Calculate a rolling percent change in R - r

I am trying to calculate a 20-day rolling percent change in R based off of a stock's closing price. Below is a sample of the most recent 100 days of closing price data. df$Close[1] is the most recent day, df$Close[2] is the previous day, and so on.
df$Close
[1] 342.94 346.22 346.18 335.24 330.45 334.20 325.45 333.79 334.90 341.66 333.74 334.49 329.75 329.82 330.56 322.81 317.87 306.84
[19] 310.39 310.60 324.46 338.03 333.12 341.06 337.25 341.01 345.30 338.69 340.77 342.96 347.56 340.89 327.74 327.64 335.37 338.62
[37] 341.13 335.85 331.62 328.08 329.98 323.57 316.92 312.22 315.81 328.69 324.61 341.88 340.78 339.99 335.34 324.76 328.53 324.54
[55] 323.77 325.45 330.05 329.22 333.64 332.96 326.23 343.01 339.39 339.61 340.65 353.58 352.96 345.96 343.21 357.48 355.70 364.72
[73] 373.06 373.92 376.53 376.51 378.69 378.00 377.57 382.18 376.26 375.28 382.05 379.38 380.66 372.63 364.38 368.39 365.51 363.35
[91] 359.37 355.12 355.45 358.45 366.56 363.18 362.65 359.96 361.13 361.61
Previously, I had used the following code to calculate the percent change:
PercChange(df, Var = 'Close', type = 'percent', NewVar = 'OneMonthChange', slideBy = 20)
which gave me the following output:
df$OneMonthChange
[1] 5.695617e-02 2.422862e-02 3.920509e-02 -1.706445e-02 -2.016308e-02 -1.997009e-02 -5.748624e-02 -1.446751e-02 -1.722569e-02
[10] -3.790530e-03 -3.976292e-02 -1.877438e-02 6.132910e-03 6.653644e-03 -1.434237e-02 -4.668950e-02 -6.818515e-02 -8.637785e-02
[19] -6.401906e-02 -5.327969e-02 -1.672829e-02 4.468894e-02 5.111700e-02 9.237076e-02 6.788892e-02 3.748213e-02 6.373802e-02
[28] -9.330759e-03 -2.934445e-05 8.735551e-03 3.644063e-02 4.966745e-02 -2.404651e-03 9.551981e-03 3.582790e-02 4.046705e-02
[37] 3.357067e-02 2.013851e-02 -6.054430e-03 -1.465642e-02 1.149496e-02 -5.667473e-02 -6.620702e-02 -8.065134e-02 -7.291942e-02
[46] -7.039425e-02 -8.032072e-02 -1.179327e-02 -7.080213e-03 -4.892581e-02 -5.723925e-02 -1.095635e-01 -1.193642e-01 -1.320603e-01
[55] -1.401216e-01 -1.356139e-01 -1.284428e-01 -1.290476e-01 -1.163493e-01 -1.287875e-01 -1.329666e-01 -8.598913e-02 -1.116608e-01
[64] -1.048289e-01 -1.051069e-01 -5.112310e-02 -3.134091e-02 -6.088656e-02 -6.101064e-02 -1.615522e-02 -1.021232e-02 2.703312e-02
[73] 4.954283e-02 4.315804e-02 2.719882e-02 3.670356e-02 4.422997e-02 5.011668e-02 4.552377e-02 5.688449e-02 3.507469e-02
[82] 3.391465e-02 6.444333e-02 8.011616e-02 8.157409e-02 4.583216e-02 1.691226e-02 -1.310009e-02 -6.253229e-03 -2.445900e-02
[91] -2.817816e-02 1.119052e-02 2.662970e-02 4.914242e-02 8.787654e-02 6.454450e-02 5.280729e-02 3.546875e-02 2.567525e-02
[100] 2.392683e-02
The PercChange function has now been deprecated and I need to find a new function to replace it. Essentially, I need a function that calculates the percent change of df$Close[1:20] (This would be Close of day 1 minus close of day 20, divided by close of day 20), then rolls to [2:21] for the next row, then [3:22],[4:23], and so on.
Thanks in advance!

A tidyverse approach
library(tidyr)
library(dplyr)
df %>% mutate(OneMonthChange=(Close-lead(Close, 20))/lead(Close, 20),
OneMonthChange=replace_na(OneMonthChange,0))
Close OneMonthChange
1 342.94 5.695617e-02
2 346.22 2.422862e-02
3 346.18 3.920509e-02
4 335.24 -1.706445e-02
5 330.45 -2.016308e-02
6 334.20 -1.997009e-02
etc...

Here is a simple Base R solution:
PercChange<- function(x, slideBy){
-diff(x, slideBy)/ tail(x, -slideBy)
}
PercChange(df$Close, slideBy = 20)
[1] 5.695617e-02 2.422862e-02 3.920509e-02 -1.706445e-02
[5] -2.016308e-02 -1.997009e-02 -5.748624e-02 -1.446751e-02
[9] -1.722569e-02 -3.790530e-03 -3.976292e-02 -1.877438e-02
If you desire a datframe back, then modify this into:
PercChange<- function(data, Var, NewVar, slideBy){
x <- data[[Var]]
data[NewVar] <- c(-diff(x, slideBy)/ tail(x, -slideBy), numeric(slideBy))
data
}
PercChange(df, Var = 'Close', NewVar = 'OneMonthChange', slideBy = 20)
data:
df <- structure(list(Close = c(342.94, 346.22, 346.18, 335.24, 330.45,
334.2, 325.45, 333.79, 334.9, 341.66, 333.74, 334.49, 329.75,
329.82, 330.56, 322.81, 317.87, 306.84, 310.39, 310.6, 324.46,
338.03, 333.12, 341.06, 337.25, 341.01, 345.3, 338.69, 340.77,
342.96, 347.56, 340.89, 327.74, 327.64, 335.37, 338.62, 341.13,
335.85, 331.62, 328.08, 329.98, 323.57, 316.92, 312.22, 315.81,
328.69, 324.61, 341.88, 340.78, 339.99, 335.34, 324.76, 328.53,
324.54, 323.77, 325.45, 330.05, 329.22, 333.64, 332.96, 326.23,
343.01, 339.39, 339.61, 340.65, 353.58, 352.96, 345.96, 343.21,
357.48, 355.7, 364.72, 373.06, 373.92, 376.53, 376.51, 378.69,
378, 377.57, 382.18, 376.26, 375.28, 382.05, 379.38, 380.66,
372.63, 364.38, 368.39, 365.51, 363.35, 359.37, 355.12, 355.45,
358.45, 366.56, 363.18, 362.65, 359.96, 361.13, 361.61)), class = "data.frame", row.names = c(NA,
-100L))

Related

R + ggplot2: plot time series with linear regression with changepoint

I have a time series data which has 2 variables (x,y) and I am currently using R base plot to generate a plot like this.
the red lines is a linear model fitted between 2 points.
The data looks likes this.
X
[1] 559.2 559.8 560.6 561.1 561.2 561.8
[7] 562.4 563.0 563.4 563.5 563.5 563.5
[13] 563.5 563.5 563.5 563.5 563.8 564.5
[19] 565.3 565.9 566.4 566.5 566.7 567.4
[25] 567.6 568.5 569.3 570.3 571.6 572.2
[31] 572.5 573.6 574.1 575.5 576.9 578.1
[37] 579.0 580.1 580.9 581.4 581.8 583.1
[43] 583.8 584.4 585.2 586.0 586.1 586.2
[49] 586.8 587.4
**y**
[1] 115.4375 115.3008 115.2069 115.3306 115.3900 115.1189 114.8619
[8] 114.7992 114.7117 114.4722 114.7031 115.1358 115.4811 115.4500
[15] 115.6347 115.8286 115.8361 115.7986 115.9169 116.1225 116.1803
[22] 116.3794 116.2872 116.2517 116.3411 116.4167 116.5108 116.2900
[29] 116.3456 116.3658 116.1547 116.2042 116.1517 116.2083 116.3642
[36] 116.4347 116.5428 116.5119 116.5925 116.3969 116.2614 116.3494
[43] 116.1242 116.1469 116.0872 116.1000 116.2319 116.1225 116.1069
[50] 116.1364
I am calculating the change point manually from X.
Is this kind of plot possible in ggplot2?i.e. using ggplot2 to loop through change points and fit linear model?
Any help would be appreciated. Thanks.
#create some fake data
segment1 = 100:1 + runif(100)*10
df1 = data.frame(value = segment1, time = 1:100, type="segment1")
segment2 = 75:1 + runif(75)*10
df2 = data.frame(value = segment2, time = 101:175, type="segment2")
segment3 = 50:1 + runif(50)*10
df3 = data.frame(value = segment3, time = 176:225, type="segment3")
data.complete = rbind(df1,df2,df3)
#create the plot
require(ggplot2)
g = ggplot(data.complete,aes(x=time,y=value))
g = g + geom_line()
g = g + geom_smooth(method = "lm",aes(group=type))
g
To have the underlying line graph connected the group aesthetic must be called in the smoother.

Change origin for time series in r

I have a time series in R that I would like to work with, spanning from 01-01-52 to 01-01-88. (1952 to 1988). 37 observations.
However, when I read it in in R, I encounter the problem that the observations from 01-01-52 to 01-01-68 are interpreted as being in 2052 etc., rather than 1952.
How do I force R to read in all the data as being from 1952 to 1988?
Link to my data: https://www.dropbox.com/s/93foyc238skt3xj/AgricIndus.csv?dl=0
This is the code I have used. Do you know what I need to do with my code to make it read properly?
agri <- read.table("AgricIndus.csv",
sep = ",", header = TRUE, skip = 0,
stringsAsFactors = FALSE)
agri$time <- as.Date(agri$time, "%m-%d-%y")
agri.xts <- xts(agri[, 2:3], order.by = agri$time)
One way (hack) can be the following:
agri$time <- as.Date(paste0(substring(agri$time,1,6), '19', substring(agri$time,7,8)),
"%m-%d-%Y")
agri$time
# [1] "01-01-52" "01-01-53" "01-01-54" "01-01-55" "01-01-56" "01-01-57" "01-01-58" "01-01-59" "01-01-60" "01-01-61" "01-01-62" "01-01-63" "01-01-64" "01-01-65"
# [15] "01-01-66" "01-01-67" "01-01-68" "01-01-69" "01-01-70" "01-01-71" "01-01-72" "01-01-73" "01-01-74" "01-01-75" "01-01-76" "01-01-77" "01-01-78" "01-01-79"
# [29] "01-01-80" "01-01-81" "01-01-82" "01-01-83" "01-01-84" "01-01-85" "01-01-86" "01-01-87" "01-01-88"
If you can be sure that your time series is regular then the it is probably the easiest to generate a regular date sequence like so:
agri$time <- seq.Date(as.Date("1952-01-01"),as.Date("1988-01-01"),by='years’)
Another easy solution that would work for irregular time series as well would be to read your data as years 52 to 88 with format = %m-%d-%Y (capitalized “Y” !) and add 1900 years:
df$time <- as.POSIXlt(as.Date(df$time,format = '%m-%d-%Y'))
df$time$year <-df$time$year + 1900
df$time <- as.Date(df$time)
df$time
[1] "1952-01-01" "1953-01-01" "1954-01-01" "1955-01-01"
[5] "1956-01-01" "1957-01-01" "1958-01-01" "1959-01-01"
[9] "1960-01-01" "1961-01-01" "1962-01-01" "1963-01-01"
[13] "1964-01-01" "1965-01-01" "1966-01-01" "1967-01-01"
[17] "1968-01-01" "1969-01-01" "1970-01-01" "1971-01-01"
[21] "1972-01-01" "1973-01-01" "1974-01-01" "1975-01-01"
[25] "1976-01-01" "1977-01-01" "1978-01-01" "1979-01-01"
[29] "1980-01-01" "1981-01-01" "1982-01-01" "1983-01-01"
[33] "1984-01-01" "1985-01-01" "1986-01-01" "1987-01-01"
[37] "1988-01-01"

Dividing components of a vector into several data points in R

I am trying to turn a vector of length n (say, 14), and turn it into a vector of length N (say, 90). For example, my vector is
x<-c(5,3,7,11,12,19,40,2,22,6,10,12,12,4)
and I want to turn it into a vector of length 90, by creating 90 equally "spaced" points on this vector- think of x as a function. Is there any way to do that in R?
Something like this?
> x<-c(5,3,7,11,12,19,40,2,22,6,10,12,12,4)
> seq(min(x),max(x),length=90)
[1] 2.000000 2.426966 2.853933 3.280899 3.707865 4.134831 4.561798
[8] 4.988764 5.415730 5.842697 6.269663 6.696629 7.123596 7.550562
[15] 7.977528 8.404494 8.831461 9.258427 9.685393 10.112360 10.539326
[22] 10.966292 11.393258 11.820225 12.247191 12.674157 13.101124 13.528090
[29] 13.955056 14.382022 14.808989 15.235955 15.662921 16.089888 16.516854
[36] 16.943820 17.370787 17.797753 18.224719 18.651685 19.078652 19.505618
[43] 19.932584 20.359551 20.786517 21.213483 21.640449 22.067416 22.494382
[50] 22.921348 23.348315 23.775281 24.202247 24.629213 25.056180 25.483146
[57] 25.910112 26.337079 26.764045 27.191011 27.617978 28.044944 28.471910
[64] 28.898876 29.325843 29.752809 30.179775 30.606742 31.033708 31.460674
[71] 31.887640 32.314607 32.741573 33.168539 33.595506 34.022472 34.449438
[78] 34.876404 35.303371 35.730337 36.157303 36.584270 37.011236 37.438202
[85] 37.865169 38.292135 38.719101 39.146067 39.573034 40.000000
>
Try this:
#data
x <- c(5,3,7,11,12,19,40,2,22,6,10,12,12,4)
#expected new length
N=90
#number of numbers between 2 numbers
my.length.out=round((N-length(x))/(length(x)-1))+1
#new data
x1 <- unlist(
lapply(1:(length(x)-1), function(i)
seq(x[i],x[i+1],length.out = my.length.out)))
#plot
par(mfrow=c(2,1))
plot(x)
plot(x1)

R: simulate ts object with dates

Wondering how to generate time series and assign dates at the same time. I am trying this
series = as.ts(arima.sim(model = list(ar = c(0.12, -.36)),
n = 1990 - 1875, sd = sqrt(4)),
start = 1875, deltat = 1)
But this does not return a ts object that counts the years from 1875. By my reckoning this should work. Any advice appreciated.
You are correct. I re-typed vs cut/paste your code and it's both the start parameter and the use of as.ts vs just ts that's the issue:
asim <- arima.sim(model = list(ar = c(0.12, -.36)),
n = 1990 - 1875, sd = sqrt(4))
series <- ts(asim, start = c(1875, 1), deltat = 1)
print(series)
Time Series:
Start = 1875
End = 1989
Frequency = 1
[1] -1.22873543 -2.87876290 -3.00367322 -0.93120214 1.76854684 0.93874091 -2.32494289
[8] 1.14892019 1.87773156 1.48735536 -0.84149973 -3.69650397 1.20710878 2.14151424
[15] -2.58376182 -2.97501726 2.77019523 4.50829433 0.35603642 -1.95517140 -1.12792253
[22] 1.64063413 2.25654663 -0.51293345 1.07829896 -1.77134896 2.38908172 4.29362478
[29] -1.55577635 1.17953083 3.39823289 1.11846543 -0.92758706 -1.24158935 -2.39831233
[36] 4.24302415 2.93797283 -0.75916084 -0.66967525 2.85022663 -0.18190842 -5.39057660
[43] 0.08454559 2.01667062 -3.17054706 -3.77788365 0.19987174 2.87106608 -0.33844973
[50] 1.20917997 -1.00509230 3.23130604 5.80269444 3.33781468 2.67050526 1.85130774
[57] -0.46065144 -2.79539368 0.29784271 -4.51945793 0.61091013 2.56372897 -4.66101520
[64] 2.43024521 0.04428268 -1.19454953 -3.10583191 4.55208114 6.00037902 -3.32996632
[71] 2.22167610 1.07499343 1.89873604 2.04067084 -3.43648828 -0.53093294 0.66225057
[78] -2.30214366 0.78945348 0.35241170 -0.68250626 1.39801271 -1.01914282 -0.33615058
[85] 0.92311887 1.66289752 -0.83158693 -0.74454853 6.53884660 1.53567335 -2.16745416
[92] -0.01540633 -1.25032821 -0.02958796 3.18116493 -2.07512219 -1.40620668 -0.78869155
[99] 2.30251140 -2.23997817 0.34824690 4.81898402 -0.38751197 -5.74540148 -0.37754295
[106] 2.59869857 -1.90175430 0.37994317 -1.27326292 -3.96302760 -2.01928982 2.57643462
[113] 2.62600151 -4.20987173 0.46388883
Since asim is already a ts class object, as.ts is pulling the tsp attribute from it vs creating it from the input parameters. Using ts creates a new tsp attribute.

R: Using for loop on data frame

I have a data frame, deflator.
I want to get a new data frame inflation which can be calculated by:
deflator[i] - deflator[i-4]
----------------------------- * 100
deflator [i - 4]
The data frame deflator has 71 numbers:
> deflator
[1] 0.9628929 0.9596746 0.9747274 0.9832532 0.9851884
[6] 0.9797770 0.9913502 1.0100561 1.0176906 1.0092516
[11] 1.0185932 1.0241043 1.0197975 1.0174097 1.0297328
[16] 1.0297071 1.0313232 1.0244618 1.0347808 1.0480411
[21] 1.0322142 1.0351968 1.0403264 1.0447121 1.0504402
[26] 1.0487097 1.0664664 1.0935239 1.0965951 1.1141851
[31] 1.1033155 1.1234482 1.1333870 1.1188136 1.1336276
[36] 1.1096461 1.1226584 1.1287245 1.1529588 1.1582911
[41] 1.1691221 1.1782178 1.1946234 1.1963453 1.1939922
[46] 1.2118189 1.2227960 1.2140535 1.2228828 1.2314258
[51] 1.2570788 1.2572214 1.2607763 1.2744415 1.2982076
[56] 1.3318808 1.3394186 1.3525902 1.3352815 1.3492751
[61] 1.3593859 1.3368135 1.3642940 1.3538567 1.3658135
[66] 1.3710932 1.3888638 1.4262185 1.4309707 1.4328823
[71] 1.4497201
This is a very tricky question for me.
I tried to do this using a for loop:
> d <- data.frame(deflator)
> for (i in 1:71) {d <-rbind(d,c(delfaotr ))}
I think I might be doing it wrong.
Why use data frames? This is a straightforward vector operation.
inflation = 100 * (deflator[1:67] - deflator[-(1:4)])/deflator[-(1:4)]
I agree with #Fhnuzoag that your example suggests calculations on a numeric vector, not a data frame. Here's an additional way to do your calculations taking advantage of the lag argument in the diff function (with indexes that match those in your question):
lagBy <- 4 # The number of indexes by which to lag
laggedDiff <- diff(deflator, lag = lagBy) # The numerator above
theDenom <- deflator[seq_len(length(deflator) - lagBy)] # The denominator above
inflation <- laggedDiff/theDenom
The first few results are:
head(inflation)
# [1] 0.02315470 0.02094710 0.01705379 0.02725941 0.03299085 0.03008297

Resources