How do I extract all the values of estquant using R? - r

I don't know how to extract each value of estquant from this loop. What code should I add at the end that gives me all the values instead of just one!
p <- 0.5
m <- 2
d1 <- as.matrix(d);d1
for (i in 1:m){
Xj <- d1[,i]
nj <- length(Xj)
Fj <- pbeta(Fx,i,nj+1-i)
a <- pbeta(p,i,nj+1-i)
estFj <- knots(ecdf(Xj))
estquant <- min(estFj[estFj >= a])
}

You want estquant to be a vector of length m.
So:
p <- 0.5
m <- 2
d1 <- as.matrix(d);d1
estquant <- numeric(m)
for (i in 1:m){
Xj <- d1[,i]
nj <- length(Xj)
Fj <- pbeta(Fx,i,nj+1-i)
a <- pbeta(p,i,nj+1-i)
estFj <- knots(ecdf(Xj))
estquant[i] <- min(estFj[estFj >= a])
}
estquant
(It's important to predefine an object when assigning values to it 1-by-1 in a loop, otherwise R has to redefine the object for every iteration and that is time-consuming.)

Related

How can I fill a matrix with a repeat loop and delete columns by condition in R?

My R-Code:
l <- list()
for(i in 1:5){
n <- 1
mat <- matrix(0L,500,10)
repeat{
a <- rnorm(10)
b <- rnorm(10)
c <- a+b
mat[n,] <- c
mat <- mat[mat[,10] >= 0 + (i/10) & mat[,1] >= 0 +(i/10),]
n <- n +1
if(mat[500,] != 0){
break
}
}
l[[i]] <- mat
}
l
I would like to get 5 Matrices, which are stored in a list. Each matrix should have exactly 500 rows and should not have negative values in its rows at position [,1] or [,10].
I tried to build a repeat loop:
Calculate Vector
Store vector in matrix
delete if condition is met
repeat if there arent 500 rows
Unfortunately, there's something wrong and it doesn't work. What can I do? Thanks!
If you add an if-clause that tests your condition before adding the line to your matrix, it should work:
l <- list()
for(i in 1:5){
n <- 1
mat <- matrix(0L,500,10)
repeat{
a <- rnorm(10)
b <- rnorm(10)
c <- a+b
if(!any(c[c(1,10)] < 0 + i/10)){
mat[n,] <- c
n <- n +1
}
if(n==501){
break
}
}
l[[i]] <- mat
}

For loop returning just one output in R

I am getting a 49*49 matrix as input from a csv and trying to print the sum as a 49*49 matrix but I am getting just one value as output for sum.
w <- read.csv(file="ma.csv", header=F, sep=",");
sum <- 4
for(i in 1:49){
for(j in 1:49)
{
sum = sum + w[i,j];
}
}
May be
w1 <- matrix(NA, ncol=3, nrow=3)
sum1 <- 4
for(i in 1:3){
for(j in 1:3){
w1[i,j] = sum1 + w[i,j];
}
}
w1[] <- cumsum(w1)
Or without any loop
w2 <- w
w2[] <- cumsum(w+sum1)
identical(w2, w1)
#[1] TRUE
data
set.seed(24)
w <- matrix(sample(0:20, 3*3, replace=TRUE), ncol=3)

double for loop in Binomial Tree in R

I want set up a model for interest rate in binomial tree. The interest rate is path dependent. I want return interest rate (discount factor and payoff) at every step in all scenarios(2^N). The reason I want to return every single interest rate is that I want use the interest rate is compute discount factor. I know how to do this in a complex way. Here I want to use a double loop (or something simpler) to get the results.
w is for "0" or "1" dummy variable matrix representing all scenarios.
r is interest rate. if there is a head(1), then r1=r0+u=r0+0.005; if there is a tail(0), then r1=r0-d.
D is discount factor. D1=1/(1+r0), D2=D1/(1+r1)...
P is payoff.
In this case, period N is 10. therefore, I can compute step by step. However,if N gets larger and larger, I cannot use my method. I want a simple way to compute this. Thank you.
#Real Price
N <- 10
r0 <- 0.06
K <- 0.05
u <- 0.005
d <- 0.004
q <- 0.5
w <- expand.grid(rep(list(0:1),N))
r <- D <- P <- matrix(0,0,nrow=2^N,ncol=N)
for(i in 1:dim(w)[1])
{
r[i,1] <- r0 + u*w[i,1] - d*(1-w[i,1])
r[i,2] <- r[i,1] + u*w[i,2] - d*(1-w[i,2])
r[i,3] <- r[i,2]+u*w[i,3]-d*(1-w[i,3])
r[i,4] <- r[i,3]+u*w[i,4]-d*(1-w[i,4])
r[i,5] <- r[i,4]+u*w[i,5]-d*(1-w[i,5])
r[i,6] <- r[i,5]+u*w[i,6]-d*(1-w[i,6])
r[i,7] <- r[i,6]+u*w[i,7]-d*(1-w[i,7])
r[i,8] <- r[i,7]+u*w[i,8]-d*(1-w[i,8])
r[i,9] <- r[i,8]+u*w[i,9]-d*(1-w[i,9])
r[i,10] <- r[i,9]*+u*w[i,10]-d*(1-w[i,10])
D[i,1] <- 1/(1+r0)
D[i,2] <- D[i,1]/(1+r[i,1])
D[i,3] <- D[i,2]/(1+r[i,2])
D[i,4] <- D[i,3]/(1+r[i,3])
D[i,5] <- D[i,4]/(1+r[i,4])
D[i,6] <- D[i,5]/(1+r[i,5])
D[i,7] <- D[i,6]/(1+r[i,6])
D[i,8] <- D[i,7]/(1+r[i,7])
D[i,9] <- D[i,8]/(1+r[i,8])
D[i,10] <- D[i,9]/(1+r[i,9])
P[i,1] <- D[i,1]*pmax(K-r0,0)*(0.5^N)
P[i,2] <- D[i,2]*pmax(K-r[i,1],0)*(0.5^N)
P[i,3] <- D[i,3]*pmax(K-r[i,2],0)*(0.5^N)
P[i,4] <- D[i,4]*pmax(K-r[i,3],0)*(0.5^N)
P[i,5] <- D[i,5]*pmax(K-r[i,4],0)*(0.5^N)
P[i,6] <- D[i,6]*pmax(K-r[i,5],0)*(0.5^N)
P[i,7] <- D[i,7]*pmax(K-r[i,6],0)*(0.5^N)
P[i,8] <- D[i,8]*pmax(K-r[i,7],0)*(0.5^N)
P[i,9] <- D[i,9]*pmax(K-r[i,8],0)*(0.5^N)
P[i,10] <- D[i,10]*pmax(K-r[i,9],0)*(0.5^N)
}
true.price <- sum(P)
#> true.price
# > true.price
# [1] 0.00292045
You can just use a nested loop, looping over 2:(ncol(w)) within the i loop:
for(i in 1:nrow(w)) {
r[i, 1] <- r0 + u*w[i, 1] - d*(1-w[i, 1])
D[i, 1] <- 1/(1+r0)
P[i, 1] <- D[i, 1]*pmax(K-r0, 0)*(0.5^N)
for (j in 2:(ncol(w))) {
r[i,j] <- r[i, j-1] + u*w[i, j] - d*(1-w[i, j])
D[i,j] <- D[i, j-1]/(1+r[i, j-1])
P[i,j] <- D[i, j]*pmax(K-r[i, j-1], 0)*(0.5^N)
}
}
true.price <- sum(P)

for loop storage issue (nested for loops)

I am having difficulty storing all of my data from my middle for loop. when i try and retrieve the data after the outside for loop has run the only data that i am able to attain is the final run. how do i store all of the runs of D in a single matrix?
set.seed(3690)
iterations <- 20
mean_birthrate <- 0.4
stand_dev_birthrate <- 0.1
mean_survival_rate <- 0.68
stand_dev_survival <- 0.07
initial_population <- 100
period <- 20
End_Year <- 2013+period
birthrate <- rnorm(n=1,mean=mean_birthrate,sd=stand_dev_birthrate)
birthrate
survival <- rnorm(n=1,mean=mean_survival_rate,sd=stand_dev_survival)
survival
growth_rate <- birthrate - (1-survival)
growth_rate
for (k in 1:50) {
D <- numeric(period)
D[1] <- initial_population
for (i in 1:period) {
D[i+1] <- D[i] + ((rnorm(n=1,mean=mean_birthrate,sd=stand_dev_birthrate) - (1-rnorm(n=1,mean=mean_survival_rate,sd=stand_dev_survival))) * D[i])
}
print(D)
if (k==1)
plot(D, typ="l",ylab="Number of Bobcats",xlab="Year",ylim=c(50,1700),xaxt='n')
if (k>1)
lines(D,col = rgb(0,0,0,0.1),xaxt='n')
}
if you have nested for loops, you need nested lists (or some other form to capture the n x m many results)
#outter loop
for (i in...)
D[[i]] <- list()
#inner loop
for (j in ...)
D[[i]][[j]] <- value
# or different syntax:
D[[c(i, j)]] <- calue
I had a similar problem, and solved it with a pre-defined variable, like this:
DATA <- list()
j <- 0
for(k in 1:10){
for(i in 1:5){
temp.DATA <- i*k #or whatever the loop does
j <- j+1
DATA[[j]] <- temp.DATA
}
}
DATA2 <- do.call(rbind.data.frame, DATA)
Hope that helps!

Help speeding up a loop in R

basically i want to perform diagonal averaging in R. Below is some code adapted from the simsalabim package to do the diagonal averaging. Only this is slow.
Any suggestions for vectorizing this instead of using sapply?
reconSSA <- function(S,v,group=1){
### S : matrix
### v : vector
N <- length(v)
L <- nrow(S)
K <- N-L+1
XX <- matrix(0,nrow=L,ncol=K)
IND <- row(XX)+col(XX)-1
XX <- matrix(v[row(XX)+col(XX)-1],nrow=L,ncol=K)
XX <- S[,group] %*% t(t(XX) %*% S[,group])
##Diagonal Averaging
.intFun <- function(i,x,ind) mean(x[ind==i])
RC <- sapply(1:N,.intFun,x=XX,ind=IND)
return(RC)
}
For data you could use the following
data(AirPassengers)
v <- AirPassengers
L <- 30
T <- length(v)
K <- T-L+1
x.b <- matrix(nrow=L,ncol=K)
x.b <- matrix(v[row(x.b)+col(x.b)-1],nrow=L,ncol=K)
S <- eigen(x.b %*% t(x.b))[["vectors"]]
out <- reconSSA(S, v, 1:10)
You can speed up the computation by almost 10 times with the help of a very specialized trick with rowsum:
reconSSA_1 <- function(S,v,group=1){
### S : matrix
### v : vector
N <- length(v)
L <- nrow(S)
K <- N-L+1
XX <- matrix(0,nrow=L,ncol=K)
IND <- row(XX)+col(XX)-1
XX <- matrix(v[row(XX)+col(XX)-1],nrow=L,ncol=K)
XX <- S[,group] %*% t(t(XX) %*% S[,group])
##Diagonal Averaging
SUMS <- rowsum.default(c(XX), c(IND))
counts <- if(L <= K) c(1:L, rep(L, K-L-1), L:1)
else c(1:K, rep(K, L-K-1), K:1)
c(SUMS/counts)
}
all.equal(reconSSA(S, v, 1:10), reconSSA_1(S, v, 1:10))
[1] TRUE
library(rbenchmark)
benchmark(SSA = reconSSA(S, v, 1:10),
SSA_1 = reconSSA_1(S, v, 1:10),
columns = c( "test", "elapsed", "relative"),
order = "relative")
test elapsed relative
2 SSA_1 0.23 1.0000
1 SSA 2.08 9.0435
[Update: As Joshua suggested it could be speed up even further by using the crux of the rowsum code:
reconSSA_2 <- function(S,v,group=1){
### S : matrix
### v : vector
N <- length(v)
L <- nrow(S)
K <- N-L+1
XX <- matrix(0,nrow=L,ncol=K)
IND <- c(row(XX)+col(XX)-1L)
XX <- matrix(v[row(XX)+col(XX)-1],nrow=L,ncol=K)
XX <- c(S[,group] %*% t(t(XX) %*% S[,group]))
##Diagonal Averaging
SUMS <- .Call("Rrowsum_matrix", XX, 1L, IND, 1:N,
TRUE, PACKAGE = "base")
counts <- if(L <= K) c(1:L, rep(L, K-L-1), L:1)
else c(1:K, rep(K, L-K-1), K:1)
c(SUMS/counts)
}
test elapsed relative
3 SSA_2 0.156 1.000000
2 SSA_1 0.559 3.583333
1 SSA 5.389 34.544872
A speedup of x34.5 comparing to original code!!
]
I can't get your example to produce sensible results. I think there are several errors in your function.
XX is used in sapply, but is not defined in the function
sapply works over 1:N, where N=144 in your example, but x.b only has 115 columns
reconSSA simply returns x
Regardless, I think you want:
data(AirPassengers)
x <- AirPassengers
rowMeans(embed(x,30))
UPDATE: I've re-worked and profiled the function. Most of the time is spent in mean, so it may be hard to get this much faster using R code. That said, you can 20% speedup by using sum instead.
reconSSA <- function(S,v,group=1){
N <- length(v)
L <- nrow(S)
K <- N-L+1
XX <- matrix(0,nrow=L,ncol=K)
IND <- row(XX)+col(XX)-1
XX <- matrix(v[row(XX)+col(XX)-1],nrow=L,ncol=K)
XX <- S[,group] %*% t(t(XX) %*% S[,group])
##Diagonal Averaging
.intFun <- function(i,x,ind) {
I <- ind==i
sum(x[I])/sum(I)
}
RC <- sapply(1:N,.intFun,x=XX,ind=IND)
return(RC)
}

Resources