2),'acc = ')
and the same for the integral of (dv/dt)*dt
please help me guys
V(1:5) = linspace(0,40,5);
V(6:10) = 40;
V(11:17) = linspace(40,20,7);
Acc = diff(V);
First we populate a array V with your values for the speed.
Then we create an array Acc with the acceleration a each seconds with diffsince there's only 1s between two values of V.
Another solution based on what you wrote
function a=acc_2(v1,v2,t1,t2)
a= (v2-v1)./(t2-t1) // since v,t are vectors, we need './' and not '/' !
endfunction
V(1:5) = linspace(0,40,5);
V(6:10) = 40;
V(11:17) = linspace(40,20,7);
v1 = V(1:$-1);
v2 = V(2:$);
t1 = 1:length(V)-1;
t2 = 2:length(V);
Acc_2 = acc_2(v1,v2,t1,t2)
And if you want to have h(x) = int_t0^x dv/dt dt then use cumsum
H = cumsum(Acc)
i put this code
V(1:5) = linspace(0,40,5);
V(6:10) = 40;
V(11:17) = linspace(40,20,7);
function a = acc(V)
a=diff(V)
endfunction
function aa = acc_2(v1,v2,t1,t2)
aa = (v2-v1)/(t2-t1)
endfunction
v1 = V(1:$-1);
v2 = V(2:$);
t1 = 1:length(V)-1;
t2 = 2:length(V);
Acc_2 = acc_2(v1,v2,t1,t2)
but he gives me the result of a single variable of Acc_2 ?

how do i transform between a static and a dynamic coordinate system

i have a setup like this:
2 coordinate systems. (x,y) is the main coordinate system and (x',y') is a coordinate system that lives inside (x,y). The system (x',y') is defined by the points x1 or x2 and if i move these 2 points around then (x',y') moves accordingly. The origin of (x',y') is defined as the middle of the vector going from x1 to x2, and the y' axis is the normal vector on x1->x2 going through the origin. If i have a point x3 defined in (x',y') and i move either of x1 or x2 to make the origin shift place, how do i then move x3 accordingly such that it maintains its position in the new (x',y') ?
And how do i make a transformation which always converts a point in (x,y) to a point in (x',y') nomatter how x1 and x2 have been set?
I was thinking that if i had more points than just the one i am moving (x1 or x2) i guess i could try to estimate theta, tx, ty of the transformation
[x2'] [cos(theta) , sin(theta), tx][x2]
[y2'] = [-sin(theta), cos(theta), ty][y2]
[ 1 ]  [ 0 , 0 , 1 ][1 ]
and just apply that estimated transformation to x3 and i would be good...mmm but i think i would need 3 points in order to estimate theta, tx and ty right?
I mean i could estimate using some least squares approach...but 3 unknowns requires 3 coordinate sets right?
I tried to implement this and calculate an example. I hope you understand the syntax. Its not really giving me what i expect:
import math
import numpy as np
x1=[ 0,10]
x2=[10,20]
rx = x2[0] - x1[0]
ry = x2[1] - x1[1]
rlen = math.sqrt(rx*rx+ry*ry)
c = rx / rlen
s = ry / rlen
dx = - ( x1[0] + x2[0] )/2 # changing the sign to be negative seems to
dy = - ( x1[1] + x2[1] )/2 # rectify translation. Rotation still is wrong
M = np.array([[c, -s, 0],[s, c, 0],[dx, dy, 1]])
print( np.dot(x2 + [1],M) )
# Yields -> [ 15.92031022 -8.63603897 1. ] and should yield [5,0,1]
Since I am trying to transform the x2 coordinate, should the result then not have the value 0 in the y-component since its located in the x-axis?
Ok, I tried doing the implementation for x3 from dynamic1 to dynamic2 which the check is that x3 should end up with the same coordinate in both d1 and d2. I did that as you suggested, but I do not get the same coordinate in both d1 and d2. Did i misunderstand something?
import math
import numpy as np
x1=[ 1,1]
x2=[ 7,9]
x3=[4,3]
rx = (x2[0] - x1[0])
ry = (x2[1] - x1[1])
rlen = math.sqrt( rx*rx + ry*ry )
c = rx / rlen
s = ry / rlen
dx = ( x1[0] + x2[0] )/2
dy = ( x1[1] + x2[1] )/2
M = np.array([[c, -s, 0],[s, c, 0],[-dx*c-dy*s, dx*s-dy*c, 1]])
Minv = np.array([[c, s, 0],[-s, c, 0],[dx, dy, 1]])
x1new=[ 1,1]
x2new=[ 17,4]
rxnew = (x2new[0] - x1new[0])
rynew = (x2new[1] - x1new[1])
rlennew = math.sqrt( rxnew*rxnew + rynew*rynew )
cnew = rxnew / rlennew
snew = rynew / rlennew
dxnew = ( x1new[0] + x2new[0] )/2
dynew = ( x1new[1] + x2new[1] )/2
Mnew = np.array([[cnew, -snew, 0],[snew, cnew, 0],[-dxnew*cnew-dynew*snew, dxnew*snew-dynew*cnew, 1]])
Mnewinv = np.array([[cnew, snew, 0],[-snew, cnew, 0],[dxnew, dynew, 1]])
M_dyn1_to_dyn2 = np.dot(Minv,Mnew)
print( np.dot(x3 + [1], M) )
print( np.dot(x3 + [1], M_dyn1_to_dyn2))
#yields these 2 outputs which should be the same:
[-1.6 -1.2 1. ]
[-3.53219692 8.29298408 1. ]
Edit. Matrix correction.
To translate coordinates from static system to (x1,x2) defined one, you have to apply affine transformation.
Matrix of this transformation M consists of shift matrix S and rotation about origin R.
Matrix M is combination of S and R:
c -s 0
M = s c 0
-dx*c-dy*s dx*s-dy*c 1
Here c and s are cosine and sine of rotation angle, their values are respectively x- and y- components of unit (normalized) vector x1x2.
rx = x2.x - x1.x
ry = x2.y - x1.y
len = Sqrt(rx*rx+ry*ry)
c = rx / Len
s = ry / Len
And shift components:
dx = (x1.x + x2.x)/2
dy = (x1.y + x2.y)/2
To translate (xx,yy) coordinates from static system to rotate one, we have to find
xx' = xx*c+yy*s-dx*c-dy*s = c*(xx-dx) + s*(yy-dy)
yy' = -xx*s+yy*c+dx*s-dy*c = -s*(xx-dx) + c*(yy-dy)
Quick check:
X1 = (1,1)
X2 = (7,9)
dx = 4
dy = 5
rx = 6
ry = 8
Len = 10
c = 0.6
s = 0.8
for point (4,5):
xx-dx = 0
yy-dy = 0
xx',yy' = (0, 0) - right
for point X2 =(7,9):
xx-dx = 3
yy-dy = 4
xx' = 0.6*3 + 0.8*4 = 5 -right
yy' = -0.8*3 + 0.6*4 = 0 -right
P.S. Note that matrix to transform dyn.coordinates to static ones is inverse of M and it is simpler:
c s 0
M' = -s c 0
dx dy 1
P.P.S. You need three pairs of corresponding points to define general affine transformations. It seems here you don't need scaling and sheer, so you may determine needed transform with your x1,x2 points
I think you need double dimension array to save and set your value in that
the structure gonna be like this
=============|========|========|
index number |x |y |
=============|========|========|
first point | [0][0] | [0][1] |
second point | [1][0] | [1][1] |
third point | [2][0] | [2][1] |
=============|========|========|
I will use java in my answer
//declare the double dimension array
double matrix[][] = new double[3][2];
//setting location first point, x
matrix[0][0] = 1;
//setting location first point, y
matrix[0][1] = 1;
//fill with your formula, i only give example
//fill second point with first point and plus 1
//setting location second point, x
matrix[1][0] = matrix[0][0] + 1;
//setting location second point, y
matrix[1][1] = matrix[0][1] + 1;
//fill with your formula, i only give example
//fill third point with second point and plus 1
//setting location third point, x
matrix[2][0] = matrix[1][0] + 1;
//setting location third point, y
matrix[2][1] = matrix[1][1] + 1;

Curve Fit 5 points

I am trying to curve fit 5 points in C. I have used this code from a previous post (Can sombody simplify this equation for me?) to do 4 points, but now I need to add another point.
// Input data: arrays x[] and y[]
// x[1],x[2],x[3],x[4] - X values
// y[1],y[2],y[3],y[4] - Y values
// Calculations
A = 0
B = 0
C = 0
D = 0
S1 = x[1] + x[2] + x[3] + x[4]
S2 = x[1]*x[2] + x[1]*x[3] + x[1]*x[4] + x[2]*x[3] + x[2]*x[4] + x[3]*x[4]
S3 = x[1]*x[2]*x[3] + x[1]*x[2]*x[4] + x[1]*x[3]*x[4] + x[2]*x[3]*x[4]
for i = 1 to 4 loop
C0 = y[i]/(((4*x[i]-3*S1)*x[i]+2*S2)*x[i]-S3)
C1 = C0*(S1 - x[i])
C2 = S2*C0 - C1*x[i]
C3 = S3*C0 - C2*x[i]
A = A + C0
B = B - C1
C = C + C2
D = D - C3
end-loop
// Result: A, B, C, D
I have been trying to covert this to a 5 point curve fit, but am having trouble figuring out what goes inside the loop:
// Input data: arrays x[] and y[]
// x[1],x[2],x[3],x[4],x[5] - X values
// y[1],y[2],y[3],y[4],y[5] - Y values
// Calculations
A = 0
B = 0
C = 0
D = 0
E = 0
S1 = x[1] + x[2] + x[3] + x[4]
S2 = x[1]*x[2] + x[1]*x[3] + x[1]*x[4] + x[2]*x[3] + x[2]*x[4] + x[3]*x[4]
S3 = x[1]*x[2]*x[3] + x[1]*x[2]*x[4] + x[1]*x[3]*x[4] + x[2]*x[3]*x[4]
S4 = x[1]*x[2]*x[3]*x[4] + x[1]*x[2]*x[3]*[5] + x[1]*x[2]*x[4]*[5] + x[1]*x[3]*x[4]*[5] + x[2]*x[3]*x[4]*[5]
for i = 1 to 4 loop
C0 = ??
C1 = ??
C2 = ??
C3 = ??
C4 = ??
A = A + C0
B = B - C1
C = C + C2
D = D - C3
E = E + C4
end-loop
// Result: A, B, C, D, E
any help in filling out the C0...C4 would be appreciated. I know this has to do with the matrices but I have not been able to figure it out. examples with pseudo code or real code would be most helpful.
thanks
I refuse to miss this opportunity to generalize. :)
Instead, we're going to learn a little bit about Lagrange polynomials and the Newton Divided Difference Method of their computation.
Lagrange Polynomials
Given n+1 data points, the interpolating polynomial is
where l_j(i) is
.
What this means is that we can find the polynomial approximating the n+1 points, regardless of spacing, etc, by just summing these polynomials. However, this is a bit of a pain and I wouldn't want to do it in C. Let's take a look at Newton Polynomials.
Newton Polynomials
Same start, given n+1 data points, the approximating polynomial is going to be
where each n(x) is
with a coefficient of
, being the divided difference.
The final form end's up looking like
.
As you can see, the formula is pretty easy given the divided difference values. You just do each new divided difference and multiply by each point so far. It should be noted that you'll end up with a polynomial of degree n from n+1 points.
Divided Difference
All that's left is to define the divided difference which is really best explained by these two pictures:
and
.
With this information, a C implementation should be reasonable to do. I hope this helps and I hope you learned something! :)
If the x values are equally spaced with x2-x1=h, x3-x2=h, x4-x3=h and x5-x4=h then
C0 = y1;
C1 = -(25*y1-48*y2+36*y3-16*y4+3*y5)/(12*h);
C2 = (35*y1-104*y2+114*y3-56*y4+11*y5)/(24*h*h);
C3 = -(5*y1-18*y2+24*y3-14*y4+3*y5)/(12*h*h*h);
C4 = (y1-4*y2+6*y3-4*y4+y5)/(24*h*h*h*h);
y(x) = C0+C1*(x-x1)+C2*(x-x1)^2+C3*(x-x1)^3+C4*(x-x1)^4
// where `^` denotes exponentiation (and not XOR).

Resources