I have the following data frame in R:
df <- data.frame(name = c('p1_start','p1_end','p2_start','p2_end','p1_start','p1_end','p2_start','p2_end','p1_start','p1_end','p2_start','p2_end','p1_start','p1_end','p2_start','p2_end'),
time = c(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31),
target = c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2),
comb = c(0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1))
And another data frame:
data <- data.frame(time = c(2,5,8,14,14,20,21,26,28,28),
name = c('a','b','c','d','e','f','g','h','i','j'))
So, if we take a look at df we could sort the data by target and combination and we will notice that there are basically "groups". For example for target=1 and comb=0 there are four entries p1_start,p1_end,p2_start,p2_end and it is the same for all other target/comb combinations.
On the other side data contains entries with time being a timestamp.
Goal: I want to map the values from both data frames based on time.
Example: The first entry of data has time=2 meaning it happened between p1_start,p1_end so it should get the values target=1 and comb=0 mapped to the data data frame.
Example 2: The entries of data with time=14 happened between p2_start,p2_end so they should get the values target=1 and comb=1 mapped to the data data frame.
Idea: I thought I iterate over df by target and comb and for each combination of them check if there are rows in data whose time is between. The second could be done with the following command:
data[which(data$time > p1_start & data$time < p2_end),]
once I get the rows it is easy to append the values.
Problem: how could I do the iteration? I tried with the following:
df %>%
group_by(target, comb) %>%
print(data[which(data$time > df$p1_start & data$time < df$p2_end),])
But I am getting an error that time has not been initialized
Your problem is best known as performing non-equi join. We need to find a range in some given dataframe that corresponds to each value in one or more given vectors. This is better handled by the data.table package.
We would first transform your df into a format suitable for performing the join and then join data with df by time <= end while time >= start. Here is the code
library(data.table)
setDT(df)[, c("type", "name") := tstrsplit(name, "_", fixed = TRUE)]
df <- dcast(df, ... ~ name, value.var = "time")
cols <- c("target", "comb", "type")
setDT(data)[df, (cols) := mget(paste0("i.", cols)), on = .(time<=end, time>=start)]
After dcast, df looks like this
target comb type end start
1: 1 0 p1 3 1
2: 1 0 p2 7 5
3: 1 1 p1 11 9
4: 1 1 p2 15 13
5: 2 0 p1 19 17
6: 2 0 p2 23 21
7: 2 1 p1 27 25
8: 2 1 p2 31 29
And the output is
> data
time name target comb type
1: 2 a 1 0 p1
2: 5 b 1 0 p2
3: 8 c NA NA <NA>
4: 14 d 1 1 p2
5: 14 e 1 1 p2
6: 20 f NA NA <NA>
7: 21 g 2 0 p2
8: 26 h 2 1 p1
9: 28 i NA NA <NA>
10: 28 j NA NA <NA>
Here is a tidyverse solution:
library(tidyr)
library(dplyr)
df %>%
rename(name_df=name) %>%
mutate(x = time +1) %>%
pivot_longer(
cols = c(time, x),
names_to = "helper",
values_to = "time"
) %>%
right_join(data, by="time") %>%
select(time, name, target, comb)
time name target comb
<dbl> <chr> <dbl> <dbl>
1 2 a 1 0
2 5 b 1 0
3 8 c 1 0
4 14 d 1 1
5 14 e 1 1
6 20 f 2 0
7 21 g 2 0
8 26 h 2 1
9 28 i 2 1
10 28 j 2 1
df <- data.frame(name = c('p1_start','p1_end','p2_start','p2_end','p1_start','p1_end','p2_start','p2_end','p1_start','p1_end','p2_start','p2_end','p1_start','p1_end','p2_start','p2_end'),
time = c(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31),
target = c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2),
comb = c(0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1))
data <- data.frame(time = c(2,5,8,14,14,20,21,26,28,28),
name = c('a','b','c','d','e','f','g','h','i','j'))
library(fuzzyjoin)
library(tidyverse)
tmp <- df %>%
separate(name,
into = c("p", "period"),
sep = "_",
remove = TRUE) %>%
pivot_wider(
id_cols = c(p, target, comb),
names_from = period,
values_from = time
) %>%
select(-p)
fuzzy_left_join(
x = data,
y = tmp,
by = c("time" = "start",
"time" = "end"),
match_fun = list(`>=`, `<=`))
#> time name target comb start end
#> 1 2 a 1 0 1 3
#> 2 5 b 1 0 5 7
#> 3 8 c NA NA NA NA
#> 4 14 d 1 1 13 15
#> 5 14 e 1 1 13 15
#> 6 20 f NA NA NA NA
#> 7 21 g 2 0 21 23
#> 8 26 h 2 1 25 27
#> 9 28 i NA NA NA NA
#> 10 28 j NA NA NA NA
Created on 2022-01-11 by the reprex package (v2.0.1)
Related
DATA = data.frame("GROUP" = sort(rep(1:4, 200)),
"TYPE" = rep(1:2, 400),
"TIME" = rep(100:101, 400),
"SCORE" = sample(1:100,r=T,800))
Cheers all,
I have 'DATA' and wish to estimation the CORRELATION VALUES of SCORE at each TIME and SCORE and TYPE combination BETWEEN AND WITHIN GROUP in this way:
I am assuming you want to compute the correlation between groups 1-2, 1-3, 1-4 and so on for each combination of TIME and TYPE. Here's an approach:
# create the dataset
set.seed(123)
df <- data.frame("group" = sort(rep(1:4, 200)),
"type" = rep(1:2, 400),
"time" = rep(100:101, 400),
"score" = sample(1:100,r=T,800))
library(tidyr)
library(purrr)
library(data.table)
# another dataset to filter combinations
# (G1G2 is same G2G1, so remove G2G1)
df2 <- combn(4, 2) %>% t %>%
as_tibble() %>%
rename(group1 = V1, group2 = V2) %>%
mutate(value = TRUE)
df %>%
# add identifiers per group
group_by(time, type, group) %>%
mutate(id = row_number()) %>%
ungroup() %>%
# nest data to get separate tibble for each
# combination of time and type
nest(data = -c(time, type)) %>%
# convert each data.frame to data.table
mutate(dt = map(data, function(dt){
setDT(dt)
setkey(dt, id)
dt
})) %>%
# correlation between groups in R
# refer answer below for more details
# https://stackoverflow.com/a/26357667/15221658
# cartesian join of dts
mutate(dtj = map(dt, ~.[., allow.cartesian = TRUE])) %>%
# compute between group correlation
mutate(cors = map(dtj, ~.[, list(cors = cor(score, i.score)), by = list(group, i.group)])) %>%
# unnest correlation object
unnest(cors) %>%
# formatting for display
select(type, time, group1 = group, group2 = i.group, correlation = cors) %>%
filter(group1 != group2) %>%
arrange(time, group1, group2) %>%
# now use df2 since currently we have G1G2, and G2G1
# which are both equal so remove G2G1
left_join(df2, by = c("group1", "group2")) %>%
filter(value) %>%
select(-value)
# A tibble: 12 x 5
type time group1 group2 correlation
<int> <int> <int> <int> <dbl>
1 1 100 1 2 0.121
2 1 100 1 3 0.0543
3 1 100 1 4 -0.0694
4 1 100 2 3 -0.104
5 1 100 2 4 -0.0479
6 1 100 3 4 -0.0365
7 2 101 1 2 -0.181
8 2 101 1 3 -0.0673
9 2 101 1 4 0.00765
10 2 101 2 3 0.0904
11 2 101 2 4 -0.0126
12 2 101 3 4 -0.154
Here is an alternative approach which creates all unique combinations of TIME, TYPE, and duplicated GROUPs through a cross join and then computes the correlation of SCORE for the correspondings subsets of DATA:
library(data.table) # development version 1.14.3 required
setDT(DATA, key = c("GROUP", "TYPE", "TIME"))[
, CJ(time = TIME, type = TYPE, groupA = GROUP, groupB = GROUP, unique = TRUE)][
groupA < groupB][
, corType := paste0("G", groupA, "G", groupB)][][
, corValue := cor(DATA[.(groupA, type, time), SCORE],
DATA[.(groupB, type, time), SCORE]),
by = .I][]
time type groupA groupB corType corValue
1: 100 1 1 2 G1G2 0.11523940
2: 100 1 1 3 G1G3 -0.05124326
3: 100 1 1 4 G1G4 -0.16943203
4: 100 1 2 3 G2G3 0.05475435
5: 100 1 2 4 G2G4 -0.10769738
6: 100 1 3 4 G3G4 0.01464146
7: 100 2 1 2 G1G2 NA
8: 100 2 1 3 G1G3 NA
9: 100 2 1 4 G1G4 NA
10: 100 2 2 3 G2G3 NA
11: 100 2 2 4 G2G4 NA
12: 100 2 3 4 G3G4 NA
13: 101 1 1 2 G1G2 NA
14: 101 1 1 3 G1G3 NA
15: 101 1 1 4 G1G4 NA
16: 101 1 2 3 G2G3 NA
17: 101 1 2 4 G2G4 NA
18: 101 1 3 4 G3G4 NA
19: 101 2 1 2 G1G2 -0.04997479
20: 101 2 1 3 G1G3 -0.02262932
21: 101 2 1 4 G1G4 -0.00331578
22: 101 2 2 3 G2G3 -0.01243952
23: 101 2 2 4 G2G4 0.16683223
24: 101 2 3 4 G3G4 -0.10556083
time type groupA groupB corType corValue
Explanation
DATA is coerced to class data.table while setting a key on columns GROUP, TYPE, and TIME. Keying is required for fast subsetting later.
The cross join CJ() creates all unique combinations of columns TIME, TYPE, GROUP, and GROUP (twice). The columns of the cross join have been renamed to avoid name clashes later on.
[groupA < groupB] ensures that equivalent combinations of groupA and groupB only appear once, e.g., G2G1 is dropped in favour of G1G2. So, this is kind of data.table version of t(combn(unique(DATA$GROUP), 2)).
A new column corType is append by reference.
Finally, the groupwise correlations are computed by stepping rowwise through the cross join table (using by = .I) and subsetting DATA by groupA, type, time and groupB, type, time, resp., using fast subsetting through keys. Please, see the vignette Keys and fast binary search based subset for more details.
Note that by = .I is a new feature of data.table development version 1.14.3.
Combinations of time, type, and group which do not exist in DATA will appear in the result set but are marked by NA in column corValue.
Data
set.seed(42) # required for reproducible data
DATA = data.frame("GROUP" = sort(rep(1:4, 200)),
"TYPE" = rep(1:2, 400),
"TIME" = rep(100:101, 400),
"SCORE" = sample(1:100, r=T, 800))
I have a very simple case where I want to combine several data frames into one based on a common id elements of a particular data frame.
Example:
id <- c(1, 2, 3)
x <- c(10, 12, 14)
data1 <- data.frame(id, x)
id <- c(2, 3)
x <- c(20, 22)
data2 <- data.frame(id, x)
id <- c(1, 3)
x <- c(30, 32)
data3 <- data.frame(id, x)
Which gives us,
$data1
id x
1 1 10
2 2 12
3 3 14
$data2
id x
1 2 20
2 3 22
$data3
id x
1 1 30
2 3 32
Now, I want to combine all three data frames based on the id's of the data3. The expected output should look like
> comb
id x
1 1 10
2 1 NA
3 1 30
4 3 14
5 3 22
6 3 32
I am trying the following, but not getting the expected output.
library(dplyr)
library(tidyr)
combined <- bind_rows(data1, data2, data3, .id = "id") %>% arrange(id)
Any idea how to get the expected output?
Does this work:
library(dplyr)
library(tidyr)
data1 %>% full_join(data2, by = 'id') %>% full_join(data3, by = 'id') %>% arrange(id) %>% right_join(data3, by = 'id') %>%
pivot_longer(cols = -id) %>% select(-name) %>% distinct()
# A tibble: 6 x 2
id value
<dbl> <dbl>
1 1 10
2 1 NA
3 1 30
4 3 14
5 3 22
6 3 32
Combine the 3 dataframes in one list and use filter to select only the id's in 3rd dataframe.
library(dplyr)
library(tidyr)
bind_rows(data1, data2, data3, .id = "new_id") %>%
filter(id %in% id[new_id == 3]) %>%
complete(new_id, id)
# new_id id x
# <chr> <dbl> <dbl>
#1 1 1 10
#2 1 3 14
#3 2 1 NA
#4 2 3 22
#5 3 1 30
#6 3 3 32
A pure base R solution can also make it
lst <- list(data1, data2, data3)
reshape(
subset(
reshape(
do.call(rbind, Map(cbind, lst, grp = seq_along(lst))),
idvar = "id",
timevar = "grp",
direction = "wide"
),
id %in% lst[[3]]$id
),
idvar = "id",
varying = -1,
direction = "long"
)[c("id", "x")]
which gives
id x
1.1 1 10
3.1 3 14
1.2 1 NA
3.2 3 22
1.3 1 30
3.3 3 32
>
Using base R
do.call(rbind, unname(lapply(mget(ls(pattern = "^data\\d+$")), \(x) {
x1 <- subset(x, id %in% data3$id)
v1 <- setdiff(data3$id, x1$id)
if(length(v1) > 0) rbind(x1, cbind(id = v1, x = NA)) else x1
})))
-output
id x
1 1 10
3 3 14
2 3 22
11 1 NA
12 1 30
21 3 32
bind_rows(data1, data2, data3, .id = 'grp')%>%
complete(id, grp)%>%
select(-grp) %>%
filter(id%in%data3$id)
# A tibble: 6 x 2
id x
<dbl> <dbl>
1 1 10
2 1 NA
3 1 30
4 3 14
5 3 22
6 3 32
I am trying to figure out how to sum values belonging to category a and b by factor file, but also keep the original data.
library(dplyr)
df <- data.frame(ID = 1:20, values = runif(20), category = rep(letters[1:5], 4), file = as.factor(sort(rep(1:5, 4))))
ID values category file
1 1 0.65699229 a 1
2 2 0.70506478 b 1
3 3 0.45774178 c 1
4 4 0.71911225 d 1
5 5 0.93467225 e 1
6 6 0.25542882 a 2
7 7 0.46229282 b 2
8 8 0.94001452 c 2
9 9 0.97822643 d 2
10 10 0.11748736 e 2
11 11 0.47499708 a 3
12 12 0.56033275 b 3
13 13 0.90403139 c 3
14 14 0.13871017 d 3
15 15 0.98889173 e 3
16 16 0.94666823 a 4
17 17 0.08243756 b 4
18 18 0.51421178 c 4
19 19 0.39020347 d 4
20 20 0.90573813 e 4
so that
df[1,2] will be added to df[2,2] to category 'ab' for file 1
df[6,2] will be added to df[7,2] to category 'ab' for file 2
etc.
So far I have this:
df %>%
filter(category %in% c('a' , 'b')) %>%
group_by(file) %>%
summarise(values = sum(values))
Problem
I would like to change the category of the summed values to "ab" and append it to the original data frame in the same pipeline.
Desired output:
ID values category file
1 1 0.65699229 a 1
2 2 0.70506478 b 1
3 3 0.45774178 c 1
4 4 0.71911225 d 1
5 5 0.93467225 e 1
6 6 0.25542882 a 2
7 7 0.46229282 b 2
8 8 0.94001452 c 2
9 9 0.97822643 d 2
10 10 0.11748736 e 2
11 11 0.47499708 a 3
12 12 0.56033275 b 3
13 13 0.90403139 c 3
14 14 0.13871017 d 3
15 15 0.98889173 e 3
16 16 0.94666823 a 4
17 17 0.08243756 b 4
18 18 0.51421178 c 4
19 19 0.39020347 d 4
20 20 0.90573813 e 4
21 21 1.25486225 ab 1
22 22 1.87216325 ab 2
23 23 1.36548126 ab 3
This will get you the result
df %>% bind_rows(
df %>%
filter(category %in% c('a' , 'b')) %>%
group_by(file) %>%
mutate(values = sum(values), category = paste0(category,collapse='')) %>%
filter(row_number() == 1 & n() > 1)
) %>% mutate(ID = row_number())
BTW the code pro produce the dataframe in the example is this one:
df <- data.frame(ID = 1:20, values = runif(20), category = rep(letters[1:5], 4), file = as.factor(sort(rep(1:4, 5))))
now lets say you want to sum multiple columns, you need to provide the list in a vector:
cols = c("values") # columns to be sum
df %>% bind_rows(
df %>%
filter(category %in% c('a' , 'b')) %>%
group_by(file) %>%
mutate_at(vars(cols), sum) %>%
mutate(category = paste0(category,collapse='')) %>%
filter(row_number() == 1 & n() > 1)
) %>% mutate(ID = row_number())
library(dplyr)
df1 %>%
filter(category %in% c('a' , 'b')) %>%
group_by(file) %>%
filter(n_distinct(category) > 1) %>%
summarise(values = sum(values)) %>%
mutate(category="ab",
ID=max(df1$ID)+1:n()) %>%
bind_rows(df1, .)
#> Warning in bind_rows_(x, .id): binding factor and character vector,
#> coercing into character vector
#> Warning in bind_rows_(x, .id): binding character and factor vector,
#> coercing into character vector
#> ID values category file
#> 1 1 0.62585921 a 1
#> 2 2 0.61865851 b 1
#> 3 3 0.05274456 c 1
#> 4 4 0.68156961 d 1
.
.
.
#> 19 19 0.43239411 d 5
#> 20 20 0.85886314 e 5
#> 21 21 1.24451773 ab 1
#> 22 22 0.99001810 ab 2
#> 23 23 1.25331943 ab 3
This data.table approach uses a self-join to get all of the possible two-character combinations.
library(data.table)
setDT(df)
df_self_join <- df[df, on = .(file), allow.cartesian = T
][category != i.category,
.(category = paste0(i.category, category), values = values + i.values, file)
][order(category), .(ID = .I + nrow(df), values, category, file)]
rbindlist(list(df, df_self_join))
ID values category file
1: 1 0.76984382 a 1
2: 2 0.54311583 b 1
3: 3 0.23462016 c 1
4: 4 0.60179043 d 1
...
20: 20 0.03534223 e 5
21: 21 1.31295965 ab 1
22: 22 0.51666175 ab 2
23: 23 1.02305754 ab 3
24: 24 1.00446399 ac 1
25: 25 0.96910373 ac 2
26: 26 0.87795389 ac 4
#total of 80 rows
Here is pretty close dplyr translation:
library(dplyr)
tib <- as_tibble(df)
inner_join(tib, tib, by = 'file')%>%
filter(ID.x != ID.y)%>%
transmute(category = paste0(category.x, category.y)
, values = values.x + values.y
, file)%>%
arrange(category)%>%
bind_rows(tib, .)%>%
mutate(ID = row_number())%>%
filter(category == 'ab') #filter added to show the "ab" files
# A tibble: 3 x 4
ID values category file
<int> <dbl> <chr> <fct>
1 21 1.31 ab 1
2 22 0.517 ab 2
3 23 1.02 ab 3
Suppose I have the following data and data frame:
sample_data <- c(1:14)
sample_data2 <- c(NA,NA,NA, "break", NA, NA, "break", NA,NA,NA,NA,NA,NA,"break")
sample_df <- as.data.frame(sample_data)
sample_df$sample_data2 <- sample_data2
When I print this data frame, the results are as follows:
sample_data sample_data2
1 1 <NA>
2 2 <NA>
3 3 <NA>
4 4 break
5 5 <NA>
6 6 <NA>
7 7 break
8 8 <NA>
9 9 <NA>
10 10 <NA>
11 11 <NA>
12 12 <NA>
13 13 <NA>
14 14 break
How would I program it so that at every "break", it outputs the max from that row up? For instance, I would want the code to output the set of (4,7,14). Additionally, I would want it so that it only finds the max value between up to the next "break" interval.
I apologize in advance if I used any incorrect nomenclature.
I construct the groups looking for the word "break" and then move the results one row up. Then some dplyr commands to get max of every group.
library(dplyr)
sample_df_new <- sample_df %>%
mutate(group = c(1, cumsum(grepl("break", sample_data2)) + 1)[1:length(sample_data2)]) %>%
group_by(group) %>%
summarise(group_max = max(sample_data))
> sample_df_new
# A tibble: 3 x 2
group group_max
<dbl> <dbl>
1 1 4
2 2 7
3 3 14
I have an answer using data.table:
library(data.table)
sample_df <- setDT(sample_df)
sample_df[,group := (rleid(sample_data2)-0.5)%/%2]
sample_df[,.(maxvalues = max(sample_data)),by = group]
group maxvalues
1: 0 4
2: 1 7
3: 2 14
The tricky part is (rleid(sample_data2)-0.5)%/%2: rleid create an increasing index to each change :
sample_data sample_data2 rleid
1: 1 NA 1
2: 2 NA 1
3: 3 NA 1
4: 4 break 2
5: 5 NA 3
6: 6 NA 3
7: 7 break 4
8: 8 NA 5
9: 9 NA 5
10: 10 NA 5
11: 11 NA 5
12: 12 NA 5
13: 13 NA 5
14: 14 break 6
If you keep the entire part of that index - 0.5, you have a constant index for the rows you want, that you can use for grouping operation:
sample_data sample_data2 group
1: 1 NA 0
2: 2 NA 0
3: 3 NA 0
4: 4 break 0
5: 5 NA 1
6: 6 NA 1
7: 7 break 1
8: 8 NA 2
9: 9 NA 2
10: 10 NA 2
11: 11 NA 2
12: 12 NA 2
13: 13 NA 2
14: 14 break 2
Then it is just taking the maximum for each group. You can easily translate it into dplyr if it is easier for you
Here are 2 ways with base R. The trick is to define a grouping variable, grp.
grp <- !is.na(sample_df$sample_data2) & sample_df$sample_data2 == "break"
grp <- rev(cumsum(rev(grp)))
grp <- -1*grp + max(grp)
tapply(sample_df$sample_data, grp, max, na.rm = TRUE)
aggregate(sample_data ~ grp, sample_df, max, na.rm = TRUE)
Data.
This is simplified data creation code.
sample_data <- 1:14
sample_data2 <- c(NA,NA,NA, "break", NA, NA, "break", NA,NA,NA,NA,NA,NA,"break")
sample_df <- data.frame(sample_data, sample_data2)
Looks like there are lots of different ways of doing this. This is how I went about it:
rows <- which(sample_data2 == "break") #Get the row indices for where "break" appears
findmax <- function(maxrow) {
max(sample_data[1:maxrow])
} #Create a function that returns the max "up to" a given row
sapply(rows, findmax) #apply it for each of your rows
### [1] 4 7 14
Note that this works "up to" the given row. To get the maximum value between the two breaks would probably be easier with one of the other solutions, but you could also do it by looking at the j-1 row to jth row from the rows object.
Depending whether you want to assess the maximum "sample_data" number between all "sample_data2" == break including (e.g. row 1 to row 4) or excluding (e.g. row 1 to row 3) the given "sample_data2" == break row, you can do something like this with tidyverse:
Excluding the break rows:
sample_df %>%
group_by(sample_data2) %>%
mutate(temp = ifelse(is.na(sample_data2), NA_character_, paste0(gl(length(sample_data2), 1)))) %>%
ungroup() %>%
fill(temp, .direction = "up") %>%
filter(is.na(sample_data2)) %>%
group_by(temp) %>%
summarise(res = max(sample_data))
temp res
<chr> <dbl>
1 1 3.
2 2 6.
3 3 13.
Including the break rows:
sample_df %>%
group_by(sample_data2) %>%
mutate(temp = ifelse(is.na(sample_data2), NA_character_, paste0(gl(length(sample_data2), 1)))) %>%
ungroup() %>%
fill(temp, .direction = "up") %>%
group_by(temp) %>%
summarise(res = max(sample_data))
temp res
<chr> <dbl>
1 1 4.
2 2 7.
3 3 14.
Both of the codes create an ID variable called "temp" using gl() for "sample_data2" == break and then fill up the NA rows with that ID. Then, the first code filters out the "sample_data2" == break rows and assess the maximum "sample_data" values per group, while the second assess the maximum "sample_data" values per group including the "sample_data2" == break rows.
I would like to reference a column inside the summarise() in dplyr with its index rather than with its name. For example:
> a
id visit timepoint bedroom den
1 0 0 62 NA
2 1 0 53 6.00
3 2 0 56 2.75
4 0 1 55 NA
5 1 2 61 NA
6 2 0 54 NA
7 0 1 58 2.75
8 1 2 59 NA
9 2 2 60 NA
10 0 1 57 NA
# E.g.
a %>% group_by(visit) %>% summarise(avg.bedroom = mean(bedroom, na.rm =T)
# Returns
visit avg.dedroom
<dbl> <dbl>
1 0 4.375
2 1 2.750
3 2 NaN
How could I use the index of column "bedroom" rather its name in the summarise clause? I tried:
a %>% group_by(visit) %>% summarise("4" = mean(.[[4]], na.rm = T))
but this returned false results:
visit `4`
<dbl> <dbl>
1 0 3.833333
2 1 3.833333
3 2 3.833333
Is my objective achievable and if yes how? Thank you.
Perhaps not exactly what you're looking for, but one option would be to use purrr rather than dplyr. Something like
# Read in data
d <- read.table(textConnection(" id visit timepoint bedroom den
1 12 0 62 NA
2 14 0 53 6.00
3 14 0 56 2.75
4 14 1 55 NA
5 14 2 61 NA
6 15 0 54 NA
7 15 1 58 2.75
8 16 2 59 NA
9 16 2 60 NA
10 17 1 57 NA "),
header = TRUE)
library(purrr)
d %>%
split(.$timepoint) %>%
map_dbl(function(x) mean(x[ ,5], na.rm = TRUE))
# 0 1 2
# 4.375 2.750 NaN
Or, with base
aggregate(d[ ,5] ~ timepoint, data = d, mean)
# timepoint d[, 5]
# 1 0 4.375
# 2 1 2.750
The answer I found is the summarize_at() function of dplyr. Here is how I used summarize_at() to create summary statistics on subsets of my dataframe where the columns were not known in advance (object is my original dataframe which is in a long form and has a column -- room -- that contains the names of the rooms, as well as two other columns, "visit" and "value"):
# Convert object to a wide form
object$row <- 1 : nrow(object)
y <- spread(object, room, value)
# Remove the row column from y
y <- y %>% select(-row)
# Initialize stat1, the dataframe with the summary
# statistics
stat1 <- data.frame(visit = c(0, 1, 2))
# Find the number of columns that stat1 will eventually
# have
y <- y %>% filter(id == id) %>%
select_if(function(col) mean(is.na(col)) != 1)
n <- ncol(y)
# Append columns with summary statistics to stat1
for (i in 3 : n) {
t <- y %>% group_by(visit) %>%
summarise_at(c(i), mean, na.rm = T)
t[, 2] <- round(t[, 2], 2)
stat1 <- cbind(stat1, t[, 2])
}
# Pass the dataframe stat1 to the list "results"
results$stat1 <- stat1