Is there a function i can use to calculate steady state? - r

i was currently doing an excercise about steady state vector of a markov-chain, i was able to calculate it manually but I'm lost at how to calculate steady state using R, is there a function or library i can use to calculate this? any helps is appreciated, this is the transition matrix I'm using to calculate steady state:
P
P.data=c(0.95,0.03,0.05,0.97)
P = matrix(P.data, nrow=2,ncol=2,byrow=TRUE)
P

The steady state is a left eigen vector wit corresponding eigen value 1. To calculate the eigen vectors/values in R, there is the function eigen, but it calculates the right eigen vectors, so you have to transpose the Markov matrix.
> P.data <- c(0.95,0.03,0.05,0.97)
> P <- matrix(P.data, nrow=2, ncol=2, byrow=TRUE)
> eigen(t(P))
eigen() decomposition
$values
[1] 1.00 0.92
$vectors
[,1] [,2]
[1,] -0.7071068 -0.8574929
[2,] -0.7071068 0.5144958
The eigen vectors are defined up to a multiplicative factor, so here we find (0.5, 0.5) (the coefficients must sum to 1).
See this post and its answers for more details.

Related

create a random non-singular matrix reliably

How can I create a matrix of pseudo-random values that is guaranteed to be non-singular? I tried the code below, but it failed. I suppose I could just loop until I got one by chance but I would prefer a more elegant "R-like" solution if anyone has an idea.
library(matrixcalc)
exampledf<- matrix(ceiling(runif(16,0,50)), ncol=4)
is.singular.matrix(exampledf) #this may or may not return false
using a while loop:
exampledf<-NULL
library(matrixcalc)
while(is.singular.matrix(exampledf)!=TRUE){
exampledf<- matrix(ceiling(runif(16,0,50)), ncol=4)
}
I suppose one method that guarantees (not is fairly likely, but actually guarantees) that the matrix is non-singular, is to start from a known non-singular matrix and apply the basic linear operations used for example in Gaussian Elimination: 1. add / subtract a multiple of one row from another row or 2. multiply row by a constant.
Depending on how "random" and how dense you want your matrix to be you can start from the identity matrix and multiply all elements with a random constant. Afterwards, you can apply a randomly selected set of operations from above, that will result in a non singular matrix. You can even apply a predefined set of operations, but using a randomly selected constant at each step.
An alternative could be to start from an upper triangular matrix for which the product of main diagonal entries is not zero. This is because the determinant of a triangular matrix is the product of the elements on the main diagonal. This effectively boils down to generating N random numbers, placing them on the main diagonal, and setting the rest of the entries (above the main diagonal) to whatever you like. If you want the matrix to be fully dense, add the first row to every other row of the matrix.
Of course this approach (like any other probably would) assumes that the matrix is relatively numerically stable and the singularity will not be affected by precision errors (as you know the precision of data types in all programming languages is limited). You would do well to avoid very small / very large values which can make the method numerically unstable.
It should be fairly unlikely that this will produce a singular matrix:
Mat1 <- matrix(rnorm(100), ncol=4)
Mat2 <- matrix(rnorm(100), ncol=4)
crossprod(Mat1,Mat2)
[,1] [,2] [,3] [,4]
[1,] 0.8138 5.112 2.945 -5.003
[2,] 4.9755 -2.420 1.801 -4.188
[3,] -3.8579 8.791 -2.594 3.340
[4,] 7.2057 6.426 2.663 -1.235
solve( crossprod(Mat1,Mat2) )
[,1] [,2] [,3] [,4]
[1,] -0.11273 0.15811 0.05616 0.07241
[2,] 0.03387 0.01187 0.07626 0.02881
[3,] 0.19007 -0.60377 -0.40665 0.17771
[4,] -0.07174 -0.31751 -0.15228 0.14582
inv1000 <- replicate(1000, {
Mat1 <- matrix(rnorm(100), ncol=4)
Mat2 <- matrix(rnorm(100), ncol=4)
try(solve( crossprod(Mat1,Mat2)))} )
str(inv1000)
#num [1:4, 1:4, 1:1000] 0.1163 0.0328 0.3424 -0.227 0.0347 ...
max(inv1000)
#[1] 451.6
> inv100000 <- replicate(100000, {Mat1 <- matrix(rnorm(100), ncol=4)
+ Mat2 <- matrix(rnorm(100), ncol=4)
+ is.singular.matrix( crossprod(Mat1,Mat2))} )
> sum(inv100000)
[1] 0

Matrix of pairwise distances

I have a set of points coordinates and I want to use it to generate a matrix of distances. More specifically, I have two sets of points, A of size n and B of size m, given as 2d coordinates and I want to have all Euclidean distances between points from A and points from B and no other distances, in a matrix.
Edit: what if the situation is more complicated: what if I have my matrix but now I want to divide each row of it by the sum of Euclidean distances of the first point from A from all the points in set B: that is, normalise each row of distances. Is there an efficient way to do that?
set.seed(101)
n <- 10; m <- 20
A <- data.frame(x=runif(n),y=runif(n))
B <- data.frame(x=runif(m),y=runif(m))
We want
sqrt((x_{1,i}-x_{2,j})^2+(y_{1,i}-y_{2,j})^2)
for every i=1:n and j=1:m.
You can do this via
dists <- sqrt(outer(A$x,B$x,"-")^2 + outer(A$y,B$y,"-")^2)
which in this case is a 10x20 matrix. In words, we're finding the difference ("-" is a reference to the subtraction operator) between each pair of x values and each pair of y values, squaring, adding, and taking the square root.
If you want to normalize every row by its sum, I would suggest
norm.dists <- sweep(dists,MARGIN=1,STATS=rowSums(dists),FUN="/")
The dist(...) function in base R will not be helpful, because it calculates the auto-distances (distance from every point to every other point in a given dataset). You want cross-distances. There is a dist(...) function in package proxy which is designed for this.
Using the dataset kindly provided by #BenBolker,
library(proxy) # note that this masks the dist(...) fn in base R...
result <- dist(A,B)
result[1:5,1:5]
# [,1] [,2] [,3] [,4] [,5]
# [1,] 0.5529902 0.7303561 0.1985409 0.6184414 0.7344280
# [2,] 0.7109408 0.9506428 0.1778637 0.7216595 0.9333687
# [3,] 0.2971463 0.3809688 0.4971621 0.4019629 0.3995298
# [4,] 0.4985324 0.5737397 0.4760870 0.5986826 0.5993541
# [5,] 0.4513063 0.7071025 0.3077415 0.4289675 0.6761988

R eigenvalues/eigenvectors

I have this correlation matrix
A
[,1] 1.00000 0.00975 0.97245 0.43887 0.02241
[,2] 0.00975 1.00000 0.15428 0.69141 0.86307
[,3] 0.97245 0.15428 1.00000 0.51472 0.12193
[,4] 0.43887 0.69141 0.51472 1.00000 0.77765
[,5] 0.02241 0.86307 0.12193 0.77765 1.00000
And I need to get the eigenvalues, eigenvectors and loadings in R.
When I use the princomp(A,cor=TRUE) function I get the variances(Eigenvalues)
but when I use the eigen(A) function I get the Eigenvalues and Eigenvectors, but the Eigenvalues in this case are different than when I use the Princomp-function..
Which function is the right one to get the Eigenvalues?
I believe you are referring to a PCA analysis when you talk of eigenvalues, eigenvectors and loadings. prcomp is essentially doing the following (when cor=TRUE):
###Step1
#correlation matrix
Acs <- scale(A, center=TRUE, scale=TRUE)
COR <- (t(Acs) %*% Acs) / (nrow(Acs)-1)
COR ; cor(Acs) # equal
###STEP 2
# Decompose matrix using eigen() to derive PC loadings
E <- eigen(COR)
E$vectors # loadings
E$values # eigen values
###Step 3
# Project data on loadings to derive new coordinates (principal components)
B <- Acs %*% E$vectors
eigen(M) gives you the correct eigen values and vectors of M.
princomp() is to be handed the data matrix - you are mistakenly feeding it the correlation matrix!
princomp(A,) will treat A as the data and then come up with a correlation matrix and its eigen vectors and values. So the eigen values of A (in case A holds the data as supposed) are not just irrelevant they are of course different from what princomp() comes up with at the end.
For an illustration of performing a PCA in R see here: http://www.joyofdata.de/blog/illustration-of-principal-component-analysis-pca/

How to compute the power of a matrix in R [duplicate]

This question already has answers here:
A^k for matrix multiplication in R?
(6 answers)
Closed 9 years ago.
I'm trying to compute the -0.5 power of the following matrix:
S <- matrix(c(0.088150041, 0.001017491 , 0.001017491, 0.084634294),nrow=2)
In Matlab, the result is (S^(-0.5)):
S^(-0.5)
ans =
3.3683 -0.0200
-0.0200 3.4376
> library(expm)
> solve(sqrtm(S))
[,1] [,2]
[1,] 3.36830328 -0.02004191
[2,] -0.02004191 3.43755429
After some time, the following solution came up:
"%^%" <- function(S, power)
with(eigen(S), vectors %*% (values^power * t(vectors)))
S%^%(-0.5)
The result gives the expected answer:
[,1] [,2]
[1,] 3.36830328 -0.02004191
[2,] -0.02004191 3.43755430
The square root of a matrix is not necessarily unique (most real numbers have at least 2 square roots, so it is not just matricies). There are multiple algorithms for generating a square root of a matrix. Others have shown the approach using expm and eigenvalues, but the Cholesky decomposition is another possibility (see the chol function).
To extend this answer beyond square roots, the following function exp.mat() generalizes the "Moore–Penrose pseudoinverse" of a matrix and allows for one to calculate the exponentiation of a matrix via a Singular Value Decomposition (SVD) (even works for non square matrices, although I don't know when one would need that).
exp.mat() function:
#The exp.mat function performs can calculate the pseudoinverse of a matrix (EXP=-1)
#and other exponents of matrices, such as square roots (EXP=0.5) or square root of
#its inverse (EXP=-0.5).
#The function arguments are a matrix (MAT), an exponent (EXP), and a tolerance
#level for non-zero singular values.
exp.mat<-function(MAT, EXP, tol=NULL){
MAT <- as.matrix(MAT)
matdim <- dim(MAT)
if(is.null(tol)){
tol=min(1e-7, .Machine$double.eps*max(matdim)*max(MAT))
}
if(matdim[1]>=matdim[2]){
svd1 <- svd(MAT)
keep <- which(svd1$d > tol)
res <- t(svd1$u[,keep]%*%diag(svd1$d[keep]^EXP, nrow=length(keep))%*%t(svd1$v[,keep]))
}
if(matdim[1]<matdim[2]){
svd1 <- svd(t(MAT))
keep <- which(svd1$d > tol)
res <- svd1$u[,keep]%*%diag(svd1$d[keep]^EXP, nrow=length(keep))%*%t(svd1$v[,keep])
}
return(res)
}
Example
S <- matrix(c(0.088150041, 0.001017491 , 0.001017491, 0.084634294),nrow=2)
exp.mat(S, -0.5)
# [,1] [,2]
#[1,] 3.36830328 -0.02004191
#[2,] -0.02004191 3.43755429
Other examples can be found here.

Determining if a matrix is diagonalizable in the R Programming Language

I have a matrix and I would like to know if it is diagonalizable. How do I do this in the R programming language?
If you have a given matrix, m, then one way is the take the eigen vectors times the diagonal of the eigen values times the inverse of the original matrix. That should give us back the original matrix. In R that looks like:
m <- matrix( c(1:16), nrow = 4)
p <- eigen(m)$vectors
d <- diag(eigen(m)$values)
p %*% d %*% solve(p)
m
so in that example p %*% d %*% solve(p) should be the same as m
You can implement the full algorithm to check if the matrix reduces to a Jordan form or a diagonal one (see e.g., this document). Or you can take the quick and dirty way: for an n-dimensional square matrix, use eigen(M)$values and check that they are n distinct values. For random matrices, this always suffices: degeneracy has prob.0.
P.S.: based on a simple observation by JD Long below, I recalled that a necessary and sufficient condition for diagonalizability is that the eigenvectors span the original space. To check this, just see that eigenvector matrix has full rank (no zero eigenvalue). So here is the code:
diagflag = function(m,tol=1e-10){
x = eigen(m)$vectors
y = min(abs(eigen(x)$values))
return(y>tol)
}
# nondiagonalizable matrix
m1 = matrix(c(1,1,0,1),nrow=2)
# diagonalizable matrix
m2 = matrix(c(-1,1,0,1),nrow=2)
> m1
[,1] [,2]
[1,] 1 0
[2,] 1 1
> diagflag(m1)
[1] FALSE
> m2
[,1] [,2]
[1,] -1 0
[2,] 1 1
> diagflag(m2)
[1] TRUE
You might want to check out this page for some basic discussion and code. You'll need to search for "diagonalized" which is where the relevant portion begins.
All symmetric matrices across the diagonal are diagonalizable by orthogonal matrices. In fact if you want diagonalizability only by orthogonal matrix conjugation, i.e. D= P AP' where P' just stands for transpose then symmetry across the diagonal, i.e. A_{ij}=A_{ji}, is exactly equivalent to diagonalizability.
If the matrix is not symmetric, then diagonalizability means not D= PAP' but merely D=PAP^{-1} and we do not necessarily have P'=P^{-1} which is the condition of orthogonality.
you need to do something more substantial and there is probably a better way but you could just compute the eigenvectors and check rank equal to total dimension.
See this discussion for a more detailed explanation.

Resources